Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

**Band:** 5 (1959)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: FONCTIONS ENTIÈRES D'ORDRE FINI ET FONCTIONS

**MÉROMORPHES** 

Autor: Valiron, Georges

Kapitel: QUELQUES PROPRIÉTÉS DES FONCTIONS MÉROMORPHES

**DOI:** https://doi.org/10.5169/seals-35471

#### Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

#### **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

#### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF:** 16.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

# FONCTIONS ENTIÈRES D'ORDRE FINI ET FONCTIONS MÉROMORPHES

par Georges Valiron †

QUELQUES PROPRIÉTÉS DES FONCTIONS MÉROMORPHES (suite et fin)

# V. Théorie des surfaces de recouvrement d'Ahlfors.

50. Feuillets et couches de feuillets de la surface de Riemann.

Nous considérons une fonction Z = f(z) méromorphe dans le cercle  $|z| \leq r$  et sur sa circonférence  $C_r$ . Lorsque z décrit le cercle, l'image de Z sur la sphère Σ (nº 42) décrit une surface de Riemann W limitée par la courbe  $\Gamma_r$  image de  $\mathbf{Z} = f(z)$ lorsque z décrit  $C_r$ .  $\Gamma_r$  est une courbe continue analytique (sauf aux images des points Z pour lesquels Z = f(z) a des racines multiples).  $\Gamma_r$  détermine sur  $\Sigma$  un nombre fini de domaines  $D_k$ qui sont tous simplement connexes. Marquons aussi les points Z<sub>i</sub> pour lesquels  $Z_i = f(z)$  a une racine multiple  $|z| \leq r$  (ce sont les points  $Z_j = f(z_j)$ ,  $f'(z_j) = 0$ , et le point P de  $\Sigma$  diamétralement opposé à O s'il y a des pôles multiples). Lorsque Z (en appelant Z à la fois le nombre Z et son image sphérique) appartient à un  $D_k$  ne contenant pas de points  $Z_i$  ou P (s'il y a des pôles multiples), les branches de la fonction inverse  $\Phi$  (Z) de Z = f(z), s'il y en a, sont holomorphes; et aux  $D_k$  correspondent des domaines  $d_k^{\mathsf{v}}$  du cercle  $C_r$ , sans points communs, dans lesquels f(z) est univalente. Les  $D_k$  sont les projections de feuillets simples  $D_k^{\nu}$  de W (exactement de portions de feuillets). Si un  $D_k$  contient des points  $Z_i$  ou P, on rend  $D_k$  privé de ces points simplement connexe en joignant ces points aux portions de  $\Gamma_r$ formant la frontière de  $D_k$  par des courbes simples  $\lambda_k$  (formées, par exemple, d'arcs de grands cercles de  $\Sigma$ ) ne se coupant pas dans  $D_k$  et on peut appliquer de nouveau ce qui précède. On a ainsi effectué un pavage de la surface W en feuillets simples auxquels correspond un pavage de l'intérieur de  $C_r$  en domaines d'univalence  $d_k^{\nu}$ . On pourra simplifier les  $d_k^{\nu}$  et les  $D_k^{\nu}$  correspondants projetés sur  $D_k$  en supprimant dans chaque  $d_k^{\nu}$  les frontières qui ne sont frontières que de  $d_k^{\nu}$ , c'est-à-dire qui aboutissent à des points  $z_j$  qui sont racines simples de  $Z_j = f(z)$ . On forme la surface W en raccordant les domaines  $D_k^{\nu}$  qui correspondent à des  $d_k^{\nu}$  adjacents. A chaque  $D_k$  correspondent des feuillets  $D_k^{\nu}$  de W en nombre égal au nombre des  $d_k^{\nu}$  correspondants; ces feuillets  $D_k^{\nu}$  ont pour frontières des courbes projetées sur des portions de  $\Gamma_r$  et sur les courbes  $\lambda_k$ .

Les points de la sphère qui appartiennent à l'un des domaines  $D_h$  ou à sa frontière forment un domaine  $W_1$  et sa frontière qui n'est composée que d'arcs de  $\Gamma_r$ ;  $W_1$  est l'ensemble des points de  $\Sigma$  qui sont couverts au moins une fois par les feuillets de W, on appellera  $W_1$  la première couche de feuillets. On peut de même considérer les points de  $\Sigma$  qui sont couverts au moins deux fois par les feuillets de W, ils forment un domaine W2 qu'on appellera la seconde couche de feuillets. Puis on définira  $W_3, ..., W_p, ...; W_p$  sera le domaine formé par les points de  $\Sigma$ qui sont couverts p fois au moins par les feuillets de W. Chaque couche  $W_p$  n'a pour frontière que des portions de  $\Gamma_r$ . Un point  $Z_i$  correspondant à une racine d'ordre q de  $Z_i = f(z)$  figure q fois dans ce compte, il y a d'ailleurs q feuillets de W se raccordant le long d'une ligne  $\lambda_k^{\nu}$  issue de ce point ou d'une ligne projetée sur  $\Gamma_r$ . Si  $A_1$ ,  $A_2$ , ...,  $A_N$  sont les aires de  $W_1$ , ...,  $W_N$ et A l'aire totale de W (A =  $\pi S(r)$ ), on a évidemment

$$A = A_1 + A_2 + ... + A_N .$$

Si  $L_1$ ,  $L_2$ , ...,  $L_N$  sont les longueurs des frontières de  $W_1$ , ...,  $W_N$ , comme ces frontières reconstituent exactement  $\Gamma_r$  de longueur L = L(r) car elles proviennent des  $d_k^{\nu}$  admettant un arc de  $C_r$  pour frontière, on a de même

$$L = L_1 + L_2 + ... + L_N$$
.

Dans beaucoup de cas, les premières couches  $W_1$ , ...,  $W_p$  comprendront tout  $\Sigma$ , pour ces couches on aura  $A_1 = A_2 = ... = A_p = \pi$  et  $L_1 = L_2 = ... = L_p = 0$ .

Les domaines  $W_p$  sont des domaines simples ( à une seule couche) de la sphère, tandis que les feuillets  $D_k^{\nu}$  de W projetés sur un  $D_k$  sont simples ou ramifiés. Un domaine  $D_k$  dans lequel les valeurs Z sont prises q fois appartient à  $W_1$ ,  $W_2$ , ...,  $W_q$  mais plus à  $W_{q+1}$ . Les couches  $W_p$  ne sont pas nécessairement simplement connexes.

## 51. Caractéristique et triangulation d'une surface simple.

Considérons sur  $\Sigma$  un domaine  $\Delta$  (simple), borné par q+1 courbes simples: une courbe qu'on peut regarder comme frontière extérieure et q courbes intérieures. On peut rendre ce domaine simplement connexe, c'est-à-dire de connexion 1, par q coupures joignant les courbes intérieures à la courbe extérieure. La connexion est C = q + 1. C'est le nombre de coupures que l'on doit tracer pour rendre simplement connexe, augmenté d'une unité.

On peut imaginer que les q+1 courbes simples bornant  $\Delta$  sont des lignes polygonales, alors on a un polygone de connexion q+1 que l'on peut décomposer en triangles. Par exemple, dans le cas ci-contre de  $\Delta$  limité par  $\Gamma$ ,  $\Gamma'$ ,  $\Gamma''$  un triangle de décomposition sera ABC constitué par deux lignes AB, AC et par un arc de  $\Gamma''$ . Les points A, B, C seront les sommets, AC, AB, BC seront les côtés (ou arêtes) et ABC sera un triangle ou une face. Si l'on opère ainsi une triangulation du domaine, si l'on désigne par f le nombre des faces, par a le nombre des arêtes intérieures à  $\Delta$  et par s le nombre des sommets intérieures à  $\Delta$ , le nombre

$$\rho = a - s - f$$

est indépendant de la façon d'opérer et égal à C-2, C étant l'ordre de connexion.  $\rho$  est la caractéristique du domaine  $\Delta$ . On a

$$\rho = C - 2.$$

Pour un triangle  $\rho = -1$ .

Si un domaine a été décomposé en triangles et si l'on coupe le long d'une ligne formée d'arêtes et allant de bord à bord, ligne qu'on appelle transversale, cette ligne devient un bord (ou frontière) et on a supprimé un sommet de moins que d'arêtes; si on ne morcèle pas, la caractéristique  $\rho$  est changée en  $\rho-1$ . Si on morcèle, on a deux morceaux dont la somme des caractéristiques  $\rho' + \rho''$  est  $\rho-1$ . Si le domaine est simplement connexe, on le morcèle à chaque opération. Au bout de t opérations on obtient t+1 triangles; la somme de leurs caractéristiques est -(t+1), on a

$$\rho - t = -(t+1)$$

donc  $\rho = -1$ . Pour un domaine de connexion C, C -1 premières transversales le rendent simplement connexe sans le morceler, donc  $\rho - (C - 1) = -1$ ,  $\rho = C - 2$ .

Si l'on coupe le domaine le long d'une ligne fermée appartenant au domaine et formée d'arêtes, ligne qu'on appelle rétrosection, on supprime autant de sommets que d'arêtes; la somme des caractéristiques des deux domaines obtenus est égale à ρ. Ainsi

Si l'on fait q coupures successives par transversales le long des arêtes de la triangulation et si l'on obtient des domaines de caractéristiques  $\rho_i$ , on a

$$\rho = \Sigma \, \rho_j + q \; . \tag{1}$$

Si, par des rétrosections successives, on obtient des domaines de caractéristiques  $\rho_j$ , on a

$$\Sigma \rho_j = \rho . (2)$$

Cas de la sphère entière. — On peut faire une triangulation de la sphère entière. Si l'on enlève un triangle, on obtient un domaine de caractéristique — 1; si on remet le triangle on ajoute 3 à a, 3 à s et 1 à f, donc pour la sphère entière, surface fermée simple, on a  $\rho = -2$ .

## 52. Caractéristique de W.

Relation avec les caractéristiques des  $W_n$ .

Si l'on considère la surface de Riemann W, on peut en faire une triangulation en décomposant en triangles les feuillets  $D_k^{\nu}$  (on prend obligatoirement pour sommets tous les points de

ramification). Cette triangulation correspond biunivoquement à une triangulation du cercle de circonférence C respectant les frontières des  $d_k^{\mathsf{v}}$ . Le nombre a - s - f est donc égal à la caractéristique — 1 de  $C_r$ . La caractéristique  $\rho$  de W est — 1. Pour faire la triangulation des  $\mathbf{D}_k^{\mathsf{v}}$  correspondant à un même k, il suffit de faire la triangulation de  $D_k$  en respectant les lignes  $\lambda_k$  et prenant pour sommets tous les points de ramification. On fera ainsi en même temps une triangulation de chaque  $W_n$ . Soit  $\rho_n$  la caractéristique de  $W_n$ . Nous allons comparer  $\rho$  à  $\sum_{n=1}^{\infty} \rho_n$ . En regardant les choses dans C<sub>r</sub>, on voit que le nombre total des triangles dans les W<sub>n</sub> est égal au nombre de triangles dans W; de même le nombre total des arêtes dans les  $W_n$  est égal au nombre d'arêtes dans W. Il en est autrement pour les sommets. Sur W, un point de ramification est un sommet unique sur la portion de W où il se trouve, mais si µ est l'ordre de ce point, W comporte  $\mu + 1$  feuillets au voisinage de ce point, on a donc, correspondant à cette portion de W,  $\mu + 1$  couches  $W_n$  et  $\mu+1$  sommets superposés en ce même point. Il s'ensuit que s'étant le nombre de sommets de W,  $s_n$  de  $W_n$ , on a

$$s = \sum_{1}^{N} s_n - \sum_{\mu} \mu$$

 $\Sigma\mu$  est l'ordre total de ramification de W. Si l'on pose

$$v = \Sigma \mu$$
 , (3)

on a

$$\rho = \sum_{1}^{N} a_{n} - \sum_{1}^{N} f_{n} - \sum_{1}^{N} s_{n} + \sum_{1} \mu = \sum_{1}^{N} \rho_{n} + \rho.$$
 (4)

53. Extension au cas du recouvrement d'une portion  $\Sigma_0$  de la sphère  $\Sigma$ .

Nous considérons maintenant un domaine  $\Sigma_0$  de la sphère  $\Sigma$  limité par q courbes simples. Nous supposons que ces courbes sont composées d'arcs analytiques en nombre fini, notamment d'arcs de cercles. Ce domaine  $\Sigma_0$  est de connexion q, de caractéristique  $\rho_0 = q - 2$ . Les courbes frontières de  $\Sigma_0$  coupent

encore en un nombre fini de points la courbe  $\Gamma_r$ , donc divisent les  $D_k$  en un nombre fini de domaines; elles découpent sur W un nombre fini de portions connexes; nous appellerons encore W ou éventuellement  $W_{\Sigma_0}$  l'une de ces portions. La triangulation de  $W_{\Sigma_0}$  se fera encore en considérant les  $D_k$  fractionnés en domaines  $D_k'$  par les frontières de  $\Sigma_0$ . On pourra aussi considérer les couches de feuillets  $W_1, W_2, ..., W_n, ..., W_N$  et leurs caractéristiques  $\rho_1, ..., \rho_n, ..., \rho_N$  ainsi que la caractéristique  $\rho$  de W. Mais ici  $\rho$  ne sera plus nécessairement égal à — 1. On aura encore

$$\rho = \Sigma \rho_n + \rho , \qquad (5)$$

 $\nu$  étant l'ordre total de ramification de  $W_{\Sigma_0}$ .

Ici encore une transversale tracée sur W augmentera  $\rho$  d'une unité et pourra d'ailleurs scinder W en deux, q transversales successives donneront des surfaces dont la somme des caractéristiques sera p+q. Mais le découpage par des rétrosections ne modifie pas la somme des caractéristiques. Ces opérations pourront être envisagées sur la surface simple correspondant à W dans le plan des z, surface qui est une portion du cercle  $C_r$ .

Si l'on appelle L et  $L_n$  les longueurs des frontières de W et de  $W_n$  appartenant au domaine  $\Sigma_0$  ou à sa frontière, L et les  $L_n$  proviennent encore d'arcs de courbes appartenant à  $|z| \leq r$ , sans points communs intérieurs, et l'on a toujours

$$L = L_{\Sigma_0} = \sum_{1}^{N} L_n. \tag{6}$$

Si  $A_0$  est l'aire de  $\Sigma_0$ , A et  $A_n$  les aires de W et  $W_n$ , on posera encore

$$\mathbf{A} = \mathbf{A_0} \, \mathbf{S} \ , \qquad (\mathbf{S} = \mathbf{S_{\Sigma_0}}) \ , \qquad \mathbf{A_n} = \mathbf{A_0} \, \mathbf{S_n}$$

et l'on aura encore

$$S = \sum_{1}^{N} S_{n} . (7)$$

Tout ceci reste valable si certaines des courbes limitant  $\Sigma_{b}$ , ou toutes ces courbes, se réduisent à des points.

54. Premier théorème sur le recouvrement.

On a le lemme suivant:

Lemme. — A  $\Sigma_0$  est attaché un nombre positif k (= k ( $\Sigma_0$ )) tel que, si l'on trace dans  $\Sigma_0$  (frontière comprise) une courbe de longueur L décomposant  $\Sigma_0$  en deux domaines, la plus petite des aires de ces deux domaines est au plus égale à kL.

Cette plus petite aire  $\alpha$  est au plus  $\frac{\pi}{2}$ , le théorème est vrai si L est supérieur à un nombre positif arbitraire donné, en particulier si L est supérieur ou égal à la plus courte distance (sphérique)  $\beta$  de deux quelconques des courbes frontières de  $\Sigma_0$ . Supposons alors L  $< \beta$ . Si L est intérieure à  $\Sigma_0$ ,  $\alpha$  est au plus égal à la plus petite des deux aires déterminées par la courbe fermée L sur toute la sphère  $\Sigma$ , c'est-à-dire à l'aire de la petite calotte sphérique limitée par une circonférence de longueur L, on a alors  $\alpha < k_1$  L,  $k_1$  étant une constante indépendante de  $\Sigma_0$  qu'il est inutile de préciser. Enfin si L joint deux points d'un même contour frontière de  $\Sigma_0$ , l'arc de cette frontière joignant ces deux points sera aussi inférieur à λL, λ fini si cette frontière est suffisamment régulière, ce que nous supposerons. Alors a sera bornée par une frontière de longueur moindre que  $(1 + \lambda)$  L et ce qui précède s'appliquera. Le lemme est ainsi établi sous la réserve d'une certaine régularité de la frontière.

Corollaire. — Le lemme subsiste si au lieu de considérer les aires, on considère le rapport des aires à l'aire de  $\Sigma_0$ .

Soit alors  $\Delta$  un domaine appartenant à  $\Sigma_0$ ,  $\delta$  son aire. Introduisons les aires  $A_n(\Delta)$  des portions des  $W_n$  intérieures à  $\Delta$  et posons encore

$$\begin{split} \mathbf{S}_n \left( \Delta \right) \, \delta \; = \; \mathbf{A}_n \left( \Delta \right) \; , \\ \\ \mathbf{S} \left( \Delta \right) \; = \; \mathbf{S}_1 \left( \Delta \right) \; + \; \ldots \; + \; \mathbf{S}_{_{\mathbf{N}}} \left( \Delta \right) \; . \end{split}$$

S ( $\Delta$ ) est le nombre moyen des couches de feuillets de W sur  $\Delta$ . On a aussi, d'après (7)

$$S - S(\Delta) = \sum_{1}^{N} (S_n - S_n(\Delta))$$

On a d'ailleurs

$$\delta \in S_n \left( \Delta \right) \, \delta \, \leqslant \, S_n \, A_0 \, \qquad {
m et} \qquad \delta = S_n \left( \Delta \right) \, \delta \, \leqslant \, A_0 = S_n \, A_0 \, ,$$

donc

$$S_n(\Delta) \leq \frac{A_0}{\delta} S_n$$
,  $1 - S_n(\Delta) \leq \frac{A_0}{\delta} (1 - S_n)$ .

donc, puisque  $A_0 > \delta$ ,

$$\left| \left| \mathbf{S}_{n} - \mathbf{S}_{n} \left( \Delta \right) \right| \leq \max \left( \mathbf{S}_{n}, \, \mathbf{S}_{n} \left( \Delta \right) \right) \leq \frac{\mathbf{A}_{0}}{\delta} \, \mathbf{S}_{n} \,,$$

$$\left| \left| \mathbf{S}_{n} - \mathbf{S}_{n} \left( \Delta \right) \right| \leq \max \left( \left| \mathbf{1} - \mathbf{S}_{n} \left( \Delta \right) \right|, \left| \mathbf{1} - \mathbf{S}_{n} \right| \right) \leq \frac{\mathbf{A}_{0}}{\delta} \left( \mathbf{1} - \mathbf{S}_{n} \right).$$

Ainsi, d'après le lemme,

$$\left| \mathbf{S}_{n} - \mathbf{S}_{n} (\Delta) \right| \leq \frac{\mathbf{A}_{0}}{\delta} (\min \mathbf{S}_{n}, 1 - \mathbf{S}_{n}) \leq \frac{\mathbf{A}_{0}}{\delta} k \mathbf{L}_{n},$$

 $L_n$  étant la frontière de  $W_n$ . En additionnant, on a

$$|S - S(\Delta)| \leq k \frac{A_0}{\delta} L$$
 (8)

On a ainsi le premier théorème du recouvrement:

Premier théorème. — La différence entre le nombre moyen de couches de feuillets d'une surface de Riemann W sur  $\Sigma_0$  et sur une portion  $\Delta$  de  $\Sigma_0$  est inférieure en valeur absolue au produit de la longueur de la frontière de W dans  $\Sigma_0$  par  $k \frac{A_0}{\delta}$ , k étant un nombre ne dépendant que de  $\Sigma_0$ , et  $A_0$  et  $\delta$  les aires de  $\Sigma_0$  et  $\Delta$ .

55. Second théorème sur le recouvrement.

On s'appuie sur ce lemme:

Lemme. — Si  $\Sigma_0$  est partagé en deux par une courbe ou plusieurs courbes dont la longueur totale est L et si  $\gamma$  est une courbe appartenant à  $\Sigma_0$  augmenté de sa frontière, la plus petite des longueurs des deux parties de  $\gamma$  appartenant aux deux régions déterminées par L est moindre que k' L, k' ne dépendant que de  $\Sigma_0$  et  $\gamma$ .

C'est évident si L >  $\gamma'$   $\eta$ ,  $\eta$  > 0,  $\gamma'$  désignant la longueur de  $\gamma$ , il suffit de prendre  $k'=\frac{1}{\eta}$ . Sinon et si  $\eta$  est assez petit,

l'une des deux régions est ou bien complètement intérieure à  $\Sigma_0$  ou bien s'appuie sur un bord de  $\Sigma_0$ . Dans la première hypothèse, la région envisagée est intérieure à un cercle de rayon  $L \leqslant \gamma' \eta$  contenant un point de  $\gamma$ ; il suffit de supposer que  $\gamma$  est telle que tout cercle de rayon r assez petit contenant un point de  $\gamma$  contienne une portion de  $\gamma$  de longueur moindre que Hr, H fixe mais aussi grand qu'on le veut, pour que la propriété reste encore vraie dans ce cas. Si la petite région s'appuie sur un bord de  $\Sigma_0$ , on a encore le même résultat,  $\gamma$  pouvant être une portion du bord.

On notera que, si  $\gamma$  et L ont des arcs communs, ces arcs peuvent être considérés à la fois dans les deux domaines.

Donc, comme dans le lemme du nº 54, il faut supposer les frontières de  $\Sigma_0$  et  $\gamma$  suffisamment régulières.

Soit alors sur  $\Sigma_0$  (+ frontière) un arc régulier  $\gamma$  de longueur l. Si  $S_n$  ( $\gamma$ ) et S ( $\gamma$ ) sont les quotients par l des longueurs des portions de  $\gamma$  appartenant respectivement à  $W_n$  et à  $W_n$ , considérées comme régions (domaines + frontières), on a

$$S(\gamma) = S_1(\gamma) + ... + S_N(\gamma)$$
.

Si  $\gamma'$  est une portion de  $\gamma$ , on définit de même S ( $\gamma'$ ) et S<sub>n</sub> ( $\gamma'$ ). On a

$$\mathbf{S}_{n}\left(\mathbf{\gamma}^{\prime}\right)\,l^{\prime}\,\leqslant\,\mathbf{S}_{n}\left(\mathbf{\gamma}\right)\,l$$
 ,

l' étant la longueur de  $\gamma'$ . Donc

$$S_n(\gamma') \leq \frac{l}{l'} S_n(\gamma)$$
.

De même, en opérant sur les régions complémentaires,

$$1 - \mathbf{S}_n\left(\mathbf{Y}'\right) \, \leqslant \frac{l}{l'} \left[1 - \mathbf{S}_n\left(\mathbf{Y}\right)\right] \, .$$

On en déduit, comme plus haut,

$$\begin{split} \left| \, \mathbf{S}_{n} \left( \mathbf{\gamma} \right) - \mathbf{S}_{n} \left( \mathbf{\gamma}' \right) \, \right| \, & \leq \frac{l}{l'} \, \mathbf{S}_{n} \left( \mathbf{\gamma} \right) \, , \qquad \left| \, \mathbf{S}_{n} \left( \mathbf{\gamma} \right) - \mathbf{S}_{n} \left( \mathbf{\gamma}' \right) \, \right| \, \leq \frac{l}{l'} \, \big[ 1 - \mathbf{S}_{n} \left( \mathbf{\gamma} \right) \big] \, . \\ \left| \, \mathbf{S}_{n} \left( \mathbf{\gamma} \right) - \mathbf{S}_{n} \left( \mathbf{\gamma}' \right) \, \right| \, & \leq \frac{k''}{l'} \, l \, \mathbf{L}_{n} \, \, . \end{split}$$

Finalement.

$$|S(\gamma) - S(\gamma')| \leq \frac{k'' l}{l'} L$$
 (9)

Par suite, comme deux arcs réguliers sont des portions d'un même arc, on voit que

COROLLAIRE. — La différence des nombres moyens de couches sur deux arcs est moindre en valeur absolue que  $\lambda L$ ,  $\lambda$  ne dépendant que de  $\Sigma_0$  et de ces deux arcs.

On suppose toujours qu'il s'agit d'arcs réguliers et évidemment que les courbes frontières de  $\Sigma_0$  sont aussi régulières. D'autre part, il a été sous-entendu que les nombres de morceaux obtenus sur  $\gamma$  (ou  $\gamma'$ ) sont finis. On se placera toujours dans ces conditions en utilisant des courbes formées d'un nombre fini d'arcs analytiques.

Soit alors un arc  $\gamma$  divisant  $\Sigma_0$  en deux morceaux et soit  $\Delta$  le domaine de plus petite aire obtenu. D'après le premier lemme (n° 54)

$$\begin{split} \mathbf{S}_{n}\left(\Delta\right) &< \frac{k}{\delta}\left(\mathbf{L}_{n} + l\,\mathbf{S}_{n}\left(\gamma\right)\right)\;,\\ \\ \mathbf{1} &- \mathbf{S}_{n}\left(\Delta\right) &< \frac{k}{\delta}\left[\left(\mathbf{1} - \mathbf{S}_{n}\left(\gamma\right)\right)l + \mathbf{L}_{n}\right]\;, \end{split}$$

puisque la portion de  $W_n$  ou de son complémentaire dans  $\Delta$  est d'aire inférieure à celle du reste de  $\Sigma_0$ . D'ailleurs  $\delta < kl$ , toujours d'après le premier lemme. Par suite

$$\left| \mathbf{S}_{n} \left( \Delta \right) - \mathbf{S}_{n} \left( \gamma \right) \right| \leq \max \left[ \mathbf{S}_{n} \left( \Delta \right), \, \mathbf{S}_{n} \left( \gamma \right) \right] \leq \frac{k}{\delta} \left( l \, \mathbf{S}_{n} \left( \gamma \right) \, + \, \mathbf{L}_{n} \right) \,,$$

$$\left[\left|S_{n}\left(\Delta\right)-S_{n}\left(\gamma\right)\right|\leqslant\max\left[1-S_{n}\left(\Delta\right),1-S_{n}\left(\gamma\right)\right]\leqslant\frac{k}{\delta}\left(l\left(1-S_{n}\left(\gamma\right)\right)+L_{n}\right)\right]$$

donc, d'après le second lemme,

$$\left| \mathbf{S}_{n} \left( \Delta \right) - \mathbf{S}_{n} \left( \gamma \right) \right| \leqslant \frac{k}{\delta} \mathbf{L}_{n} + \frac{kl}{\delta} k' \mathbf{L}_{n} = k'' \mathbf{L}_{n} ,$$

$$\left| \mathbf{S} \left( \Delta \right) - \mathbf{S} \left( \gamma \right) \right| \leqslant k'' \mathbf{L} . \tag{10}$$

 $\operatorname{et}$ 

et

Si  $\gamma$  est un arc ne morcelant pas  $\Sigma_0$ , on peut le prolonger pour qu'il morcèle et appliquer l'inégalité (9). Enfin, d'après le premier théorème sur le recouvrement, on peut remplacer  $S(\Delta)$  par  $S = S_{\Sigma_0}$  (inégalité (8)).

On arrive ainsi au second théorème sur le recouvrement:

Second théorème sur le recouvrement. — La différence entre les nombres moyens des feuillets de la surface W sur  $\Sigma_0$  et sur une courbe régulière  $\gamma$  appartenant à la région  $\Sigma_0$  ( $\Sigma_0$  + frontière) est en valeur absolue inférieure au produit de la longueur L de la frontière de W dans  $\Sigma_0$  multiplié par un nombre k qui ne dépend que de  $\Sigma_0$  et de  $\gamma$ .

$$\left| S_{\Sigma_0} - S(\gamma) \right| < k_1 L. \tag{11}$$

 $\Sigma_{\mathbf{0}}$  peut être toute la sphère  $\Sigma.$ 

- 56. Théorème fondamental d'Ahlfors.
- Si  $\Sigma_0$  est un domaine limité par q courbes  $C_j$ , j=1,2,...,q, donc de caractéristique  $\rho_0=q-2$  et si W est une surface de Riemann de recouvrement (portion relative à  $\Sigma_0$  de la surface définie par Z=f(z),  $\rho$  la caractéristique de W, S le nombre moyen des feuillets sur  $\Sigma_0$  et L la longueur de la frontière dans  $\Sigma_0$ , on a

$$\rho \geqslant \rho_0 S - KL$$
 , (12)

K ne dépendant que de  $\Sigma_0$ .

Il faut évidemment supposer q>2 pour que le théorème présente de l'intérêt.

Pour le montrer, on va d'abord décomposer  $\Sigma_0$  en deux domaines simplement connexes  $\Delta$  et  $\Delta'$  au moyen de q transversales  $\gamma_j$  joignant les  $C_j$  de telle façon que ces transversales soient courbes frontières de  $\Delta$  et de  $\Delta'$ , donc en procédant comme dans la figure ci-contre pour q=3, qu'on doit imaginer sur  $\Sigma$ . On suppose que les  $C_j$  et  $\gamma_j$  sont des courbes régulières auxquelles on appliquera les théorèmes sur le recouvrement. Les courbes  $C_j$  et  $\gamma_j$  seront utilisées dans la triangulation avec la frontière de W (arcs de  $\Gamma_2$ ). On suppose donc ces courbes composées d'arcs analytiques en nombre fini afin de n'avoir à considérer qu'un nombre fini de domaines limités par ces courbes.

On supposera que les transversales  $\gamma_j$  ne contiennent pas de projection de points de ramification de W. S'il y avait de tels points sur des  $\gamma_j$ , on pourrait déformer infiniment peu W au voisinage de ces points sans changer  $\rho$ , L et S; il suffit à cet effet de déformer la triangulation primitive en déplaçant les sommets placés en ces points de ramification et il sera loisible ensuite d'ajouter de nouveaux triangles dont les côtés seront projetés sur  $\gamma_i$ .

Aux transversales  $\gamma_j$  correspondent sur W des transversales  $\sigma$  projetées sur les  $\gamma_f$ , ces transversales  $\sigma$  ne se coupent pas; soit  $n(\sigma)$  leur nombre. Elles divisent W en domaines  $\Omega$  projetés sur les domaines  $\Delta$  et  $\Delta'$ ; soit N( $\Omega$ ) le nombre de ces domaines, qui sont simplement connexes ou non, mais dont les caractéristiques  $\rho_j$  sont au moins égales à — 1. On a

$$\begin{array}{c} \rho = \sum \rho_j + n \; (\sigma) \;\; , \\ \\ \text{donc} \\ \\ \rho \geqslant n \; (\sigma) - \text{N} \; (\sigma) \;\; . \end{array} \tag{13}$$

Classification des domaines  $\Omega$ . — Chaque portion  $\Omega$  de W est limitée par des portions de  $\Gamma_2$  (qui peuvent être projetées sur des  $C_j$ , par des arcs  $C_j$  et par des transversales  $\sigma$ . On appellera  $\Omega_1$  tout domaine  $\Omega$  dont la frontière ne comporte qu'une seule transversale  $\sigma$  et on appllera  $\sigma_1$  ces transversales. Puis  $\Omega_2$  seront les domaines ne comportant comme frontière  $\sigma$  autre que les  $\sigma_1$  qu'une seule transversale qu'on appellera  $\sigma_2$ . Puis on aura des  $\Omega_3$  et  $\sigma_3$ , etc. Il peut se faire que tous les  $\Omega$  soient ainsi épuisés. Sinon, il existera des  $\Omega$  dont la frontière ne renfermera aucune  $\sigma$  nouvelle, ou bien en renfermera au moins deux.

Chaque  $\sigma_n$  partage W en deux parties. Dans la partie qui contient  $\Omega_n$  toutes les  $\sigma$  frontières sont d'indice moindre que n. Car, si  $n \geqslant 2$ ,  $\Omega_n$  a aussi pour frontière une  $\sigma_p$ , p < n étant le plus grand possible; or si p < n-1,  $\Omega_n$  ne serait pas d'indice n, mais d'indice p+1 < n. Il s'ensuit que si une  $\sigma_n$  est relative à deux domaines  $\Omega_n$ , n est un maximum et tous les  $\Omega$  sont classés. Ainsi,

S'il existe des  $\Omega_n$ , il y a correspondance biunivoque entre les  $\Omega_n$  et les  $\sigma_n$  sauf si les  $\Omega_n$  forment la totalité des  $\Omega$ ; il y a

alors une  $\sigma_N$ , correspondant à n=N maximum, qui est frontière commune de deux domaines  $\Omega_N$ .

S'il y a des  $\Omega$  autres que ceux de la classe  $\Omega_n$ , les deux cas signalés sont possibles. S'il existe un domaine  $\Omega$  n'ayant pour frontières que des  $\sigma_n$ , donc au moins deux telles frontières, ce domaine est unique, tous les  $\Omega$  sont des  $\Omega_n$  sauf ce domaine exceptionnel  $\Omega$ . Il y a correspondance biunivoque entre les  $\Omega_n$  et  $\sigma_n$ .

Si les  $\Omega_n$  n'existent pas, ou s'ils existent mais qu'il existe aussi un  $\Omega$  ayant deux nouvelles frontières  $\sigma$  au moins autres que les  $\sigma_n$ , les domaines  $\Omega$  non classés sont de deux sortes: les domaines  $\Omega'$  limités par moins de q nouvelles transversales  $\sigma$ ; les domaines  $\Omega''$  limités par au moins q nouvelles transversales  $\sigma$ . Ces nouvelles transversales seront appelées  $\sigma_{11}$  si elles séparent deux domaines  $\Omega'$ ,  $\sigma_{22}$  si elles séparent deux domaines  $\Omega''$  et  $\sigma_{12}$  si elles séparent un  $\Omega'$  d'un  $\Omega''$ .

Les transversales  $\sigma$  se projettent sur les  $\gamma_j$ . Si  $l(\sigma)$  est le rapport de la longueur de  $\sigma$  à la longueur de la  $\gamma_j$  sur laquelle elle se projette, on a

$$\sum_{1}^{q} S(\gamma_{j}) = \sum l(\sigma_{n}) + \sum l(\sigma_{1,1}) + \sum l(\sigma_{1,2}) + \sum l(\sigma_{2,2}). \quad (14)$$

Le dernier terme n'existe que s'il y a des domaines  $\Omega''$  et comme  $l\left(\sigma_{2,2}\right) \leqslant 1$ , il est inférieur ou égal au nombre des transversales séparant deux de ces domaines. Or, dans ce cas, il y a correspondance biunivoque entre les  $\sigma_n$  et  $\Omega_n$ ; dans (13) on peut supprimer les termes correspondants, on a

$$\rho \geqslant \left[n\left(\sigma_{1,1}\right)\right. + \frac{1}{2}\left.n\left(\sigma_{1,2}\right) - M\left(\Omega'\right)\right] + \left[n\left(\sigma_{2,2}\right)\right. + \frac{1}{2}\left.n\left(\sigma_{1,2}\right) - N\left(\Omega''\right)\right] \ . \tag{15}$$

Pour un  $\Omega'_k$  dont la frontière contient  $n_k$   $\sigma_{1,1}$  et  $n'_k$   $\sigma_{1,2}$ , on a

$$n_k + n'_b \geqslant 2$$

et en additionnant

$$2n (\sigma_{1,1}) + n (\sigma_{1,2}) \ge 2N (\Omega')$$
,

le premier terme du second membre de (15) est positif ou nul.

De même pour un  $\Omega_k^{''}$  dont la frontière renferme  $n_k$  courbes  $\sigma_{2,2}$  et  $n_k^{'}$  courbes  $\sigma_{1,2}$ 

$$\begin{split} n_k + n_k' &\geqslant q \\ n \; (\sigma_{2,2}) \; + \; \frac{1}{2} \; n \; (\sigma_{1,2}) \; \geqslant \frac{q}{2} \; \mathrm{N} \; (\Omega^{\prime\prime}) \; . \end{split}$$

Par suite

$$\rho \, \geqslant \frac{q\,-\,2}{q} \left[ n \, (\sigma_{2,2}) \,+\, \frac{1}{2} \, n \, (\sigma_{1,2}) \right] \, \geqslant \frac{q\,-\,2}{q} \, n \, (\sigma_{2,2}) \ . \label{eq:rho_power_power}$$

Cette inégalité vaut encore a fortiori s'il n'y a pas de  $\Omega''$ . Comme le premier membre de (14) est supérieur à  $qS - h_2 L$  d'après le second théorème du recouvrement, et  $\Sigma l$   $(\sigma_{2,2}) \leq n$   $(\sigma_{2,2})$ , on a

$$q\,\mathbf{S}\,-\,h_2\,\mathbf{L}\,\leqslant\,\Sigma\,l\;(\mathbf{\sigma}_n)\,+\,\Sigma\,l\;(\mathbf{\sigma}_{1,1})\,+\,\Sigma\,l\;(\mathbf{\sigma}_{1,2})\,+\,\frac{\rho\,q}{q\,-\,2}$$

et l'on a

$$\rho \, \geqslant \, (q\, - \, 2) \, \mathbf{S} \, - \, h_3 \, \mathbf{L} \, - \, \left[ \, \Sigma \, l \, \left( \, \mathbf{\sigma}_{n} \right) \, + \, \Sigma \, l \, \left( \, \mathbf{\sigma}_{1,1} \right) \, + \, \Sigma \, l \, \left( \, \mathbf{\sigma}_{1,2} \right) \, \right] \, , \eqno(16)$$

 $h_3$  ne dépend que de  $\Sigma_0$  et des  $\gamma_j$ ; S et L sont relatifs à  $\Sigma_0$  et à W.

Ceci suppose qu'il y a correspondance biunivoque entre les  $\sigma_n$  et  $\Omega_n$ , donc qu'il y a des  $\Omega'$  ou  $\Omega''$ . Si toutes les  $\sigma$  sont des  $\sigma_n$ , on a seulement dans tous les cas, d'après (14)

$$qS - h_2 L \leqslant \Sigma l (\sigma_n)$$
 (17)

Il convient dans tous les cas de majorer les  $\Sigma$  l  $(\sigma_n)$ ,  $\Sigma$  l  $(\sigma_{1,2})$ ,  $\Sigma$  l  $(\sigma_{1,1})$ .

Si une portion  $\Omega$  de W se projette sur  $\Delta$  par exemple, on a pour les nombres moyens de couches sur  $\gamma_i$  et sur  $\Delta$ 

$$\begin{split} \left| \, \mathbf{S}_{\Omega} \left( \mathbf{\gamma}_{j} \right) - \mathbf{S}_{\Omega} \left( \mathbf{\Delta} \right) \, \right| &< h_{3} \, \mathbf{L}_{\Omega} \, \, , \\ \text{et par suite} & \left| \, \mathbf{S}_{\Omega} \left( \mathbf{\gamma}_{j} \right) - \mathbf{S}_{\Omega} \left( \mathbf{\gamma}_{k} \right) \, \right| &< h_{4} \, \mathbf{L}_{\Omega} \, \, . \end{split} \tag{18}$$

Les  $\sigma_n$  appartiennent aux  $\Omega_n$  (l'une, une seule, peut appartenir à deux  $\Omega_n$ ); si  $\sigma_n$  se projette sur  $\gamma_j$ , on a, d'après (18),

$$l(\sigma_n) \leqslant S_{\Omega_n}(\gamma_j) \leqslant S_{\Omega_n}(\gamma_k) + h_4 L_{\Omega_n}, \qquad k = 1, 2, ..., q,$$

donc

$$q \; l \; (\sigma_n) \; \leqslant \; \sum_{1}^{q} \; \mathrm{S}_{\Omega_n}(\gamma_k) \; + \; q h_4 \, \mathrm{L}_{\Omega_n} \; ,$$

et puisque  $\Omega_n$  n'a pour frontières que des  $\sigma_p$ ,

$$\sum_{1}^{q} S_{\Omega_{n}}(\gamma_{k}) = \sum_{\Omega_{n}} l(\sigma_{p}).$$

Par suite, une  $\sigma_n$  n'appartenant qu'à deux  $\Omega_n$ , on a, a fortiori

$$q \, \sum_{1}^{N} \, l \, (\sigma_{n}) \, \leqslant \, 2 \, \sum_{1}^{N} \, l \, (\sigma_{n}) \, + \, q \, h_{4} \, \mathrm{L}$$

où  $L = L_w$ .

Il en résulte que

$$\sum_{1}^{N} l(\sigma_n) \leqslant \frac{q}{q-2} h_5 L. \qquad (19)$$

Si toutes les  $\sigma$  sont des  $\sigma_n$ , (17) donne alors

$$q \, {\rm S} - h_2 \, {\rm L} \, \leqslant \frac{q}{q-2} \, h_5 \, {\rm L} \; \; ,$$
 
$$(q-2) \, {\rm S} - h_6 \, {\rm L} \, \leqslant 0 \; \; , \qquad q-2 \, = \, \rho_0 \; \; ,$$

donc

$$\rho \, \geqslant \, \rho_0 \, \mathrm{S} - \mathrm{KL}$$
 .

Le théorème est établi dans ce cas.

Revenons au cas général où il y a d'autres  $\sigma$  que les  $\sigma_n$ . Comme un domaine  $\Omega'$  a moins de q frontières autres que des  $\sigma_n$ , il a une frontière qui est une  $\sigma_n$  ou se réduit à zéro. On a donc d'après (18),

$$\sum_{\Omega'} l\left(\sigma_{12}\right) \; + \; \sum_{\Omega'} l\left(\sigma_{11}\right) \; \leqslant \; \sum_{i \neq j} \mathbf{S}_{\Omega'}\left(\gamma_{j}\right) \; \leqslant \; \left(q \; - \; 1\right) \, \mathbf{S}_{\Omega'}\left(\gamma_{j}\right) \; + \; \left(q \; - \; 1\right) \, h_{4} \, \mathbf{L}_{\Omega'} \; ,$$

 $S_{\Omega'}(\gamma_j)$  étant nul ou égal à un  $l(\sigma_n)$ . Mais une  $\sigma_n$  ne peut appartenir qu'à un seul  $\Omega'$ , donc

$$\Sigma l (\sigma_{12}) + 2 \Sigma l (\sigma_{11}) \leq (q-1) \Sigma l (\sigma_n) + (q-1) h_4 L$$
.

En portant dans (16), on voit que dans ce cas général, le théorème fondamental est encore démontré.

## 57. Première application. Théorème de Picard.

Si f(z) méromorphe à distance finie, donc pour  $|z| \le r$  quel que soit r, ne prend pas trois valeurs distinctes a, b, c, on peut prendre pour  $\Sigma_0$  la sphère privée des images de ces points. On a q=3,  $\rho_0=1$ , et la surface W est simplement connexe,  $\rho=0$ . On a, quel que soit r,

$$KL(r) \gg S(r)$$

S (r) serait borné d'après le nº 49. Donc T (r)/logr serait borné. Il resterait à en déduire que f (z) serait alors une fraction rationnelle et finalement une constante. Mais le théorème de Picard va résulter de la suite. (Théorème de Landau.)

### 58. Deuxième application.

Lemme de Dufresnoy et théorème de Landau.

Dufresnoy 44) a montré que

Si l'aire sphérique  $\pi$  S  $(r_0)$  décrite par Z=f(z) pour  $|z|\leqslant r_0$  est inférieure à 1, on a, pour  $r< r_0$ 

$$\frac{1}{r^2} \frac{S(r)}{1 - S(r)} < \frac{1}{r_0^2} \frac{S(r_0)}{1 - S(r_0)}, \qquad (20)$$

donc

$$\left(\frac{|f'(0)|}{1+|f(0)|^2}\right)^2 \leqslant \frac{1}{r_0^2} \frac{S(r_0)}{1-S(r_0)}. \tag{21}$$

On a vu (no 49) que

$$\mathrm{L}\;(r)^2\,\leqslant\,2\,\pi^2\,r\;\frac{d\,\mathrm{S}}{dr}\;.$$

Or, pour une couche  $W_n$ , si  $S_n < 1$ 

$$L_n(r)^2 \ge 4 \pi^2 S_n (1 - S_n)$$
 (22)

Car, pour  $S_n$  donné, le minimum de  $L_n$  a lieu lorsque  $W_n$  est simplement connexe et est atteint pour la calotte sphérique

d'aire  $S_n$ ; la formule (22) avec le signe égal est la relation entre l'aire de la calotte et la longueur du cercle la limitant.

D'autre part, on déduit de (21),

$$\Sigma \operatorname{L}_n^2 \geqslant 4 \operatorname{\pi^2} \Sigma \operatorname{S}_n - 4 \operatorname{\pi^2} \Sigma \operatorname{S}_n^2 , \qquad \operatorname{S} = \Sigma \operatorname{S}_n , \qquad \operatorname{S}^2 \geqslant \Sigma \operatorname{S}_n^2$$

donc

$$\mathrm{L^2} \geqslant \Sigma \, \mathrm{L}_n^2 \geqslant 4 \, \pi^2 \, \mathrm{S} - 4 \, \pi^2 \, \mathrm{S}^2$$
 
$$2 \, \mathrm{S} \, (1 - \mathrm{S}) \, \leqslant r \, \frac{d \, \mathrm{S}}{dr}$$

et l'intégration donne (20). D'autre part, l'intégrale donnant S(r) (n° 47) montre que la limite du premier membre de (20) lorsque r tend vers 0 est bien le premier membre de (21). Si f(z) ne prend pas les valeurs a, b, c, on a

$$S(r)^2 < K^2 2 \pi^2 r \frac{dS}{dr}$$
,

donc, si  $r < r_0$ , en intégrant

$$\log \frac{r_0}{r} < \, 2\,\pi^2 \; \mathrm{K}^2 \left[ \frac{1}{\mathrm{S} \; (r)} - \frac{1}{\mathrm{S} \; (r_0)} \right] \; \cdot \label{eq:constraints}$$

A fortiori

$$S(r) \log \frac{r_0}{r} < 2 \pi^2 K^2 = \mu$$
,

 $r_0$  reste borné. Si l'on suppose  $\log \frac{r_0}{r} = 2 \,\mu$ , on a S  $(r) < \frac{1}{2}$ , donc d'après le lemme

$$\frac{|f'(0)|}{1+|f(0)|^2} \leqslant \frac{1}{r} = \frac{e^{2\mu}}{r_0}.$$

On a ainsi ce théorème généralisant le théorème de Landau: Si la fonction  $f(z) = c_0 + c_1 z + ...$  est méromorphe pour

$$|z| < \frac{1 + |c_0|^2}{|c_1|} \Omega$$

où  $\Omega$  est un nombre ne dépendant que de trois valeurs données distinctes a,b,c,la fonction prend une fois au moins dans ce cercle l'une des valeurs  $a,b,c^{45}$ .

## 59. Disques et langues. Inégalité fondamentale.

Soit un domaine  $\Delta$  de la sphère  $\Sigma$ , simplement connexe, dont la frontière est composée d'arcs analytiques en nombre fini; si une portion de la surface W se trouve sur  $\Delta$ , on dira qu'une partie de W forme un disque sur  $\Delta$  si cette portion n'a pas de frontière intérieure à  $\Delta$ . Un disque peut être un feuillet simple de W, ou un groupe de feuillets formant une surface connexe ramifiée. Les points de ramification de W qui peuvent se projeter sur la frontière de  $\Delta$  ne sont pas à considérer puisque la frontière de  $\Delta$  sépare les divers feuillets en de tels points.

L'ordre de multiplicité d'un disque est le nombre de feuillets constituant le disque, c'est un pour un disque à un seul feuillet ou disque non ramifié. La somme des ordres de multiplicité des disques de W sur  $\Delta$  sera désignée par n ( $\Delta$ ).

Si une portion de W pénétrant dans  $\Delta$  y a une frontière, on dit que cette portion de W forme une langue. Cette dénomination provient de ce que le cas le plus simple serait celui d'un feuillet de W pénétrant dans  $\Delta$  comme dans la figure I ci-contre. Mais un feuillet simple peut aussi traverser  $\Delta$  comme dans la figure II, et on peut avoir aussi des langues à plusieurs feuillets ramifiés dans  $\Delta$ .

Dans l'expression de la moyenne S ( $\Delta$ ) figure d'abord l'ordre total des disques n ( $\Delta$ ) et on a, en outre, un terme additif  $\mu$  ( $\Delta$ ) provenant des langues.

L'ordre de multiplicité simple des disques de W sur  $\Delta$  est la somme des caractéristiques des disques changées de signes. Pour un disque non ramifié la caractéristique est — 1; pour un disque ramifié, elle dépend de la connexion. L'ordre de multiplicité simple sera désigné par  $p(\Delta)$ .

La surface  $\Sigma_0$  est limitée par les q courbes  $C_j$ ; nous appellerons  $\Delta_j$  le domaine limité par  $C_j$  qui est extérieur à  $\Sigma_0$ . La somme

$$p = \sum_{1}^{q} p(\Delta_{j})$$

des ordres de multiplicités simples des disques de W appartenant aux  $\Delta_j$  peut être borné dans les deux sens à l'aide des résultats antérieurs.

Un disque  $\Delta_j^h$  de  $\Delta_j$  est une surface de recouvrement de  $\Delta_j$  pour laquelle le nombre de couches est n ( $\Delta_j^h$ ), si  $\wp$  ( $\Delta_j^h$ ) est l'ordre de ramification, on a

$$-p (\Delta_j^h) = \Sigma (\rho_j^h)_h + \rho (\Delta_j^h)$$

et comme les couches sont simplement connexes,  $(\rho_j^h)_h = -1$ , donc

$$p\left(\Delta_{j}^{h}\right) = n\left(\Delta_{j}^{h}\right) - \wp\left(\Delta_{j}^{h}\right) ,$$

$$p\left(\Delta_{j}\right) = n\left(\Delta_{j}\right) - \wp\left(\Delta_{j}\right) \leqslant n\left(\Delta_{j}\right) .$$

D'autre part

$$S(\Delta_j) = n(\Delta_j) + \mu(\Delta_j) \geqslant n(\Delta_j).$$

Il s'ensuit que

$$p \leqslant \sum_{1}^{q} S(\Delta_{j})$$
,

mais d'après le premier théorème sur le recouvrement,

de sorte que

$$\left| \begin{array}{l} \mathbf{S} \; (\Delta_j) \; - \; \mathbf{S} \; (r) \; \middle| \; \leqslant \; h \; \mathbf{L} \; (r) \; \; , \\ \\ p \; \leqslant \; q \; \mathbf{S} \; (r) \; + \; k \; \mathbf{L} \; (r) \; \; , \end{array} \right. \tag{23}$$

k ne dépendant que des  $C_j$ .

D'autre part, au-dessus de  $\Delta_j$ , on a des disques  $\Delta_j^h$  et des langues  $\Delta_j^L$ . On peut détacher de W ces langues au moyen de transversales en coupant le long de courbes projetées sur  $C_j$  qui joignent un point de  $\Gamma_r$  à un point de  $\Gamma_2$ . Il reste des surfaces simplement connexes dont l'ensemble sera désigné par W'. On peut ensuite détacher les disques  $\Delta_j^h$  des W' au moyen de rétrosections, il reste des surfaces W'' qui sont surfaces de recouvrement de  $\Sigma_0$ . Les W'' sont de deux sortes: les unes,  $W_1''$ , n'ont pas de frontières dans  $\Sigma_0$ , les autres,  $W_2''$ , en ont une. Pour les  $W_1''$ , la caractéristique  $\rho$  vérifie l'inégalité

$$\label{eq:rho_sigma} \rho \geqslant (q-2)\; \mathbf{S}_{\Sigma_{\mathbf{0}}} \; , \qquad \mathbf{S}_{\Sigma_{\mathbf{0}}} \geqslant 1 \; ;$$

ces surfaces sont multiplement connexes.

On a passé des W' aux W'' en séparant les  $\Delta_j^h$  par rétrosections. Par conséquent

$$Σ ρ (W') = Σ ρ (W'') + Σ ρ (Δ_j^h)$$
,

et

$$p = -\sum \rho \left(\Delta_i^h\right) = \sum \rho \left(\mathbf{W''}\right) - \sum \rho \left(\mathbf{W'}\right) = \sum \rho \left(\mathbf{W''}\right) + \mathbf{N} \left(\mathbf{W'}\right)$$
,

N(W') étant le nombre des domaines W' (puisque  $\rho(W') = -1$ ). Soit  $N_1(W'')$  le nombre des W'' qui sont simplement connexes, donc de caractéristique -1. On peut écrire

$$p = \Sigma \rho (W'') + N(W') - N_1(W'') .$$

Or un W'' simplement connexe est un  $W_2''$ , c'est un W' qui ne contenait pas de disque. Le nombre N (W') —  $N_1$  (W'') est donc le nombre  $\beta$  des domaines W' qui contiennent des disques. On a

$$p = \beta + \Sigma \rho (W'')$$

et d'après le théorème fondamental

$$\rho~(\mathrm{W}^{\prime\prime})~\geqslant (q$$
 — 2) S (W^{\prime\prime}) — KL (W^{\prime\prime}) .

Il s'ensuit que

$$p \, \geqslant \, (q \, - \, 2) \; \mathbf{S}_{\Sigma_{\boldsymbol{0}}} \, - \, \mathbf{KL}_{\Sigma_{\boldsymbol{0}}} \; .$$

Le premier théorème sur le recouvrement montre, d'autre part, que

$$\mid S_{\Sigma_0} - S(r) \mid \leq K_1 L(r)$$

et il est évident que  $L_{\Sigma_0} \leq L(r)$ . Finalement, on arrive à l'inégalité fondamentale d'Ahlfors

$$p = \sum_{1}^{q} p (\Delta_{j}) \geqslant (q - 2) S(r) - h_{\Delta} L(r) , \qquad (24)$$

le nombre  $h_{\Delta}$  ne dépendant que de la figure formée sur la sphère par les q domaines  $\Delta_j$ .

On a d'ailleurs vu au § IV que

$$L(r)^2 \leqslant 2\pi^2 r \frac{dS}{dr} \tag{25}$$

et

$$T(r) = \int_{0}^{r} \frac{S(t) dt}{t} + 0(1) . \qquad (26)$$

60. Application à l'étude de n (r, Z).

On peut supposer que les domaines  $\Delta_j$  se réduisent à des points. Car, si l'on se donne q points, on peut les entourer de petits cercles centrés en ces points. On a  $n(\Delta_j) \geqslant p(\Delta_j)$ . Par suite, si l'on considère q nombres distincts  $a_1, a_2, ..., a_q$ , on a

$$\sum_{1}^{q} n(r, a_{j}) \ge (q - 2) S(r) - h(a_{1}, a_{2}, ..., a_{q}) L(r) .$$
 (27)

Supposons en particulier que f(z) soit une fonction d'ordre fini positif  $\rho$ , on a

$$\overline{\lim_{r=\infty}} \frac{\log T(r)}{\log r} = \rho.$$

On sait qu'on déduit alors de (26)

$$\overline{\lim_{r=\infty}^{n}} \frac{\log S(r)}{\log r} = \rho.$$

(Voir, par exemple, no 12.) On a vu au no 49 que l'on a

$$L(r) < S(r)^{\frac{1}{2} + \varepsilon}, \quad \varepsilon > 0,$$
 (28)

sauf dans des intervalles dans lesquels la variation totale de log r est finie. On aura donc, dans ces mêmes conditions,

$$\overline{\lim_{r=\infty}} \frac{\log L(r)}{\log r} \leqslant \frac{\rho}{2} \cdot$$

Donc, d'après (27),

$$\frac{\lim_{r=\infty} \frac{\log \sum_{1}^{q} n(r, a_{j})}{\log r} \ge \rho \qquad q \ge 2$$

ce qui donne le théorème de Borel:

Il existe deux valeurs Z au plus pour lesquelles l'ordre de n(r, Z) est inférieur à l'ordre  $\rho$  de f(z).

On obtiendra un résultat plus serré en introduisant un ordre précisé. Il est clair que si n(r, Z) est d'ordre fini pour trois valeurs de Z, (27) montre, grâce à (28), que la fonction est d'ordre fini.

61. Défaut et indice de ramification.

Puisque

$$p(\Delta_i) = n(\Delta_i) - v(\Delta_i)$$

on a, en portant dans la formule fondamentale (24)

$$\sum_{1}^{q} \ n \ (\Delta_{j}) \ - \ \sum_{1}^{q} \ \wp \ (\Delta_{j}) \ \geqslant \ (q \ - \ 2) \ \mathbf{S} \ - \ h_{\Delta} \ \mathbf{L}$$

ou

$$\sum_{1}^{q} \left[ \mathbf{S} - n \, (\Delta_{j}) \right] \, + \, \sum_{1}^{q} \, o \, (\Delta_{j}) \, \leqslant \, 2 \, \mathbf{S} \, + \, h_{\Delta} \, \mathbf{L} \ . \label{eq:second_second}$$

Mais S diffère de S  $(\Delta_j)$  de moins de  $h'_{\Delta_j}$  L et S  $(\Delta_j) = n (\Delta_j) + \mu (\Delta_j)$ , ce qui donne

$$\sum_{1}^{q} o(\Delta_{j}) + \sum_{1}^{q} \mu(\Delta_{j}) \leq 2S + k_{\Delta} L.$$

Si l'on pose

$$\delta_{j} = \lim_{r = \infty} \frac{\mu(\Delta_{j})}{S(r)}, \quad \varepsilon_{j} = \lim_{r = \infty} \frac{\sigma(\Delta_{j})}{S(r)}$$

on a, compte tenu de (28)

$$\sum_{1}^{q} \delta_{j} + \sum_{1}^{q} \varepsilon_{j} \leqslant 2$$
 .

C'est la relation des défauts d'Ahlfors où interviennent à la fois un terme relatif à l'indice de ramification des disques et un terme relatif aux langues.

62. Théorème des domaines.

Ecrivons la formule fondamentale (24)

$$\sum_{1}^{q} (S - p(\Delta_{j})) \leq 2 S(r) + h_{\Delta} L(r) . \qquad (29)$$

Supposons que les disques projetés sur  $\Delta_j$  aient tous  $\omega_j$  feuillets au moins. Nous aurons  $\omega_j$   $\Delta$   $(p_j) \leq n$   $(\Delta_j)$ . Car, pour un disque  $\Delta_j^m$ , si sa multiplicité simple est 1, le disque est à  $\omega_j$  feuillets, et si sa multiplicité simple est négative ou nulle, son produit par  $\omega_j$  est négatif ou nul, donc inférieur au nombre des feuillets. On a ainsi

$$\sum_{1}^{q} \omega_{j} \Delta (p_{j}) \leqslant \sum_{1}^{q} n (\Delta_{j}) \leqslant S (\Delta_{j}) \leqslant S + k_{j} L$$

et

$$\sum_{j=1}^{q} \Delta(p_{j}) \leqslant \frac{S}{\omega_{j}} + \frac{k_{j}}{\omega_{j}} L.$$
 (30)

D'après (29) et (30)

$$\sum_{1}^{q} \left( \mathbf{S} - \frac{\mathbf{S}}{\omega_{j}} \right) \leqslant \sum_{1}^{q} \left[ \mathbf{S} - \Delta \left( p_{j} \right) \right] \leqslant 2 \, \mathbf{S} \, + \, h_{\Delta}' \, \mathbf{L}^{\top},$$

 $h'_{\Delta}$  ne dépendant que des  $\Delta_{i}$ .

On a ainsi le théorème des domaines d'Ahlfors:

Si Z=f (z) est méromorphe pour  $|z| \leqslant r$  et si les q domaines  $\Delta_j$  étant donnés, les disques projetés sur  $\Delta_j$  ont au moins  $\omega_j$  feuillets  $(j=1,\,2,\,...,\,q),$  on a

$$\sum_{1}^{q} \left( 1 - \frac{1}{\omega_{j}} \right) \leqslant 2 + h'_{\Delta} \frac{L(r)}{S(r)}. \tag{31}$$

Si Z = f(z) est holomorphe pour  $|z| \leq r$ , on peut prendre un domaine  $\Delta_{q+1}$  contenant le point P image du point à l'infini et q autres domaines, le  $\Delta_{q+1}$  domaine ne contient aucun disque, la multiplicité simple est nulle et (29) devient

$$\sum_{1}^{q} \left( S - p \left( \Delta_{j} \right) \leqslant S \left( r \right) + h_{\Delta} L \left( r \right) .$$

Donc, pour une fonction holomorphe, le 2 du second membre de (31) doit être remplacé par 1.

63. Application. Théorème de Bloch.

L'inégalité (31) peut s'écrire

S (r) 
$$\left[q-2-\sum_{1}^{q}\frac{1}{\omega_{j}}\right]\leqslant k L(r)$$

et d'après (25)

$$\mathrm{S}\,(r)^2 \leqslant \Lambda\,r\,\frac{d\,\mathrm{S}}{dr}\,, \qquad \Lambda = \frac{2\,\pi^2\,k}{q-2-\sum\limits_{1}^{q}\frac{1}{\omega_j}}$$

en supposant

$$q-2-\sum_{1}^{q}\frac{1}{\omega_{j}}>0$$

et l'on peut employer la méthode de Dufresnoy comme au n° 58. On obtient ainsi les énoncés suivants en prenant q=5,  $\omega_j=2$  ou q=3,  $\omega_j=2$  et supposant la fonction holomorphe:

I. Etant donnés cinq domaines  $\Delta_j$  simplement connexes sur la sphère, limités par des courbes régulières, extérieurs les uns aux autres, il existe un nombre  $\Omega_1$  ne dépendant que des positions de ces domaines  $\Delta_j$ , tel que les images sur la sphère des valeurs de toute fonction  $Z = f(z) = c_0 + c_1 z + ...$  qui est méromorphe dans le cercle

$$|z| < \frac{1 + |c_0|^2}{|c_1|} \Omega_1$$
 ,

couvrent à un seul feuillet l'un des cinq domaines  $\Delta_{\mathbf{j}}$ .

II. Etant donnés dans le plan des Z trois domaines  $\Delta_j$  simplement connexes extérieurs les uns aux autres et limités par des courbes régulières, il existe un nombre  $\Omega_2$  ne dépendant que des positions de ces domaines  $\Delta_j$ , tel que la surface de Riemann décrite par les valeurs de toute fonction  $Z = f(z) = c_0 + c_1 z + ...$  holomorphe pour

$$|z| < \frac{1 + |c_0|^2}{|c_1|} \Omega_2$$
 (32)

possède un feuillet simple sur l'un au moins des trois domaines.

Ces théorèmes, dus à Dufresnoy (loc. cit. au nº 58), avaient été donnés antérieurement par Ahlfors (loc. cit. au nº 58), mais avec un plus grand nombre de domaines.

On pourrait évidemment supprimer des énoncés la restriction sur les frontières puisqu'on pourrait remplacer les domaines par d'autres plus grands les contenant.

Théorème de Bloch. — Soit f(z) holomorphe pour |z| < 1, f(0) = 0, f'(0) = 1. Donnons-nous trois domaines  $\Delta_j$  extérieurs les uns aux autres dans le plan des Z et  $\omega_j = 2$ . La fonction

$$g\left(z
ight)=f\left(z
ight)e^{i\theta}\,\Lambda_{2}$$
 ,  $\theta$  réel ,

est holomorphe dans le cercle de rayon 1, on a g(0) = 0 et  $g'(0) = e^{i\theta} \Omega_2$ , le cercle de convergence vérifie la condition (32); donc les valeurs de g(z) couvrent à un feuillet l'un des trois domaines donnés. Les valeurs de f(z) couvrent à un feuillet l'un des trois domaines déduits des  $A_j$  par l'homothétie rotation  $\frac{e^{-i\theta}}{\Omega_2}$ . On obtient l'énoncé suivant:

III. Etant donnés trois domaines  $\Delta_j$  simplement connexes, extérieurs les uns aux autres, il existe un nombre  $\Omega_2'$  ne dépendant que de ces domaines, tel que si l'on fait une homothétie rotation  $\Omega_2'$   $e^{i\phi}$ , ou  $\varphi$  est arbitraire, ce qui donne trois domaines  $\Delta_j'$ , la surface de Riemann décrite par les valeurs Z = f(z) d'une fonction f(z) holomorphe pour |z| < 1, égale à 0 pour z = 0 et de dérivée égale à 1 à l'origine, a un feuillet simple sur l'un au moins des domaines  $\Delta_j'$ .

La surface de Riemann décrite par Z=f(z), f'(0)=1, f(z) holomorphe pour |z|<1 contient donc notamment un cercle à un feuillet de rayon supérieur à une constante B. C'est le théorème de Bloch sous sa forme habituelle 46). Mais on voit en outre que, en supposant f(0)=0 et en prenant pour les  $\Delta_j$  trois cercles dont les centres sont les sommets d'un triangle équilatéral dont l'orthocentre est l'origine, on obtient un cercle de Bloch dont la distance du centre à l'origine est égale au rayon multiplié par un nombre donné supérieur à  $\frac{\sqrt{3}}{2}$ . De même, en prenant pour les  $\Delta_j$  trois cercles dont les centres ont même argument, on a une propriété moins précise en ce qui concerne le rapport du rayon à la distance à l'origine, mais l'argument du centre peut être choisi arbitrairement. A chacune de ces

configurations correspond une constante de Bloch qui reste à déterminer.

64. Théorèmes du type de Schottky.

Si Z=f(z) est holomorphe pour |z|<1 et s'il existe trois domaines  $\Delta_1, \Delta_2, \Delta_3$  ne contenant pas de disque simple de la surface de Riemann, il en est de même pour f(z) dans le cercle  $|z-z_0|<1-|z_0|, |z_0|<1$ . D'après l'énoncé II de Dufresnoy, on a

$$\frac{\mid f'\left(z_{0}\right)\mid}{1+\mid f\left(z_{0}\right)\mid^{2}}<\frac{\Omega_{2}}{1-\mid z_{0}\mid}\;\cdot$$

Or, sur un rayon, arg z = const., on a

$$|f'(z)| \geqslant \frac{\partial |f(z)|}{\partial r}, \quad z = |z|,$$

l'inégalité précédente entraîne

$$\frac{\frac{\partial}{\partial r} |f(z)|}{1 + |f(z)|^2} < \frac{\Omega_2}{1 - r} ,$$

et, en intégrant de 0 à r, on obtient

$$\operatorname{Arctg}\,\left|\,f\left(z\right)\,\right|\,<\,\operatorname{Arctg}\,\left|\,f\left(z_{0}\right)\,\right|\,-\,\Omega_{2}\,\log\,\left(1\,-\,r\right)\,+\,k\,\pi\,\;,\qquad \left|\,z\,\right|\,=\,r$$

où k est entier et augmente d'une unité chaque fois que

Arctg 
$$|f \cdot (z_0)| - \Omega_2 \log \frac{1}{1-r}$$

passe par une valeur  $\frac{\pi}{2} + h\pi$ . Il s'ensuit que

IV. Si f (z) est holomorphe pour |z| < 1 et si ses valeurs ne couvrent pas à un feuillet aucun des trois domaines  $\Delta_1$ ,  $\Delta_2$ ,  $\Delta_3$  extérieurs les uns aux autres, on a

$$|f(z)| < \Lambda(|f(z_0)|, r)$$
,

la fonction  $\Lambda$  dépendant des trois domaines; en outre, si  $\mid f\left(z_{0}\right)\mid <$  A, on a

$$|f(z)| < \Lambda_1[A, r]$$
.

Ce théorème, prévu par Bloch, avait été démontré par Ahlfors avec quatre domaines.

#### 65. Autre théorème.

Du théorème précédent, on peut déduire des théorèmes analogues généralisant le théorème de Schottky <sup>47)</sup>. Le plus simple est le suivant qui contient le théorème de Schottky:

V. Si A > 1 et m > 0 sont donnés, si f (z) est holomorphe pour |z| < 1 et ne s'annule pas dans ce cercle, si |f(0)| < A, et si |f'(z)| < m lorsque |f(z)| = 1, on a pour  $|z| < \frac{1}{4}$ ,  $|f(z)| < \Omega$  (A, m).

Il est clair qu'en itérant la méthode, on aura une borne dans tout cercle  $|z| \le \rho < 1$ .

Considérons un rayon arbitraire, arg z = const., et  $|z| \leq \frac{1}{4}$ . Ou bien sur ce rayon |f(z)| < A, ou bien il existera sur ce rayon un point  $z_0$  tel que  $|f(z_0)| = A$ . Plaçons-nous dans ce second cas. La fonction

$$F(\zeta) = f\left(z_0 + \frac{\zeta}{2}\right)$$

est holomorphe et non nulle pour  $|\zeta| < 1$ , on a |F(0)| = A et  $|F'(\zeta_1)| < \frac{m}{2}$  lorsque  $F(\zeta_1) = 1$ . Ecrivons

$$F(\zeta) = A_e^{i\lambda} e^{g(\zeta)}$$
,  $g(0) = 0$ ,  $\lambda$  réel.

Soit  $\zeta = G(Z)$  l'inverse de  $Z = g(\zeta), |\zeta| < 1$ . On a

$$F'(\zeta) = F(\zeta) \frac{1}{G'(Z)}$$

Une branche quelconque de G (Z) ne peut pas être holomorphe pour  $|Z-i\mu|< D$  si  $\mu$  est réel et si D est supérieur à  $E=\pi+\log A$  et à une fonction convenable de m. Car l'équation F ( $\zeta$ ) = 1 équivaut à

$$Z = (2\pi n - \lambda) i - \log A,$$

où n est un entier arbitraire. Cette équation en Z a une racine  $Z_1$  telle que  $|Z_1 - i\mu| < E$ . Une branche de G (Z) holomorphe

pour  $|Z-i\mu|$  < D serait encore univalente et de module moindre que 1 dans le cercle

$$|Z - Z_1| < D - E$$

donc

$$(D - E) | G'(Z_1) | < 1$$
.

On aurait  $F(\zeta_1) = 1$  et

$$|F'(\zeta_1)| > D - E$$

ce qui est impossible si  $D > E + \frac{m}{2}$ . Donc  $g(\zeta)$ , dont les valeurs ne peuvent pas couvrir à un feuillet trois cercles  $|Z - i\mu| < D$  a son module borné en vertu du théorème IV;  $F(\zeta)$  a son module borné, donc, dans ce second cas encore, |f(z)| est borné sur le rayon considéré. Le théorème est démontré.

#### NOTES

<sup>44</sup> Thèse. Annales Ecole normale, 1940.

<sup>45</sup> Cette généralisation a été donnée d'abord par Ahlfors (Acta Soc. Sc. Fennicoe, 1933) par une autre méthode.

<sup>46</sup> Voir Bloch, Annales Fac. de Toulouse, t. 17, 1925.

<sup>47</sup> Voir Valiron, Comptes Rendus, t. 205, 1937.