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SUR QUELQUES PRINCIPES EXTREMAUX
DE LA PHYSIQUE MATHEMATIQUE?Y)

par Joseph HEersch, Institut Battelle, Genéve

(Regu le 256 octobre 1959.) |

1. INTRODUCTION.

| Je voudrais attirer votre attention sur quelques aspects de
' deux problémes de physique mathématique: le probléme de
]

Dirichlet et celul de la fréquence fondamentale d’une membrane
vtbrante. 11 s’agira surtout des principes extrémaux liés & ces
problémes.

1. 1. Un probléme de Dirichlet.

, Nous considérons la solution
¢ (z, y) du probléme aux limites
- (g 1):

= 0 sur Iy
Ap = 0 dans G; ;

(p':flSllI‘Pl,

| nous nous intéressons particuliére-
ment & I'intégrale de Dirichlet

D (o) = ffe grad? o dxdy . Fig. 1

| Cette grandeur peut étre évaluée dans les deux sens a ’aide
des deux principes suivants:

Principe de Dirichlet : Principe de Thomson :
Soit ¢ (x, y) une fonction Soit p (2, y) un champ
continue et lisse par morceaux vectoriel dans G, sans sources:
dans G, et telle que div p = 0; alors
9 = 0 sur I, > > 2
: : (4} p.n ds>
o = 1 sur I D () > -11 _
alors D (g) <D (o) . [ p* dady .
G

1) Lecon inaugurale & I’Ecole polytechnique fédérale (Zurich), 1e 31 janvier 1959.
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1.2. La vibration fondamentale d’une membrane.

Dans un domaine G de contour I', nous cherchons un nombre
positif A; et une fonction ¢ (z, y) deux fois contintiment déri-
vable, tels que Ap + 2, ¢ = 0 et ¢ > 0 dans G, ¢ = 0 sur I.

v/ 2, est la fréquence fondamentale, ¢ la premiére fonction
propre.

Principe de Rayleigh :

Soit ¢ (z, y) une fonction conti-
nue et lisse par morceaux dans G,
qui s’annule sur I'; alors

Existe-t-il un principe
«du type Thomson» ?

D (o) N =7

7\1 <R[()]: W
G

2. LA CONDUCTIBILITE ELECTRIQUE
D’UNE PLAQUE HOMOGENE.

Considérons le domaine G (fig. 1) comme une plaque homo-
géne de résistance spécifique p = 1, bordée par deux électrodes
I'y et T';; appelons ¢ (x, y) le potentiel au point (z, y); on
impose les potentiels O sur I'y et 1 sur I'; (différence de potentiel
V = 1). Comme p = 1, on a la densité de courant ti:_—._ grad o;

la conservation de la charge s’exprime par 0 = div i = A¢. On
voit donc que le potentiel ¢ est la solution du probléme de Dirichlet
du§1.1. :

Comme p =1 et V = 1, la chaleur de Joule dégagée par
seconde est "

- 0 5 -
J=ffai2dxdy=1)(cp)=9g ﬁds=9€ T-onds =1,
ou I désigne l'intensité totale et n la normale extérieure.
La résistance totale est

Vo1
R =t -
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3. UNE INTERPRETATION DU PRINCIPE DE DIRICHLET.

3. 1. Modifions le probleme
physique du § 2 en introduisant
dans le domaine G des conducteurs
parfaits vy, Yayery Ynog (fig. 2).
J’écrirai v, = [, v,= I';. Cette
modification provoque évidem-
ment une augmentation de Il'in-,
tensité. Quand [lintensité est-elle
inchangée? Lorsque aucun courant Fig. 2
ne parcourt les conducteurs -,
c’est-a-dire su toutes les courbes vy, sont des lignes de niveau
de ¢ (§ 2).

Appelons u (z,y) le potentiel pour le probléme modifié,

I Pintensité et J la chaleur de Joule dégagée par seconde. On
a u = const = u; sur la courbe v,; dans chaque bande G; (entre
Yi—y et v;), u (z, y) s'obtient & partir de u;,_, et u; en résolvant
un probléme de Dirichlet (i = 1,2, ..., n); les inconnues uy, ..., u, _,
sont déterminées par les » — 1 conditions de conservation de
]a charge:

Flux a travers Gi = Flux a travers Gi 1

‘ * ? Up=1

(i=1,2,...,n—1). R —L
On a encore J =V - I = I, done R, -2 % V=1
D)= =1<T=7=D (u R Uq =

Notre plaque se comporte 2
présent comme un sysiéme de n
résistances R; = R, connectées

]
(=)

. Fig 3
i1 Yi
en série (fig. 3):

=R=R,+Ry,+..+R,.

] -

3.2. Modifions de nouveau le probléeme physique: Au lieu
de laisser des potentiels « naturels » u, s’établir librement sur les
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conducteurs y;, nous imposons des potentiels arbitraires ¢;. En
d’autres termes, nous connectons a la batterie toutes les extre-

mités des résistances partielles
R, (fig. 4). -

A
Appelons ¢ (z, y) la solution RQ% = v,
du nouveau probléme physique ~ Vo= vy
(obtenue par résolution, dans R, ’ =

chaque bande G;, d’un probléme R

de Dirichlet), et J la chaleur de
Joule maintenant dégagée par
seconde. " Fig.4

<7 <K

T—'V\N\/'*—J r—’\t\ﬂ
}
i

L

o
"
o

Il est intuitif que J J;
quand a-t-on Uégalité ? Lorsque aucun courant ne parcourt les
conducteurs ajoutés oy, ay, ..., ,_;, ¢’est-a-dire si les potentiels
intermédiaires imposés v; sont égaux aux potentiels « naturels » u,.
La démonstration est simple et repose sur 'inégalité de Schwarz:
posons

n
0, — 9,y = V;; EV:
1

Ldl

n
. 1 — —
- S ® > R_=§=D<u>=I=J,

i=1 1

V., ) . ) .

on a I’égalité si Eﬁ = const, ¢’est-a-dire si 'intensité est la méme
i

dans chaque G;: c’est précisément la condition qui, au § 3.1,

déterminait les u;. On a donc

D (o) >D (u) >D (o) . .

3.3. Le principe de Dirichlet exprime précisément I’inégalité
D (¢) > D () dans le cas limite ou I’on a imposé toutes les lignes
de niveau de ¢ et leur potentiel, ¢’est-a-dire lorsqu’on a imposé
la fonction ¢ elle-méme !). On n’a P’égalité que si ¢ = o.

1) A Taide de toutes les lignes de niveau d’une fonction admissible v, on peut
construire une borne supérieure D (u) pour D (v), meilleure que D (v): cf. G. PéLyA
et G. Szeacd: Isoperimetric Inequalztzes in Mathematical Physics (Princeton University
Press, 1951), p. 47.
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4. UNE INTERPRETATION DU PRINCIPE DE THOMSON.

4.1. Modifions d’une auire fagon le probleme physique
initial (§ 2): Découpons en laniéres G; la plaque homogéne (fig. 5).

Ce découpage provoque évi-
demment une diminution de 'in-
tensité. Quand [Uintensité est-elle
inchangée ? Liorsque, initialement,
aucun courant i = grad ¢ ne
traversait les coupures, c’est-a-
dire si toutes les coupures sont des
lignes de flux de grad ¢ (§ 2).

Appelons w (z, y) le poten-
tiel pour le probleme modifié, Fig. 5

I intensité totale et J la chaleur

de Joule dégagée par seconde. On a w = 0 sur I'y, w =1 sur Iy,

9w _ 0 sur les coupures, Aw = 0 dans chaque G;.

on
Onaencoresz.i:i, done D(p) = J =1 >1 =
— J = D (w).
Notre plaque se comporte a présent comme un systéme de
résistances Ry, Ry, ..., R, connectées en paralléle:
m' m
= L= g (car V = 1).
j=1 i=1 -1

Appelons w; la restriction de w & Gy;

ou I'j; est la partie de I'; qui borde G;.

4.2. Considérons le cas limite ou les laniéres G; sont de
largeur infinitésimale. Le découpage de G est alors équivalent &
un choix des lignes de flux d’un champ vectoriel. Soit p un tel
champ, de divergence nulle; la direction de p est déterminée en

L’Enseignement mathém., t. V, fasc. 4. , 17
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tout. point; sa grandeur p = p (s) est fonction de 'arc sur la
ligne de flux. L’équation div p = 0 est donc équivalente & une
équation différentielle ordinaire, linéaire et homogéne, pour p (s);
une solution est grad w (c’est-a-dire: grad w; dans la bande
infinitésimale G;); done, dans G;, P = t; grad w; (¢; est constante
dans G;). Il s’ensuit, par I'inégalité de Schwarz, que

(0.7 7e) _[Zoow]

f.[ —52 dzxdy B 2 t;D (Wj) _
G j

<ZD(Wj) —
i

nous avons donc bien une interprétation du principe de Thomson.

5. UN PAsSSAGE THOMSON — DIRICHLET,

a I’aide des lignes de niveau y d’une fonction ¢
concurrente pour Dirichlet.

-

Dans le principe de Thomson ci-dessus, normons p en impo-

sant fﬁ p . nds = 1 pour toute courbe fermée y séparant I';

Y . e

de I'y; pour ces champs concurrents p, on a

D (¢) = Max; (J!- ;2 dxdy>"1

Admettons maintenant davantage de champs concurrents:
imposons la condition 45 p . nds = 1 pour les seulés lignes de

Y
niveau vy de ¢; le maximum devient plus grand, et nous avons

- ___1 .
D (p) < Max> (f£ P* dxdy) :

on peut montrer que le maximum & droite est maintenant égal
a D (u) (cf. § 3. 1), donec D (¢) < D (u) < D (¢), et nous retrou-
vons bien le principe de Dirichlet.
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6. UN PASSAGE DIRICHLET —— THOMSON,

-

3 l'aide des lignes de flux d’un champ vectoriel p
concurrent pour Thomson.

¥

Partageons le domaine G en laniéres G; par des lignes de
flux » de p, comme au § 4.1; dans le principe de Dirichlet (§1.1)

jOsurI‘O,

D () = Min,D (¢), ¢ continue dans G, lisse par morceaux =
[ tsur I ,

admettons maintenant & concurrence également les fonctions ¢

discontinues le long des coupures x; c’est-a-dire que nous exi-
geons seulement la continuité dans chaque laniére G;: le mini-
mum diminue évidemment et 'on a

~

D(p) > Min_D (¢) .

Soit ¢; la restriction de ¢ & G;, et soit de nouveau w; la solu-

tion du probléme mixte dans G;: w; = O sur I'y;, w; = 1 sur I'

0 w;
— = 0 sur les coupures x.
on

1j»

Min; D (¢) = 3 Min; D (¢)) = 2 D(wy) = 9@_@6{8 = D (w),

comme au § 4. 1; pour des laniéres G; de largeur infinitésimale,
on retrouve, comme au § 4. 2, le principe de Thomson:

- —> 2
<3§ p.nds>
r
- <

ff ;2 dxdy
G

D (w) ,
donc < D (¢) en vertu de ce qui précéde.

7. UN PAS VERS UN PRINCIPE DE THOMSON
POUR LA MEMBRANE VIBRANTE.

7.1. Cherchons & réaliser, pour le probléme de la mem-
brane vibrante (§ 1. 2), un passage analogue & celui du § 6; a
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présent: «de Rayleigh 4 Thomson». Pour cela, partageons le
domaine G du § 1.2 en sous-
domaines G; (fig. 6).

Dans le principe de Rayleigh

A = Min, R [¢], ¢ continue dans G,
lisse par morceaux, = 0 sur I,

nous voulons maintenant ad-
mettre également & concurrence
les fonctions ¢ discontinues le
long des coupures. Le minimum ne
peut évidemment que déeroitre:

> Min. R (o] ;

appelons ¢; la restriction de ¢ a Gj.

Soient, dans Gy, &; la premiére valeur propre et w; la fonction
propre correspondante, d’'une membrane G; liée le long de T,
libre sur les « coupures »;ona Aw, + & w; = 0 et w; > 0 dans

G;, w; = 0 sur I, = 0 sur les coupures; 3;' Min; R [¢;].
J
Done
| 2 D (¢;)

Mm R[¢o]= Min. . I — min, £,

v1,...,vaJ'f ;?dxdy i=ic

St toutes les coupures sont des lignes de flux de grad @
(p étant la fonction propre fondamentale, cf. § 1.2), w; est
simplement la restriction de ¢ & G; et 'on a, pour tout j,

.Ej = R [Wj] =
Nous pouvons donc énoncer le résultat suivant:

Ay = MaX ggcoupages de G en lanitres Gj min; &; . Y)

1) anr ce sujet: C.R. Acad Sci. Paris, 248, 1959 p. 2060, ot deux applications
numériques sont indiquées. '
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7.2. Dans le cas limite de bandes G; de largeur infinitési-
male, on a, dans chaque G;, un probléme & une seule variable
indépendante, car w; = w; (s).

Le parallélisme entre ce § 7 et le précédent permet d’inter-
préter ce résultat comme un pas en direction d’un « principe de
Thomson » pour la membrane vibrante. La difficulté reste évidem-
ment le calcul (ou I’évaluation -par défaut) de tous les ;. Peut-
on aller au-dela de cette formulation ? La question reste ouverte.
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