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QUELQUES TENDANCES ACTUELLES
EN ANALYSE NUMÉRIQUE *)

par Charles Blanc, Lausanne

(Reçu le 8 février 1960)

Il n'est pas exagéré de dire que ces dix ou quinze dernières
années ont vu un domaine des mathématiques prendre un
développement d'une rapidité et d'une ampleur encore inconnues dans
notre science : la mise en oeuvre des calculatrices électroniques a
exigé des mathématiciens la mise au point de méthodes de calcul
nouvelles, alors qu'elle révélait les défauts de certaines méthodes
anciennes et qu'elle donnait aux chercheurs un moyen de se
débarrasser de tout le côté fastidieux du calcul numérique. Il
y a quinze ans à peine, peu nombreux étaient encore les
mathématiciens se préoccupant systématiquement d'analyse numérique;

leur existence même était quasiment ignorée: il a fallu
attendre le Congrès d'Edimbourg, en 1958, pour qu'une place
leur soit réservée dans les grandes réunions internationales. Très
rares étaient ceux qui s'y consacraient dès l'abord: on y venait
après avoir travaillé en théorie des nombres, en topologie ou
dans quelque autre domaine; aujourd'hui, de nombreux jeunes
gens, dès la fin de leurs études, viennent à l'analyse numérique,
qui leur offre un grand choix de recherches qu'ils peuvent souvent
poursuivre dans des conditions favorables comme membres d'un
Centre de calcul.

A l'époque préélectronique, le problème central de l'analyse
numérique était la construction de tables de fonctions. C'est
ainsi que s'explique le titre, maintenant un peu suranné, du plus
ancien périodique spécialisé dans ce domaine: Mathematical
Tables and other Aids to Computation, créé en 1943 2); à cette
époque, il n'existait pas plus de quatre ou cinq ouvrages valables

1) Conférence présentée le 12 septembre 1959, à la réunion de la Société Mathé-
matique Suisse.

2) La direction de cette revue vient au reste d'annoncer une modification du titre.
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consacrés aux techniques de calcul; seuls quelques précurseurs
avaient réussi à créer des centres spécialisés qui, dans les années

qui suivirent, se multiplièrent un peu dans tous les pays; en

même temps, des ouvrages toujours plus nombreux se publiaient,
qui du reste étaient le plus souvent déjà singulièrement vieillis,
à peine l'encre séchée; il y a aujourd'hui une bonne demi-
douzaine de périodiques spécialisés en analyse numérique,
privilège que ne connaît, je pense, aucun autre domaine des

mathématiques.
Cette activité prodigieuse, dans un domaine resté si longtemps

à l'écart de la recherche active, et cela juste au moment où les

besoins et les moyens matériels prennent un tel développement,
ne reste pas sans résultats. Je voudrais, en me limitant
forcément, vous indiquer quelques-unes des tendances qui s'affirment,
quelques connexions parfois surprenantes qui s'établissent,
quelques-unes enfin des recherches de science pure que suscitent
les besoins des applications concrètes.

Résolution d'un système algébrique linéaire.

Le problème est presque trivial du point de vue des

mathématiques « pures »: si le déterminant de la matrice des coefficients
est non nul, il y a une solution et une seule; un traité d'algèbre
linéaire ajoutera volontiers que cette solution peut s'obtenir par
des quotients de déterminants.

Si on y regarde de plus près, la question cesse d'être aussi
simple. Il faut n multiplications pour calculer d'après la
définition la valeur d'un déterminant d'ordre n\ si par exemple
n 30, on a n # 2.1032; une calculatrice électronique moyenne
effectue une multiplication en, disons, 1 milliseconde (c'est un
ordre de grandeur); un déterminant d'ordre 30, calculé selon la
définition, exigerait ainsi 2.1029 sec., soit 6.1021 années Or la
même machine, en utilisant une méthode adéquate, résoudra
le système considéré en quelques minutes seulement.

C'est Gauss qui a le premier établi (à propos des équations
normales de la géodésie) une méthode acceptable de résolution par
élimination des systèmes linéaires algébriques. On a depuis lors
imaginé quantité de perfectionnements, plus ou moins heureux,

L'Enseignement mathérn., t. V, fasc. 4. 16 •



238 C. BLANC

et aussi étudié des méthodes de caractère itératif, dont on a
montré l'intérêt dans la résolution de systèmes de forme
particulière. Ce qui se révèle intéressant et fécond, c'est la somme des

expériences acquises par la mise en œuvre de ces méthodes sur
les calculatrices électroniques. Je reviendrai sur cet aspect
nécessairement expérimental de la recherche dans notre domaine.

A côté de l'élément durée, un autre problème se pose ici: par
suite de l'emploi de fractions décimales limitées, les résultats sont
entachés d'erreurs, les erreurs d'arrondi, qui peuvent leur ôter
toute signification; le choix de la méthode utilisée joue naturellement

un rôle ; on constate néanmoins que les systèmes à résoudre

peuvent être à ce point de vue plus ou moins bien conditionnés,
d'où l'intérêt qu'il y a à savoir juger du plus ou moins bon
conditionnement d'un système, plus précisément de la matrice de ses

coefficients, et à le repérer par un nombre, dit nombre de condition
de la matrice. La première idée qui est venue fut de considérer
le déterminant de la matrice A du système comme un tel repère;
on peut toutefois lui objecter qu'il ne se conserve pas si on
multiplie tous les termes par un même nombre. On a proposé les

quantités

T (A) norme A norme A-1 (Turing)

OÙ

norme A y/s a?.

et

p /\\ _
A (A) (von Neumann et
fx (A) Goldstine)

où X (A) est la plus grande valeur propre de A et [jl (A) la plus
petite (en module).

Diverses expériences et des recherches théoriques ont montré
que ces deux quantités donnent une assez bonne idée du
conditionnement d'un système, celui-ci étant d'autant plus favorable

que le nombre de condition est plus petit. On a montré (Todd)
que P (A) est en moyenne égal à n (ceci suppose une métrique sur
l'ensemble des matrices, métrique à choisir d'une façon raisonnable).
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Par contre, si on considère la matrice obtenue en remplaçant

par des différences finies un opérateur différentiel du second

ordre, on a

P (A) =0H ;

si l'opérateur est du quatrième ordre,

P (A) 0 (tt4). ;

pour la matrice finie de Hilbert, on trouve même

P (A) 0 (ean), où a > 0

Ces résultats permettent de guider notre choix lorsque l'on
désire remplacer par des équations algébriques linéaires un
problème de caractère différentiel.

On a montré également que la matrice obtenue en multipliant

une matrice réelle A par sa transposée A' est moins bien
conditionnée que A elle-même.

Valeurs propres de matrices.

La recherche des valeurs (et vecteurs) propres d'une matrice
est en soi un problème important, outre l'intérêt que ces valeurs

propres (ou du moins les extrêmes) présentent, comme on
vient de le voir, pour l'étude du conditionnement d'un système.
A côté de cette recherche elle-même, il est très utile de posséder
des moyens de décider par exemple combien de valeurs propres
sont contenues dans un domaine donné.

En ce qui concerne la détermination même des valeurs
propres, je voudrais montrer, en décrivant sommairement une
méthode de calcul, combien il faut être circonspect dès que l'on
veut se lancer dans un calcul effectif. Le théorème de Hamilton-
Cayley permet d'affirmer que si l'équation caractéristique est

/(À) V1 + cIr1 + + 0

la matrice satisfait à cette équation:

/(A) An + flA"'1 + 1 0 ;
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prenons alors un vecteur y; en le multipliant à gauche par / (A),
on obtient

An y c± PJ1 1
y cny 0

c'est-à-dire un système de n équations, d'où on pourra tirer, si

tout va bien, les coefficients ci7 ensuite de quoi il suffira de

résoudre l'équation caractéristique. Ce beau programme peut
toutefois réserver des surprises désagréables. Il faut tout d'abord
que y ne soit pas un des vecteurs propres, ni trop voisin de l'un
d'eux; on sait de plus que les vecteurs Aky (convenablement
normés) tendent vers un vecteur propre; on a donc tout lieu de

penser que le système linéaire considéré sera mal conditionné;
il ne pourra nous livrer les c{ qu'avec une précision assez limitée.

Ici se pose donc la question: « Dans quelle mesure les racines
d'une équation algébrique dépendent-elles des coefficients de

l'équation » On sait que cette dépendance est continue, mais
se fait-on toujours une idée même vague des ordres de grandeur
Wilkinson a donné l'exemple suivant, qui est saisissant:

l'équation
(x + !)(#+ 2) (x -h 20) Q

a évidemment les racines
'

— 1, — 2, — 20 ;

elle peut s'écrire
x20 + 210 x19 + 0 ;

or si on remplace le coefficient de x19 par

210 + 2-23

certaines des racines de l'équation ne sont plus réelles; on trouve

par exemple
— 13, 99 ± 2,52 i ;

ceci donne une. idée des risques que l'on court si on prétend
déterminer les valeurs propres en passant par l'équation
caractéristique; à l'heure actuelle, les opinions sont encore très

partagées sur la marche à suivre; pour les matrices non symétriques,
il semble bien que l'on ne possède aujourd'hui aucune méthode

vraiment satisfaisante.
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Théorie de l'approximation.

Toute l'analyse numérique est dominée par l'idée d'approximation,

dès l'instant où on accepte l'inévitable exigence du
calcul: celui-ci comporte, en effet, toujours une discrétisation
du problème proposé. D'une part, on remplace des opérateurs de

l'analyse (avec passages à la limite) par des opérateurs finis,
d'autre part on remplace les fractions décimales illimitées par
des fractions limitées; laissons pour l'instant de côté les approximations

dues à l'emploi d'un nombre limité de chiffres pour la
représentation des nombres (les erreurs d'arrondi) pour nous
limiter aux erreurs que l'on peut appeler erreurs de méthode.

On peut alors, pour préciser le problème de l'étude de ces

erreurs, poser ceci: une fonction étant bien définie par un certain
nombre d'algorithmes relevant de Vanalyse, former une expression
n'utilisant que des algorithmes d'une classe restreinte et qui constitue

une approximation, dans un sens à préciser, de la fonction donnée.

Par exemple: une fonction satisfait à une équation différentielle,

avec des conditions qui garantissent l'existence d'une
seule solution, on demande de former une fonction rationnelle
de degré maximum donné qui s'écarte le moins possible de cette
solution.

En ce qui concerne les fonctions d'une seule variable, les

études dans ce domaine sont bien avancées; elles ont montré
l'importance des idées de Tchébycheff qui, avec Gauss, apparaît
toujours plus comme un des grands précurseurs de l'analyse
numérique moderne; pour des fonctions de plusieurs variables,
on est aujourd'hui beaucoup moins avancé; c'est au reste un des
domaines qui, pour l'instant, retient le plus l'attention des
chercheurs, et il faut s'attendre à de grands progrès dans un proche
avenir.

Comme on l'a vu, un problème d'approximation est toujours
lié à une sorte de mesure de l'erreur. Dans de nombreux cas, une
méthode d'approximation étant donnée, on recherche une borne
d'erreur ; cette borne est souvent donnée par des dérivées d'ordre
plus ou moins élevé d'une fonction: par exemple le reste de
Lagrange dans un développement taylorien donne une exprès-
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sion pour l'erreur commise en remplaçant une fonction par un
polynôme obtenu d'une certaine manière. C'est dans cette voie

que l'on obtient souvent le plus facilement des résultats
formels, malheureusement d'un emploi ultérieur fréquemment
malcommode. Par exemple, on ne possède à ma connaissance

aucune expression de ce type, effectivement utilisable, pour
exprimer l'erreur commise en remplaçant le laplacien par un
opérateur aux différences dans le problème de Dirichlet.

On a pu, dans certains cas, donner des bornes d'erreur où
interviennent des hypothèses un peu différentes sur les fonctions
en jeu. Prenons par exemple les formules de quadrature approchée.

En supposant que la fonction sous le signe somme est
analytique dans une ellipse ayant ses foyers aux extrémités de

l'intervalle d'intégration, on obtient des bornes d'erreur qui
ne font intervenir que l'excentricité de cette ellipse et l'intégrale

du module de la fonction sur son intérieur; ces bornes se

révèlent beaucoup plus maniables et souvent plus fines que
celles que fournit la considération de dérivées d'ordre plus ou
moins élevé.

On peut également étudier ces erreurs d'un point de vue
probabiliste: partant de la remarque qu'une étude d'erreurs
considère en fait toujours un ensemble de données possibles, on

peut rechercher non pas une borne mais une moyenne, ce qui
suppose la définition d'une mesure dans l'ensemble des données

considérées, mesure qui s'interprète naturellement dans un
langage probabiliste.

L'étude du conditionnement (très défavorable) de la matrice
de Hilbert montre combien sont dangereuses certaines méthodes
de moments. Supposons que l'on désire dans (0,1) une approximation

optimum en moyenne quadratique d'une fonction / (x)

par un polynôme P (x) — S akxk; en prenant le minimum de

î
J [/ (x) — P (x)fdx

0

on obtient pour les afe un système algébrique linéaire dont la
matrice a précisément le terme général

l
i + k + 1
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d'où l'on peut conclure (après Todd) qu'elle est très mal
conditionnée; ceci explique les résultats souvent très peu favorables

obtenus dans un tel cas.

Les erreurs d'arrondi.

C'est dans l'étude de ces erreurs qu'il est peut-être le plus
utile de combiner les recherches théoriques et les études
expérimentales. Le nombre des circonstances qu'il est possible

d'envisager a priori est si grand, la complexité des relations
est telle, qu'il n'est pas raisonnable de se lancer dans des

recherches sans avoir quelques idées sur ce qui peut se passer
dans tel ou tel cas: en peu de temps (moins d'une heure souvent)
une calculatrice électronique peut nous fournir, sur la base

d'exemples bien choisis, une information qui évitera ensuite

peut-être des semaines de recherches infructueuses; c'est
précisément par des essais, faits non pas au hasard mais en tirant
parti d'un certain empirisme, que l'on a eu la révélation de

phénomènes d'instabilité dus aux erreurs d'arrondi, par exemple
dans l'intégration numérique d'équations différentielles ; on a pu
faire ensuite une étude approfondie des causes de cette
instabilité, étude qui a montré que de nombreuses méthodes qui
semblaient acceptables sont inutilisables, dès que l'on ne se

limite plus à quelques pas d'intégration.
On a vu plus haut combien les erreurs d'arrondi peuvent

exercer une influence considérable sur la résolution d'une équation

algébrique. Elles peuvent également rendre totalement
illusoires certaines méthodes d'approximations successives.

Analyse numérique et théorie des jeux.

Sous des aspects parfois fort différents, la théorie des jeux
commence à fournir des moyens d'aborder efficacement des
problèmes d'analyse numérique. En voici un exemple: considérons
la résolution numérique d'une équation / (x) 0; une méthode
est théoriquement acceptable si elle fournit un moyen de former
une suite d'intervalles emboîtés, de longueur tendant vers zéro
et contenant une racine de l'équation; pour cela il faudra faire
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une suite de calculs, selon une règle prescrite, cette règle (une
«stratégie») pouvant du reste comporter, en cours de calcul,
des choix entre deux possibilités (des « tactiques ») selon des

résultats intermédiaires; dès lors, la recherche d'une stratégie
optimum consiste à rechercher celle qui, au sens de la théorie
des jeux, donnera le meilleur résultat pour une quantité de

travail donnée. On peut, par exemple, poser ceci (voir Gross et
Johnson, MTAC, 13, 1959, pp. 44 et suiv.): on sait que / (x)
est continue et convexe dans (a, 6), positive pour x a, négative

pour x — b\ déterminer la stratégie optimum pour localiser
la racine comprise entre x a et x b, sachant que l'on aura
le droit de calculer / (x) pour n valeurs de x, ces valeurs étant à

choisir au fur et à mesure des calculs; la théorie des jeux conduit
alors au choix d'une stratégie qui est la meilleure possible dans

l'hypothèse que 1'« adversaire » (celui qui a choisi / (x) (a lui-
même basé son choix de façon à nous placer dans des conditions
aussi défavorables que possible.

Conclusions.

Un problème d'analyse numérique peut faire appel aux
théories mathématiques les plus diverses. Reprenons, par
exemple, le problème de l'approximation.

En termes généraux, il se présente comme relevant de

Vanalyse fonctionnelle, le plus souvent dans des espaces de

Banach; des théorèmes comme celui du point fixe ont permis de

préciser la signification de certaines méthodes.
La recherche d'une approximation au sens de Tchébicheff

revient à rendre minimum le maximum d'une certaine expression:

déterminer les a{ de façon que

max | / [x) — g (x, a-n) | » min;

il s'agit donc d'un problème dit de minimax, fondamental en

théorie des jeux; or cette théorie fait un emploi systématique
de la théorie des inégalités linéaires, liée elle-même à celle des

corps convexes.

La géométrie algébrique peut également jouer un rôle dans la
théorie de l'approximation; considérons la recherche, au moyen
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d'une fonction algébrique d'un type donné, d'une approximation

d'une fonction donnée sur un ensemble fini A de Rn; selon

les propriétés de cet ensemble A relativement à l'ensemble de

fonctions de la forme donnée, le problème peut dégénérer; la

géométrie algébrique permet d'examiner, l'ensemble A étant
donné, quels seront les choix favorables pour la forme de fonctions

à adopter.
Ces quelques indications montrent assez, je pense, combien il

est nécessaire, pour celui qui désire poursuivre des recherches en
analyse numérique, ou tout au moins suivre celles qui se font, de

posséder une information aussi solide que possible dans les

domaines les plus variés des mathématiques. Cette information
ne suffira pas, toutefois, s'il n'est pas pourvu d'un certain sens
du concret, plus précisément d'une aptitude à voir les multiples
aspects d'un même problème. L'analyse numérique lui procurera,
par contre, les satisfactions que donne une science qui réunit
dans un ensemble cohérent les spéculations abstraites et leurs
applications, la libération du formalisme parfois stérile des

théories synthétiques et l'exercice des facultés inventives.
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