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SUR QUELQUES PROBLEMES NON RESOLUS
D’ARITHMETIQUE 1)

par W. SIERPINSKI, Varsovie

(Re¢u le 2 novembre 19569)

On pourrait penser qu’il n’y a pas dans 'arithmétique de
problémes dont I’énoncé est simple et qui ne sont pas encore
résolus, et pour lesquels on ne connait aucune voie par laquelle
on puisse obtenir une solution apres avoir effectué les calculs
nécessaires, abstraction faite de leur longueur.

Il en est cependant tout autrement. Comme exemple, je
donnerai ici un probléeme qui nous a été posé il y a quelques
années, par un étudiant de I'Université de Varsovie, Werner
MnicH. Il demanda s§’il existe trois nombres rationnels dont la
somme ainsi que le produit sont égaux & 1. Ce probléme appar-
tient évidemment a ’arithmétique élémentaire, mais, malgré les
efforts des mathématiciens les plus éminents, il reste encore non
résolu.

Dans I’énoncé original de M. M~icH, le probléme concerne les
nombres rationnels, mais il est facile de le transformer en pro-
bléemes équivalents concernant les entiers.

Le probleme de MnicH est, s’il existe trois nombres ration-
nels u, ¢, w, tels que |

ut o+ w=uw=1. (1)

Supposons que de tels nombres rationnels u, ¢, w existent.

m étant leur dénominateur naturel commun, on peut les repré-

x Z .
senter sous la forme u = o V= 7—?:—2, w=—,zrouxz,yetzsont

m7
des entiers. Les équations (1) donnent alors
_ xr+y+z=m et xyz= md,
ce qui donne tout de suite |

(¢ +y +2)®=ays . ’ (2)

1) Cet article paraitra en anglais dans le volume consacré A la mémoire de
J. GINSBURG.

La version francaise est augmentée de quelques détails.

L’Enseignement mathém., t. V, fasc. 4. 15
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. Aingsi, 8’1l existe trois nombres rationnels satisfaisant aux

équations (1), il existe aussi trois entiers non nuls, satisfaisant

a I’équation (2), puisque xyz = m? > 0.

D’autre part, supposons qu’il existe trois entiers non nuls,
z, Y, 2, satisfaisant & Péquation (2). D’apres (2), si les nombres
Z, Y, z sont non nuls, le nombre m = x + y + z est non nul et,

d’aprés (2) on trouve m® = zyz % 0 et, en posant u = %

¥4 . . \
o= = — nous aurons trois nombres rationnels. D’apreés

m
x4y -+ z = m et (2) on vérifie sans peine que les nombres u,
¢ et w satisfont aux équations (1).

Ainsi le probléme de savoir s’il existe trois nombres rationnels
dont la somme et le produit sont égaux a 1 est équivalent au
probléme s’il existe trois entiers non nuls et tels que le cube de
leur somme est égal & leur produit. Cette derniere question
concerne seulement les entiers.

On pourrait aussi démontrer que le probleme de MnicH équi-
vaut au probléme §’il existe trois entiers non nuls, z, y, z, tels
que 23 + y® + 2 = xyz. “

M. MnicH a aussi transformé son probléme en d’autres équi-
valents, notamment en le probléeme s’il existe des entiers a, b et ¢
tels que |

a b
7T

C
+o=1. (3)

S’il existe des nombres rationnels u, ¢, w satisfaisant a 1’équa-
tion (1), on a u = !li’
et [ et s sont des nombres naturels, et, d’aprés (1), on trouve

1 ls kr Ir

= — == — gb, : = 1, on trouve — 4 —
W= = et, comme u + ¢ 4+ w . B s

+ kl_i = 1. En posant a = kr, b = Ir, ¢ — [s nous obtenons les

r \ : .
¢ = —, ol k et r sont des entiers non nuls

entiers a, b et ¢ satisfaisant & I’équation (3).

D’autre part, si @, b et ¢ sont des entiers satisfaisant & I’équa-

a b ¢ .

2 V==, w=—,00 obtient

évidemment des nombres rationnels satisfaisant & I’équation (1).
M. MwicH a enfin transformé son probléme en le suivant qui

lui est équivalent:

tion (3), alors, en posant u =
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Existe-t-il un nombre rationnel r tel que toutes les racines
de I’équation . |
22—+ re—1=0 (4)
sont rationnelles ? g

On démontre sans peine cette équivalence. D’aprés les rela-
tions bien connues entre les racines d’un polyndme et ses coeffi-
cients, sixy, 7, et 25 sont des racines du polyndéme 2® — % 4- re — 1,
on a . '

D’autre part, si les nombres rationnels z,, x, et z; satisfont
aux équations (5), le nombre r = z; xy + 2, 3 + x5 7; est ration-
nel et on a pour tout x

(— ) (x— ) (£ —23) = 22 — 22+ re —1

et on en conclut que x,, x, et x; sont les seules racines de I’équa-
tion (4). ' 4

Le probléme de M~icH est de trouver trois nombres rationnels
dont la somme et le produit sont égaux & 1. Il se pose le probleme
de savoir s’il en est de méme pour deux ou pour quatre nombres
rationnels. '

Existe-t-il deux nombres rationnels u et ¢ tels que

u-+o=u =17
La réponse est négative. S’1l existait de tels nombres u et ¢, on
. 1 ‘
aurait u 4 — = 1, donc u? + 1 = u, d’ou l'on conclut que

u>0,etona(u—1?2=u>—2u-+1=—u<0,ce quiest
impossible. Or, comme ’a démontré un éleve de I’Université de
Varsovie, André ScHINZEL, la réponse au probleme de savoir s’il
existe quatre nombres rationnels u, ¢, w, t tels que

u+t+ o+ wtt=uwt =1 (6)

est positive. Il a prouvé que les équations (6) ont une infinité de
solutions en nombres rationnels u, ¢, w, t. En effet, on vérifie
sans peine que les nombres

n? 1 n? —1 n —1
u = 0:'—'—'2——, [ — s t:_
e — m —

ou n est un nombre naturel > 1, satisfont aux équations (6).
M. A. ScuinzeEL a démontré aussi que, pour tout nombre
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naturel s > 3 il existe une infinité de systémes de s nombres
rationnels dont la somme et le produit sont égaux a 1.

Il est & remarquer que M. A. ScuiNzeL a démontré que pour
tout nombre naturel s 1’équation |

Ty + Xy A+ o Ty = 2y Ty LT . - (7)

a au moins une solution en nombres naturels 2, z,, ..., z,. Pour
s = 2 on a la solution z; = 2, = 2. Pour obtenir une solution
pour s > 2, il suffit de poserz; = 2, = ... = 2,_,=1,2,_, = 2,
xz, = s. M. ScHINZEL a posé la question de savoir si le nombre
de toutes les solutions de I’équation (7) en nombres naturels z;,

Zgy «+vy T croit Indéfiniment avec s. Je ne sais méme pas com-

ment on pourrait démontrer que, pour s suffisamment grand,
le nombre de ces solutions est >. 1.

Nous avons vu que, dans 1’état actuel de la science, nous ne
savons pas répondre & la question de savoir si ’équation (2) qui
est du troisiéme degré avec trois inconnues, a une solution en
entiers non nuls. On connait aussi plusieurs autres équations tres
simples du troisieme degré avec trois inconnues dont nous ne
savons pas trouver toutes les solutions en nombres entiers.
Telle est, par exemple, I’équation

B4 B=3. < (8)
Nous connaissons ici quatre solutions en nombres entiers,
notamment x =y=2z2=1;, z=y.=4, z=—5; z =4,
y=—>5 2=4; x =—05, y=2= 4. Mais nous ne savons

pas sl existe d’autres solutions de notre équation en nombres
entiers, et méme nous ne savons pas si le nombre de telles solu-
tions est fini ou non. On ne connait aucune méthode pour
résoudre ce probléme. Nous ne savons donc pas trouver toutes

les décompositions du nombre 3 en une somme de trois cubes de

nombres entiers et nous ne savons pas si le nombre de telles
décompositions est fini ou non. |

Il est & remarquer que 8’1l s’agissait ‘de trouver toutes les
décompositions d’un nombre naturel donné m en une somme de
deux cubes, ou, en d’autres termes, de trouver toutes les solu-
tions en nombres entiers x et y de 1’équation 22 4 3 = m, on
sait que le nombre de ces solutions est toujours fini et on connait
une méthode qui permettrait de les trouver toutes, si ’on effectue
des calculs nécessaires. |

1
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D’autre part, il y a des équations du troisieme degré a
deux inconnues dont nous ne savons pas trouver toutes les solu-
tions en nombres entiers. Telle est, par exemple, 'équation

22—yt =7.

On a démontré que le nombre de toutes les solutions de cette
équation en nombres entiers z et y est fini, mais on ne sait pas
quel est ce nombre. ‘

Les problémes non résolus d’arithmétique peuvent tre divi-
sés en deux espéces. Les problémes de premiére espece sont ceux
ol ’on connait une voie qui peut conduire & la solution définitive
du probléme considéré, et la seule difficulté est que nous ne
sommes pas actuellement en mesure d’effectuer les calculs
nécessaires, a cause de leur longueur, méme & 1'aide des plus
grandes machines a calculer. Tous les autres problemes non
résolus constituent la seconde espéce. Ce sont donc'les problémes
oll nous ne connaissons aucune voie pour les résoudre, méme
abstraction faite de la longueur des calculs nécessaires.

Un probléme de la premiére espéce est, par exemple, le pro-
bleme de trouver tous les diviseurs naturels du nombre 2101 — 1
qui a 31 chiffres décimaux. Pour trouver tous les diviseurs
naturels de ce nombre, il suffirait de le diviser par les nombres
naturels 1, 2, 3, ... ne dépassant pas le nombre /21011 et de
prendre en considération les diviseurs complémentaires. Pour
réduire le nombre de preuves, on pourrait aussi utiliser ici le
théoreme d’apres lequel tout diviseur naturel du nombre 2101 — 1
est de la forme 202k + 1, ol & est un entier non négatif. Mais
toutefois les calculs excédent nos possibilités. Deux diviseurs de
notre nombre sont connus: 1 et 2190 — 1, Or 1l est intéressant
qu’'on a démontré 'existence d’autres diviseurs naturels de notre
nombre, tout au moins de deux autres, mais nous ne connais-
sons aucune décomposition de notre nombre en un produit de
deux entiers > 1, quoiqu’on sache qu’une telle décomposition
existe. Cependant pour le nombre 211 qui est un entier qui suit
2101 — 1 nous connaissons tous ses diviseurs naturels, qui sont au
nombre de 102: ce sont les 102 termes initiaux de la progression
géométrique 1, 2, 4, 8, ..., 2100 2101 Ajnsi les difficultés pour étudier
les propriétés de deux entiers consécutifs peuvent étre différentes.
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Un autre exemple de problémes de la premiére espéce est de

trouver un nombre premier ayant mille chiffres. D’aprés le
postulat de Bertrand, démontré par Tchebycheff, on démontre
qu’il existe au moins trois nombres premiers ayant chacun un
millier de chiffres, mais on n’a encore trouvé aucun de ces
nombres. Le plus grand nombre premier connu, 22317 —1 a
969 chiffres.

Un nombre naturel étant donné, le probleme de savoir s’il
est premier ou non, s’il n’est pas résolu, est toujours un probléme
‘de la premiére espéce. Pour le résoudre, la méthode d’essais par
-divisions suffirait, mais le nombre des divisions nécessaires peut
étre trés grand. Par exemple le probléme de savoir si le nombre

Fi; = 20 1 qui a 2467 chifires est premier ou non est un
‘probléme de premiére espéce. F; est le plus petit nombre de

Fermat I, = 92" 4+ 1 dont nous ne savons s'il est premier ou non.

Comme on sait, P. FERMAT supposait que tous les nombres
F,, oun=1,2, .., sont premiers. Tels sont les nombres F,
pour n = 1, 2, 3 et 4, mais, comme on I’a démontré plus tard,
les nombres F, sont composés pour 5 < n < 12. A présent nous
connaissons 35 nombres F, composés dont le plus grand est le
nombre F, . qui a le facteur premier 5.21947 + 1. Cependant le
probleme de savoir s’il existe une infinité de nombres F, compo-
sés est un probleme de seconde espece. Il en est de méme du
probléme de savoir §’il existe une infinité de nombres de Fermat
premiers. _

Un exemple d’un probleme de premiére espéece est de trouver
une décomposition du nombre 100 en une somme d’un nombre

fini de fractions distinctes de la forme —, ou n est un entier

positif. (On appelle parfois ces fractions, fractions primaires.)
On connait une méthode qui fournirait une telle décomposition
aprés certains calculs, mais & cause de la longueur de ces calculs
il est actuellement impossible de la trouver. On a prouvé que
dans chaque décomposition du nombre 100 en une somme d’un

: : . 1
nombre fini de fractions distinctes —, 0 est un nombre naturel,

le nombre de termes a au moins 30 chiffres.
Il est arrivé qu'un probléme de premiére espéce soit ensuite

i



g

T Ty o S Y S T

T S R

N P L N T Y R T T

PRS2

PROBLEMES NON RESOLUS 227

résolu. Tel fut le cas du probléme.de savoir si les nombres F,,
et F,, sont premiers. Il y a quelques années on a démontré qu’ils
sont composés et on a trouvé pour chacun de ces nombres le plus
petit facteur premier. Le développement complet en facteurs
premiers de chacun de ces nombres reste cependant comme
probléme de premiére espéce.

Il y a aussi eu des cas ou un probléme de seconde espéce a
été résolu. Il y a quelques années il en fut ainsi du probléme de
savoir §’il existe des entiers n > 1 pour lesquels le nombre
n.2" + 1 est premier. Les nombres de cette forme sont appelés
nombres de Cullen. Récemment on a trouvé le plus petit de tels
nombres premiers, & savoir pour n = 141.

Il est aussi arrivé qu’un probleme de seconde espéce soit
devenu probléme de premiére espéce. Il en fut ainsi du probléme
de savoir si tout nombre impair > 7 est une somme de trois
nombres premiers impairs. Ce probléme était de seconde espéce
jusqu’au moment ou J. Winogradow a démontré que tout

nombre impair > a = 33 est une somme de trois nombres
premiers impairs. Pour un nombre impair donné, le probléme
de savoir s’il est ou non une somme de trois nombres premiers
impairs est évidemment de premiére espéce. Il suffirait donc de
vérifier si tout nombre impair > 7 et = a est une somme de
trois nombres premiers impairs.

Le probleme de savoir s’il existe une progression arithmé-
tique formée de cent nombres premiers distincts est de seconde
espéce. La plus longue progression connue, formée de nombres
premiers distincts est celle qui a douze termes, dont le premier
est 23143 et dont la différence est 30030; elle a été trouvée par
W. A. GOLUBIEFF.

On a démontré I'existence d’une infinité des progressions
arithmétiques croissantes formées de trois nombres premiers,
mais nous ne savons pas s’il en est de méme pour les progres-
sions formées de trois nombres premiers consécutifs p,, p,.,,
Pn+o (OU p, désigne le n-iéme nombre premier), par exemple
47, 53, H9.

Un autre exemple de problémes de seconde espéce est s’il
existe, sauf les nombres 2, 5 et 257, un nombre premier de la
forme n™ + 1, ou n est un nombre naturel.
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Nous ne savons pas non plus s’il existe, sauf les nombres 2

et 17, des nombres premiers de la forme n" 4 1, ou n est un
nombre naturel. On peut démontrer que si un tel nombre premier
existe, il a plus d’un milliard de milliards de chiffres, notamment

qu’il est > 1010, Si 'on risquait I’hypothése que de tels nombres
premiers n’existent pas, il en résulterait tout de suite I’existence
d’une infinité de nombres de Fermat composés: en effet, tels
seraient tous les nombres F,, oun = m + om+<" ot m = 1,2, ..,
puisqu’on aurait alors F, = B, on ko= 22"

De seconde espéce est aussi le probléme de savoir s’il existe
une infinité de nombres premiers de Mersenne: M,, = 2" — 1.
Actuellement on connait 18 de ces nombres qui sont premiers
et dont le plus grand est Ms,,,. De seconde espeéce est aussi le
probléme de savoir s’il existe une infinité de nombres premiers p
pour lesquels le nombre 22 — 1 est composé. Nous ne savons pas
non plus §’il existe une infinité de nombres naturels n pour les-
quels le nombre 2" — 1 n’est pas divisible par le carré d’un
nombre naturel > 1. |

De seconde espéce sont encore les problemes suivants:

Existe-t-il une infinité de nombres premiers dont tous les
chiffres décimaux sont égaux a 1 ?

Existe-t-il une infinité de nombres premiers de la forme
2% 4+ 1, ou z est un entier ?

Existe-t-il une infinité de nombres premiers de la forme
n! 4 1, ou n est un nombre naturel ? Nous ne savons pas si le
nombre 27! + 1 est un nombre premier, mais ce probleme est
évidemment de premiére espéce. Or on démontre sans peine
qu’il existe une infinité de nombres composés de la forme n ! 4 1.

Existe-t-1l au moins un nombre pair > 2 qui ne soit pas une
somme de deux nombres premiers ?

En 1742 Ch. GorpBAcH a exprimé ’hypothese que la réponse
a cette question est négative. On a énoncé méme une hypothese
plus forte, ¢’est que tout nombre pair > 6 est une somme de
deux nombres premiers distincts.

Peut-on représenter tout nombre pair comme une différence
de deux nombres premiers d’une infinité de manieres ? Nous ne
savons méme pas si le nombre 2 peut étre représenté d’une
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infinité de maniéres comme différence de deux nombres premiers,
en d’autres termes, s'il existe une infinité de nombres premiers
jumeaux. Nous ne savons pas non plus si tout nombre pair est la
différence de deux nombres premiers.

N’existe-t-il, pour tout nombre naturel m, qu'un nombre
fini de systémes de nombres premiers p et ¢ > p,otig —p < m?
Ce probléme est équivalent au probléme de savoir si la différence
entre deux nombres premiers consécutifs croit indéfiniment avec
ces nombres.

Est-il vrai que, pour tout nombre naturel n > 1, il existe
entre n? et n2 4 n au moins un nombre premier ?

Existe-t-il une infinité de nombres naturels n, tels que les
nombres n et n + 1 ont le méme nombre de diviseurs naturels,
respectivement la méme somme de tous leurs diviseurs naturels ?

Existe-t-il une infinité de nombres premiers p tels que pour
tout nombre naturel n << p — 1 le reste de la division du nombre
2" par p est distinct de 1 ?

Existe-t-il une infinité des nombres naturels composés n tels
que pout tout entier ¢ le nombre a" — a est divisible par n ?
I1 est & remarquer qu’on sait démontrer que, pour tout entier a
il existe une infinité de nombres naturels n tels que le nombre
a" — a est divisible par n. Or, on ne sait pas s’il existe une
infinité de nombres naturels composés n tels que les nombres
2" — 2 et 3" — 3 sont divisibles par n.

Existe-t-il une infinité de nombres naturels n tels que le
nombre 2" — 2 est, divisible par n? ?

Existe-t-il un nombre naturel impair n dont la somme de
tous les diviseurs naturels est égale a 2n ?

Existe-t-il un nombre naturel » dont la somme de tous les
diviseurs naturels est égale a 2n + 1 ?

Deux nombres naturels distincts m et n sont appelés amiables
si la somme de tous les diviseurs naturels de chacun est égale a
m + n. Par exemple les nombres 220 et 284 sont amiables.

Existe-t-il une infinité de paires de nombres amiables ?

Existe-t-1l une paire de nombres amiables dont I'un soit pair
et autre impair ?

Existe-t-il un nombre composé n qui divise le nombre
et =t 4 (n— 1)1+ 1?2 En 1950 G. GiugA a
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exprimé ’hypothése que la réponse a ce probléme est négative.
Il a vérifié cette hypothése pour tous les n << 101000,

Existe-t-il un nombre naturel n > 7 pour lequel le nombre
n! -+ 1 soit un carré ? On connait trois de ces nombres < 7,
notamment 4, 5 et 7.

Plusieurs problemes de seconde espéce concernent la solution
des équations en nombres entiers. Par exemple:

Existe-t-il au moins une solution de I’équation

x> + y® + 22 = 30

en entiers x, y, z ?

Existe-t-il une solution en nombres naturels X1y Loy «evy Lo du
systeme de quatre équations du second degré a sept inconnues:

e 9. .2 .2 2 2 _ 9
i ooy =ap, of +af=ap, af +a3=ag,

xi—{—xz—{—x3:x7?

Le sens géométrique de ce probléme est le suivant: Existe-t-il’
un parallélépipéde rectangulaire tel que les longueurs de ses
cOtés, de ses diagonales et de sa diagonale intérieure s expmment
par des nombres naturels ?

Existe-t-il une infinité de nombres naturels a pour lesquels
I’équation

a* = 2* + y(y + 1)
n’a pas de solutions en nombres naturels z, y? Récemment
M. A. BirmaN a démontré que ce probléme équivaut au pro-
bléme de savoir §’il existe une infinité de nombres premiers de
la forme n? + 1, ou n est un nombre naturel. Il a démontré aussi
que le probléme de savoir s’il existe une infinité de nombres
naturels @ > 1 pour lesquels I’équation :

at =2 —yy +1).

n’a pas de solutions en nombres naturels x, y sauf la solution
triviale x = a?, y = a®* — 1, est équivalent au probléme de
savoir 8’1l existe une infinité de nombres premiers jumeaux.

Existe-t-il pour tout nombre naturel n > 1, des nombres
naturels z, y, z, tels que

S 1 1 1
S b=t —?
n x Y z
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Mon hypothése que la réponse en est positive fut vérifiée en 1958
par G. Parama pour tous les nombres naturels n tels que

1 < n < 922321. Un probléme analogue pour les nombres % fut’

posé, il y a plusieurs années, par P. Erpos.

Est-il vrai que ’équation z* 4 y* 4 z* = t* n’a pas de solutions
en nombres naturels z, y, z, t, ce qui était une hypothése ’EULER ?

Est-t-il vrai que tout nombre naturel est une somme de
quatre cubes de nombres entiers ?

Il y a quelques années, j’al énoncé une hypothese plus forte,
a savoir que tout nombre entier peut étre représenté d’une
infinité de manieres sous la forme 23 4 2 — 22 — 3, ou 2, ¥, z
et ¢t sont des nombres naturels. Cette hypothése fut vérifiée pour
tous les nombres naturels < 350, sauf 148 et 284, et aussi pour
une infinité d’autres. Or il est facile de démontrer que tout
entier peut étre représenté d’une infinité de maniéres comme
une somme de cinq cubes des nombres entiers. Cela résulte tout
de suite de la remarque que, d’aprés l'identité 6k = (k -+ 1)3

=+ (E— 12 4+ (— k)® + (— k)3, tout entier divisible par 6 est -
- une somme de quatre cubes d’entiers et que, pour ¢ et n entiers,

chacun des nombres 6¢ + r — (6rn + )3, our = 0, 1, 2, 3, 4, b,
est divisible par 6. :

Est-11 possible de représenter comme une somme de trois
cubes de nombres entiers tout nombre naturel qui, divisé par 9,
donne un reste distinct de 4 et de 5 ?

Est-11 possible de représenter tout nombre naturel sous la
forme z® + y? 4 223, ou 7, y et z sont des entiers ? Le plus petit
nombre naturel dont on ne sait pas s’il est de cette forme est 76
le suivant est 99.

Existe-t-11 des nombres naturels n, z, y, z tels que n > 2 et
4yt =277

P. Fermar affirmait, sans avoir donné de démonstration,
qu’il n’existe pas de tels nombres. Cela est & présent démontré
pour tous les exposants n tels que 2 < n < 4002, et pour une
nfinité d’autres n. La démonstration pour n = 3 est difficile;
elle est plus simple pour n = 4.

Existe-t-il, sauf 8 = 23 et 9 = 32, deux nombres naturels
successifs dont chacun soit une puissance d’un nombre naturel
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avec un exposant > 1 ? CATALAN a exprimé ’hypothése qu’il
n’y a pas de tels nombres. |

Existe-t-1l trois nombres naturels successifs dont chacun soit
une puissance d’un nombre naturel avec un exposant > 1 ? On’
démontre sans peine qu’il n’existe pas quatre de ces nombres
naturels successifs. |

Est-il vrai que pout tout nombre naturel m il existe seule-
ment un nombre fini de systémes d’entiers > 1, z, y, z, ¢ satis-
faisant aux inégalités 0 < 2¥ — z' < m ? En 1945 S. Pirra1 a
exprimé une hypothése qui est équivalente avec celle que la
réponse a ce probléme est positive.

Soit » un nombre naturel > 10 dans le systéme décimal.
Est-1l toujours possible de remplacer deux de ses chiffres par .
d’autres chiffres de sorte qu'on obtienne un nombre premier ?
Il est & remarquer qu’il n’est pas toujours possible de changer
un seul chiffre d’'un nombre naturel de.sorte qu'on obtienne un
nombre premier. On peut démontrer que 200 est le plus petit
nombre dont on n’obtient jamais un nombre premier, en chan-
geant un seul chiffre. ,

Existe-t-il trois entiers impairs > 1, z, y, z tels que 2* y¥ = z°?

Est-il vrai que si z, y et z sont des nombres naturels > 1 tels
que z* y¥ = 7%, alors x et y ont les mémes diviseurs premiers ?
Ce probléme fut posé par A. SCHINZEL.

On a démontré que tout nombre rationnel positif dont le
dénominateur est impair est une somme d’un nombre fini de

. . L. 1 s
fractions distinctes, de la forme —, ou n est un nombre naturel

impair. Or nous ne savons pas si le procédé suivant, proposé par

S. STEIN en 1955 améne toujours & une telle décomposition.
Etant donné un nombre rationnel positif r avec un dénomi-

nateur impair, déterminons le plus petit nombre naturel im-

pair n,, tel que r > —r%— En supposant que nous avons déja déter-
1

miné les nombres ny, ny. ..., n,, déterminons le plus petit nombre

; ; 1 1 1 1
naturel impair 7,4, telquer ————... —— >
ny ’ no nh ' ni_}_k

. Le pro-

~ bléme posé par S. STEIN est de savoir s1, en procédant ainsi, on

arrive toujours aprés un nombre fini s de pas, a 1égalité
1 1 1
T T T

1 . . , ey
== ;z_’ qul donneralt la decomposﬂ;mn
s—1 S
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cherchée du nombre r en une somme d’un nombre fini de frac-
tions distinctes —, ou n désigne des nombres naturels impairs.

I1 y a quelques années, j’ai posé le probleme suivant: n étant
un nombre naturel > 1, rangeons les nombres 1, 2, 3, ..., n%en
n lignes, n nombres dans chaque ligne:

1,2,3,...,n
n+1,n+2,.. 2n
2n + 1, ..., 3n

(n —1)n +1, .., n2%.

Est-il vrai qu'on trouvera toujours au moins un nombre
premier dans chaque ligne ?

La premiére ligne contient évidemment (pour n > 1) le
nombre premier 2. La proposition que la deuxieme ligne contient
‘toujours (pour n > 1) au moins un nombre premier équivaut au
théoréme qui a été démontré il y a plus d’un siécle par TcHEBY-
CHEFF, notamment que pour n > 1 il existe au moins un nombre
premier entre n et 2n. On peut aussi démontrer que, pour n > 9,
chacune des neuf premiéres lignes de notre table contient au
moins un nombre premier. _

André Scuinzer a vérifié & 'aide des tables de Western
que pour n < 3000 la réponse a notre probléme est positive.

Il est & remarquer que de ’hypothese que chacune des deux
derniéres lignes de notre table contient au moins un nombre
premier, il résulte tout de suite qu’entre deux carrés consécutifs
de nombres naturels ils existe toujours au moins deux nombres
premiers. Or, on n’a pas encore démontré cela. Une autre con-
séquence facile de I'hypothese dont nous parlons est qu’entre
deux cubes successifs de nombres naturels il existe toujours au
moins deux nombres premiers. Or il est & remarquer qu’en 1947
W. H. MiLLs a démontré que pour les nombres naturels n suffi-
samment grands il existe entre n® et (n ++ 1)% au moins un nombre
premier.

A. ScHINZEL a exprimé I’hypothése que s1 £ est un nombre
< n et premier avec n, la k-1éme colonne de notre table contient
au moins un nombre premier. M. GORZELEWSKI a vérifié que
cela est vrai pour n < 100. |
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De I’hypothése que (pour n > 1) toute ligne de la. table (1)
contient au moins un nombre premier, on déduit sans peine
qu’entre deux nombres triangulaires consécutifs il existe toujours
au moins un nombre premier, en d’autres termes, si Pon écrit
successivement les nombres naturels en lignes, n nombres dans
la n-iéme ligne

-

.........

alors chaque ligne & partir de la deuxiéme contient au moins un
nombre premier. On ne sait pas si cela est vrai..

A. ScHINZEL a énoncé récemment une hypothése plus forte
que ’hypothése sur la table dont nous avons parlé. C’est I’hypo-
these suivante:

Si z est un nombre réel > 117, il existe au moins un nombre
premier entre z et z + /=.

A. ScHINZEL a vérifié son hypothése pour tous les nombres x
tels que 117 <z << 107. Il est & remarquer que LEGENDRE a
exprimé I’hypothese que pour les nombres x suffisamment grands,
il existe au moins un nombre premier entre x et x + 4/=.

Une autre hypothése de A. ScHINZEL est que pour tout
nombre réel x > 8 il existe au moins un nombre premier entre x
et z + (log x)2. Si I’on désigne par p, le n-ieme nombre premier,
et si on pose ici, pour n > 4, x = p,, on obtient I'inégalité
Ppis — Pn < (log p,)?%, qui est plus forte que I’hypothése de
H. CraMER sur la différence p,,., — p,, de ’année 1937, énoncée
4 la page 24 du volume 2 du journal Acta Arithmetica paraissant
en Pologne.

En 1957 A. ScHINZEL a énoncé encore une autre hypotheése
sur les nombres premiers (qui a paru dans le volume IV des Acta
Arithmetica).

Soit s un nombre naturel donné et soient f, (), f, (x), ..., f ()
des polyndémes en x aux coefficients entiers ou le coefficient de
la plus grande puissance de z est positif. Nous dirons que les
polynomes f; (), ..., f; (¥) satisfont & la condition S §’ils sont
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irréductibles et §’il n’existe aucun entier > 1 qui, pour tout
x entier, soit un diviseur du produit f; (z) f5 (%) ... [, (©).

L’hypothése H de A. ScHINZEL est la suivante:

H. Soit s un nombre naturel et f, (z), f5 (z), ..., fs (x) une
suite de polyndmes aux coefficients entiers, ou le coefficient de la
plus grande puissance de x est positif. Si ces polynémes satisfont
a la condition S, il existe une infinité de nombres naturels z pour
lesquels chacun des nombres f; (x), f5 (%), ..., fs (z) est premier.

De T’hypothése H de A. ScuinzeL résultent sans peine plu-
sieurs conséquences, par exemple celle que tout nombre entier
peut étre d’une infinité de maniéres représenté comme différence
de deux nombres premiers consécutifs. Une autre conséquence
de ’hypothése H est qu’il existe des progressions arithmétiques
aussi longues que l'on veut, formées des nombres premiers
consécutifs. Une autre conséquence est celle qu’il existe pour
tout nombre naturel m une infinité de nombres naturels x pour
lesquels le nombre z* + m est premier.

Voici encore deux problémes non résolus:

Est-11 vrai que dans le développement décimal du nombre
4/2 le chiffre 1 se trouve une infinité de fois ?

Est-il vrai que dans le développement décimal du nombre =
la suite formée de chiffres consécutifs 123456789 se trouve au
moins une fois ?

Il y a beaucoup d’autres problémes non résolus d’arithmé-
tique. Leur nombre augmente toujours, puisqu’on pose plus
rapidement les nouveaux problémes qu’on ne résout les anciens
parmi lesquels il y a des problemes posés il y a quelques centaines
d’années et encore non résolus.!) Or notre connaissance de I’arith-
métique consiste non seulement a savoir ce qui est déja établi,
mais aussi & savoir quels sont les problémes importants qui ne
sont pas encore résolus.

1) Lorsque j’ai dit cela & ma conférence & 'Université de Rennes, le professeur
Antoine a dit qu’alors il y aurait des problémes qui ne seraient jamais résolus. J’ai
répondu que cela pouvait naturellement arriver, mais que si ’humanité existait un
temps infini, il pourrait aussi arriver cette situation paradoxale que le nombre des
problémes non résolus croisse indéfiniment et que néanmoins chaque probleme soit
résolu en son temps. En effet, imaginons quw’on pose chaque année dix problémes, tous
numérotés au moyen des nombres naturels consécutifs et qu’on résolve chaque année
un seul probléme: celui des problémes posés jusqu’a ce moment qui a le numéro le plus
petit. (Par exemple, aprés dix années seront posés les problémes 1,2,3,...,100 et résolus
les problemes, 1, 2, ..., 10). Le probléme numéro n sera donc résolu apreés n années.
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