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SUR QUELQUES PROBLÈMES NON RÉSOLUS

D'ARITHMÉTIQUE *)

par W. Sierpinski, Varsovie

(Reçu le 2 novembre 1959)

On pourrait penser qu'il n'y a pas dans l'arithmétique de

problèmes dont l'énoncé est simple et qui ne sont pas encore
résolus, et pour lesquels on ne connaît aucune voie par laquelle
on puisse obtenir une solution après avoir effectué les calculs

nécessaires, abstraction faite de leur longueur.
Il en est cependant tout autrement. Gomme exemple, je

donnerai ici un problème qui nous a été posé il y a quelques
années, par un étudiant de l'Université de Varsovie, Werner
Mnich. Il demanda s'il existe trois nombres rationnels dont la
somme ainsi que le produit sont égaux à 1. Ce problème appartient

évidemment à l'arithmétique élémentaire, mais, malgré les

efforts des mathématiciens les plus éminents, il reste encore non
résolu.

Dans l'énoncé original de M. Mnich, le problème concerne les

nombres rationnels, mais il est facile de le transformer en
problèmes équivalents concernant les entiers.

Le problème de Mnich est, s'il existe trois nombres rationnels

w, p, (P, tels que
u + V -f W — uvw 1 (1)

Supposons que de tels nombres rationnels p, w existent.
m étant leur dénominateur naturel commun, on peut les

représenter sous la forme u -, p -, w -, x où x, y et z sontm1 m7 m7 ' ^
des entiers. Les équations (1) donnent alors

x y z m et xyz — m3

ce qui donne tout de suite

(x + y + z)3 xyz (2)

i) Cet article paraîtra en anglais dans le volume consacré à la mémoire de
J. Ginsburg.

La version française est augmentée de quelques détails.

L'Enseignement mathém., t. V, fasc. 4. 15
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Ainsi, s'il existe trois nombres rationnels satisfaisant aux
équations (1), il existe aussi trois entiers non nuls, satisfaisant
à l'équation (2), puisque xyz m3 > 0.

D'autre part, supposons qu'il existe trois entiers non nuls,
x, y,z, satisfaisant à l'équation (2). D'après (2), si les nombres

x, y, z sont non nuls, le nombre m x + y + 2 est non nul et,

d'après (2) on trouve m3 xyz ^ 0 et, en posant u ^
v —, w — nous aurons trois nombres rationnels. D'après

m1 m
x + y + 2 m et (2) on vérifie sans peine que les nombres u,
v et w satisfont aux équations (1).

Ainsi le problème de savoir s'il existe trois nombres rationnels
dont la somme et le produit sont égaux à 1 est équivalent au
problème s'il existe trois entiers non nuls et tels que le cube de

leur somme est égal à leur produit. Cette dernière question
concerne seulement les entiers.

On pourrait aussi démontrer que le problème de Mnich équivaut

au problème s'il existe trois entiers non nuls, x, y, z, tels

que x3 + y3 + z3 — xyz.
M. Mnich a aussi transformé son problème en d'autres

équivalents, notamment en le problème s'il existe des entiers a, b et c

tels que

S'il existe des nombres rationnels w, c, w satisfaisant à l'équation

(1), on a u j, v où k et r sont des entiers non nuls

et l et s sont des nombres naturels, et, d'après (1), on trouve
\ Ls * fa 7* 1/7*

w — 7- et, comme u + c + w 1, on trouve y- + ruv kr ' ' p ls
ls

+ — 1. En posant a kr, b Ir, c ls nous obtenons les

entiers a, b et c satisfaisant à l'équation (3).
D'autre part, si a, b et c sont des entiers satisfaisant à l'équation

(3), alors, en posant u c w ^ on obtient

évidemment des nombres rationnels satisfaisant à l'équation (1).
M. Mnich a enfin transformé son problème en le suivant qui

lui est équivalent:
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Existe-t-il un nombre rationnel r tel que toutes les racines

de l'équation
xz —: x2 + rx — 1 0 (4)

sont rationnelles
On démontre sans peine cette équivalence. D'après les

relations bien connues entre les racines d'un polynôme et ses

coefficients, si x±, x2 et x3 sont des racines du polynôme x3 — x2 + rx — 1,

on a
+ x2 + xz — 1 et x± x2xs 1 (5)

D'autre part, si les nombres rationnels x2 et xs satisfont
aux équations (5), le nombre r x1 x2 + x2 xs + x3 xi es^ rationnel

et on a pour tout x

(x — %) (x — x2) (x — xz) — x3 — x2 + rx — 1

et on en conclut que xx, x2 et x3 sont les seules racines de l'équation

(4).
Le problème de Mnich est de trouver trois nombres rationnels

dont la somme et le produit sont égaux à 1. Il se pose le problème
de savoir s'il en est de même pour deux ou pour quatre nombres
rationnels.

Existe-t-il deux nombres rationnels u et v tels que

U + Ç uçt s= 1

La réponse est négative. S'il existait de tels nombres u et e, on

aurait u + — 1, donc u2 -f 1 m, d'où l'on conclut que

u > 0, et on a (u — l)2 u2 — 2^+1 — u < 0, ce qui est
impossible. Or, comme l'a démontré un élève de l'Université de

Varsovie, André Schinzel, la réponse au problème de savoir s'il
existe quatre nombres rationnels h, e, w, t tels que

U + v + w + t t=s uvwt 1 (6)

est positive. Il a prouvé que les équations (6) ont une infinité de
solutions en nombres rationnels u, e, w, t. En effet, on vérifie
sans peine que les nombres

n2 1 n2 — 1 n2 — 1

où n est un nombre naturel > 1, satisfont aux équations (6).
M. A. Schinzel a démontré aussi que, pour tout nombre
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naturel s > 3 il existe une infinité de systèmes de s nombres
rationnels dont la somme et le produit sont égaux à 1.

Il est à remarquer que M. A. Schinzel a démontré que pour
tout nombre naturel s l'équation

x± + x2 + ••• + xs xx x2 Xs (7)

a au moins une solution en nombres naturels xx, x2, xs. Pour
s 2 on a la solution xx x2 2. Pour obtenir une solution
pour s > 2, il suffit de poser xx — x2 xs_2 »= 1, xs__{ 2,

xs — s. M. Schinzel a posé la question de savoir si le nombre
de toutes les solutions de l'équation (7) en nombres naturels xly
x2j xs croît indéfiniment avec s. Je ne sais même pas
comment on pourrait démontrer que, pour s suffisamment grand,
le nombre de ces solutions est > 1.

Nous avons vu que, dans l'état actuel de la science, nous ne
savons pas répondre à la question de savoir si l'équation (2) qui
est du troisième degré avec trois inconnues, a une solution en
entiers non nuls. On connaît aussi plusieurs autres équations très
simples du troisième degré avec trois inconnues dont nous ne
savons pas trouver toutes les solutions en nombres entiers.
Telle est, par exemple, l'équation

xz + yz + s3 3 (8)

Nous connaissons ici quatre solutions en nombres entiers,
notamment x y: z 1; x y.= 4, — 5; x 4,

y — -— 5, z 4; x — 5, y z 4. Mais nous ne savons

pas s'il existe d'autres solutions de notre équation en nombres
entiers, et même nous ne savons pas si le nombre de telles
solutions est fini ou non. On ne connaît aucune méthode pour
résoudre ce problème. Nous ne savons donc pas trouver toutes
les décompositions du nombre 3 en une somme de trois cubes de

nombres entiers et nous ne savons pas si le nombre de telles

décompositions est fini ou non.
Il est à remarquer que s'il s'agissait de trouver toutes les

décompositions d'un nombre naturel donné m en une somme de

deux cubes, ou, en d'autres termes, de trouver toutes les
solutions en nombres entiers x et y de l'équation x3 + ys m, on
sait que le nombre de ces solutions est toujours fini et on connaît
une méthode qui permettrait de les trouver toutes, si l'on effectue
des calculs nécessaires.
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D'autre part, il y a des équations du troisième degré à

deux inconnues dont nous ne savons pas trouver toutes les

solutions en nombres entiers. Telle est, par exemple, l'équation

X3 —y2 1

On a démontré que le nombre de toutes les solutions de cette

équation en nombres entiers x et y est fini, mais on ne sait pas

quel est ce nombre.
Les problèmes non résolus d'arithmétique peuvent être divisés

en deux espèces. Les problèmes de première espèce sont ceux
où l'on connaît une voie qui peut conduire à la solution définitive
du problème considéré, et la seule difficulté est que nous ne

sommes pas actuellement en mesure d'effectuer les calculs

nécessaires, à cause de leur longueur, même à l'aide des plus
grandes machines à calculer. Tous les autres problèmes non
résolus constituent la seconde espèce. Ce sont doncTes problèmes
où nous ne connaissons aucune voie pour les résoudre, même
abstraction faite de la longueur des calculs nécessaires.

Un problème de la première espèce est, par exemple, le
problème de trouver tous les diviseurs naturels du nombre 2101 — 1

| qui a 31 chiffres décimaux. Pour trouver tous les diviseurs
naturels de ce nombre, il suffirait de le diviser par les nombres
naturels 1, 2, 3, ne dépassant pas le nombre \/2101 — 1 et de

prendre en considération les diviseurs complémentaires. Pour
réduire le nombre de preuves, on pourrait aussi utiliser ici le
théorème d'après lequel tout diviseur naturel du nombre 2101 — 1

est de la forme 202k +1, où k est un entier non négatif. Mais
toutefois les calculs excèdent nos possibilités. Deux diviseurs de

notre nombre sont connus: 1 et 2101— 1. Or il est intéressant
qu'on a démontré l'existence d'autres diviseurs naturels de notre
nombre, tout au moins de deux autres, mais nous ne connaissons

aucune décomposition de notre nombre en un produit de
deux entiers > 1, quoiqu'on sache qu'une telle décomposition
existe. Cependant pour le nombre 2101 qui est un entier qui suit
2101 — 1, nous connaissons tous ses diviseurs naturels, qui sont au
nombre de 102: ce sont les 102 termes initiaux de la progression
géométrique 1, 2, 4, 8,..., 2100, 2101. Ainsi les difficultés pour étudier
les propriétés de deux entiers consécutifs peuvent être différentes.
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Un autre exemple de problèmes de la première espèce est de

trouver un nombre premier ayant mille chiffres. D'après le

postulat de Bertrand, démontré par Tchebycheff, on démontre
qu'il existe au moins trois nombres premiers ayant chacun un
millier de chiffres, mais on n'a encore trouvé aucun de ces

nombres. Le plus grand nombre premier connu, 22317 — la
969 chiffres.

Un nombre naturel étant donné, le problème de savoir s'il
est premier ou non, s'il n'est pas résolu, est toujours un problème
de la première espèce. Pour le résoudre, la méthode d'essais par
divisions suffirait, mais le nombre des divisions nécessaires peut
être très grand. Par exemple le problème de savoir si le nombre

13
Fi3 22 -f 1 qui a 2467 chiffres est premier ou non est un
problème de première espèce. F13 est le plus petit nombre de

Fermât Fn S2 -f- 1 dont nous ne savons s'il est premier ou non.
Comme on sait, P. Fermât supposait que tous les nombres

Fn, où n — 1, 2, sont premiers. Tels sont les nombres Fn

pour n 1, 2, 3 et 4, mais, comme on l'a démontré plus tard,
les nombres Fn sont composés pour 5 < 7i < 12. A présent nous
connaissons 35 nombres Fn composés dont le plus grand est le

nombre F1945 qui a le facteur premier 5.21947 -j- 1. Cependant le

problème de savoir s'il existe une infinité de nombres Fn composés

est un problème de seconde espèce. Il en est de même du
problème de savoir s'il existe une infinité de nombres de Fermât
premiers.

Un exemple d'un problème de première espèce est de trouver
une décomposition du nombre 100 en une somme d'un nombre

fini de fractions distinctes de la forme —, où n est un entier
n1

positif. (On appelle parfois ces fractions, fractions primaires.)
On connaît une méthode qui fournirait une telle décomposition
après certains calculs, mais à cause de la longueur de ces calculs
il est actuellement impossible de la trouver. On a prouvé que
dans chaque décomposition du nombre 100 en une somme d'un

nombre fini de fractions distinctes —, où n est un nombre naturel,n1 '

le nombre de termes a au moins 30 chiffres.

Il est arrivé qu'un problème de première espèce soit ensuite
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résolu. Tel fut le cas du problème de savoir si les nombres F10

et F16 sont premiers. Il y a quelques années on a démontré qu'ils
sont composés et on a trouvé pour chacun de ces nombres le plus

petit facteur premier. Le développement complet en facteurs

premiers de chacun de ces nombres reste cependant comme

problème de première espèce.

Il y a aussi eu des cas où un problème de seconde espèce a

été résolu. Il y a quelques années il en fut ainsi du problème de

savoir s'il existe des entiers n > 1 pour lesquels le nombre

n. 2n + 1 est premier. Les nombres de cette forme sont appelés
nombres de Gullen. Récemment on a trouvé le plus petit de tels
nombres premiers, à savoir pour n 141.

Il est aussi arrivé qu'un problème de seconde espèce soit
devenu problème de première espèce. Il en fut ainsi du problème
de savoir si tout nombre impair > 7 est une somme de trois
nombres premiers impairs. Ce problème était de seconde espèce

jusqu'au moment où J. Winogradow a démontré que tout
nombre impair > a 3316 est une somme de trois nombres
premiers impairs. Pour un nombre impair donné, le problème
de savoir s'il est ou non une somme de trois nombres premiers
impairs est évidemment de première espèce. Il suffirait donc de

vérifier si tout nombre impair > 7 et ^ a est une somme de

trois nombres premiers impairs.
Le problème de savoir s'il existe une progression arithmétique

formée de cent nombres premiers distincts est de seconde
espèce. La plus longue progression connue, formée de nombres
premiers distincts est celle qui a douze termes, dont le premier
est 23143 et dont la différence est 30030; elle a été trouvée par
W. A. Golubieff.

On a démontré l'existence d'une infinité des progressions
arithmétiques croissantes formées de trois nombres premiers,
mais nous ne savons pas s'il en est de même pour les progressions

formées de trois nombres premiers consécutifs pn, pn+i,
Pn+2 (où Pn désigne le n-ième nombre premier), par exemple
47, 53, 59.

Un autre exemple de problèmes de seconde espèce est s'il
existe, sauf les nombres 2, 5 et 257, un nombre premier de la
forme nn + 1, où n est un nombre naturel.



228 W. SIERPINSKI

Nous ne savons pas non plus s'il existe, sauf les nombres 2

et 17, des nombres premiers de la forme nnU + 1, où n est un
nombre naturel. On peut démontrer que si un tel nombre premier
existe, il a plus d'un milliard de milliards de chiffres, notamment

19
qu'il est > 1010 Si l'on risquait l'hypothèse que de tels nombres
premiers n'existent pas, il en résulterait tout de suite l'existence
d'une infinité de nombres de Fermât composés: en effet, tels

seraient tous les nombres Fn, où n — m + 2m+^m et m — 1, 2,

puisqu'on aurait alors Fn kkk -f- 1, où k — 22.
De seconde espèce est aussi le problème de savoir s'il existe

une infinité de nombres premiers de Mersenne: Mn 2n— 1.

Actuellement on connaît 18 de ces nombres qui sont premiers
et dont le plus grand est M3217. De seconde espèce est aussi le

problème de savoir s'il existe une infinité de nombres premiers p
pour lesquels le nombre 2P — 1 est composé. Nous ne savons pas
non plus s'il existe une infinité de nombres naturels n pour
lesquels le nombre 2n — 1 n'est pas divisible par le carré d'un
nombre naturel >1.

De seconde espèce sont encore les problèmes suivants:
Existe-t-il une infinité de nombres premiers dont tous les

chiffres décimaux sont égaux à 1

Existe-t-il une infinité de nombres premiers de la forme
x2 + 1, où x est un entier

Existe-t-il une infinité de nombres premiers de la forme
n + où n est un nombre naturel Nous ne savons pas si le

nombre 27 + 1 est un nombre premier, mais ce problème est

évidemment de première espèce. Or on démontre sans peine
qu'il existe une infinité de nombres composés de la forme n -F 1-

Existe-t-il au moins un nombre pair > 2 qui ne soit pas une
somme de deux nombres premiers

En 1742 Ch. Goldbach a exprimé l'hypothèse que la réponse
à cette question est négative. On a énoncé même une hypothèse
plus forte, c'est que tout nombre pair > 6 est une somme de

deux nombres premiers distincts.
Peut-on représenter tout nombre pair comme une différence

de deux nombres premiers d'une infinité de manières Nous ne

savons même pas si le nombre 2 peut être représenté d'une
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infinité de manières comme différence de deux nombres premiers,

en d'autres termes, s'il existe une infinité de nombres premiers

jumeaux. Nous ne savons pas non plus si tout nombre pair est la
différence de deux nombres premiers.

N'existe-t-il, pour tout nombre naturel m, qu'un nombre

fini de systèmes de nombres premiers petq> p, oùq — p < m?
Ce problème est équivalent au problème de savoir si la différence

entre deux nombres premiers consécutifs croît indéfiniment avec

ces nombres.
Est-il vrai que, pour tout nombre naturel n > 1, il existe

entre n2, et n2 + n au moins un nombre premier
Existe-t-il une infinité de nombres naturels n, tels que les

nombres n et n + 1 ont le même nombre de diviseurs naturels,
respectivement la même somme de tous leurs diviseurs naturels

Existe-t-il une infinité de nombres premiers p tels que pour
tout nombre naturel n < p — 1 le reste de la division du nombre
2n par p est distinct de 1

Existe-t-il une infinité des nombres naturels composés n tels

que pout tout entier a le nombre an — a est divisible par n
Il est à remarquer qu'on sait démontrer que, pour tout entier a

il existe une infinité de nombres naturels n tels que le nombre
an — a est divisible par n. Or, on ne sait pas s'il existe une
infinité de nombres naturels composés n tels que les nombres
2n — 2 et 3n — 3 sont divisibles par n.

Existe-t-il une infinité de nombres naturels n tels que le
nombre 2n — 2 est divisible par n2

Existe-t-il un nombre naturel impair n dont la somme de

tous les diviseurs naturels est égale à 2^
Existe-t-il un nombre naturel n dont la somme de tous les

diviseurs naturels est égale à 2n + 1

Deux nombres naturels distincts m et n sont appelés amiables
si la somme de tous les diviseurs naturels de chacun est égale à

m + n. Par exemple les nombres 220 et 284 sont amiables.
Existe-t-il une infinité de paires de nombres amiables
Existe-t-il une paire de nombres amiables dont l'un soit pair

et l'autre impair
Existe-t-il un nombre composé n qui divise le nombre

ln_1 + 2"-1 + + (n —l)"-1 + 1 En 1950 G. Giuga a
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exprimé l'hypothèse que la réponse à ce problème est négative.
Il a vérifié cette hypothèse pour tous les n < 101000.

Existe-t-il un nombre naturel n > 7 pour lequel le nombre
n + 1 soit un carré On connaît trois de ces nombres < 7,

notamment 4, 5 et 7.

Plusieurs problèmes de seconde espèce concernent la solution
des équations en nombres entiers. Par exemple:

Existe-t-il au moins une solution de l'équation

+ yz + z3 30

en entiers x, y, z

Existe-t-il une solution en nombres naturels x2, x1 du
système de quatre équations du second degré à sept inconnues :

r2 i ~2 r2 2 2 _ 2 2 i 2 — 2
-|- ^2 — x4 5 \ x3 — «^5 J ^ 3 — 6 '

9 9 9 9 ^
^1 + x2 + xî ^7 *

Le sens géométrique de ce problème est le suivant: Existe-t-il
un parallélépipède rectangulaire tel que les longueurs de ses

côtés, de ses diagonales et de sa diagonale intérieure s'expriment
par des nombres naturels

Existe-t-il une infinité de nombres naturels a pour lesquels
l'équation

a2 x2 + y (y + i)

n'a pas de solutions en nombres naturels x, y? Récemment
M. A. Birman a démontré que ce problème équivaut au
problème de savoir s'il existe une infinité de nombres premiers de

la forme n2 1, où n est un nombre naturel. Il a démontré aussi

que le problème de savoir s'il existe une infinité de nombres
naturels a > 1 pour lesquels l'équation

a2 x2 — y (y + 1)

n'a pas de solutions en nombres naturels x, y sauf la solution
triviale x a2, y a2 — 1, est équivalent au problème de

savoir s'il existe une infinité de nombres premiers jumeaux.
Existe-t-il pour tout nombre naturel n > 1, des nombres

naturels x, y, 2, tels que

n x y z
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Mon hypothèse que la réponse en est positive fut vérifiée en 1958

par G. Palama pour tous les nombres naturels n tels que
4

1 < n < 922321. Un problème analogue pour les nombres — fut

posé, il y a plusieurs années, par P. Erdös.
Est-il vrai que l'équation x4 + y4 + z4 t4 n'a pas de solutions

en nombres naturels xi y, z, ê, ce qui était une hypothèse d'EuLER

Est-t-il vrai que tout nombre naturel est une somme de

quatre cubes de nombres entiers

Il y a quelques années, j'ai énoncé une hypothèse plus forte,
à savoir que tout nombre entier peut être représenté d'une
infinité de manières sous la forme x* + Vs — $ — $•> où x1 y, z

et t sont des nombres naturels. Cette hypothèse fut vérifiée pour
tous les nombres naturels < 350, sauf 148 et 284, et aussi pour
une infinité d'autres. Or il est facile de démontrer que tout
entier peut être représenté d'une infinité de manières comme
une somme de cinq cubes des nombres entiers. Cela résulte tout
de suite de la remarque que, d'après l'identité 6k (k -f- l)3
+ (k — l)3 + (— k)s + (— /c)3, tout entier divisible par 6 est
une somme de quatre cubes d'entiers et que, pour t et n entiers,
chacun des nombres 6t + r — (6n + r)3, où r 0, 1, 2, 3, 4, 5,
est divisible par 6.

Est-il possible de représenter comme une somme de trois
cubes de nombres entiers tout nombre naturel qui, divisé par 9,
donne un reste distinct de 4 et de 5

Est-il possible de représenter tout nombre naturel sous la
forme x3 + y2, + 2z3, où x, y et z sont des entiers Le plus petit
nombre naturel dont on ne sait pas s'il est de cette forme est 76;
le suivant est 99.

Existe-t-il des nombres naturels n, x, y, z tels que n > 2 et
xn + yn — zn

P. Fermât affirmait, sans avoir donné de démonstration,
qu'il n'existe pas de tels nombres. Cela est à présent démontré
pour tous les exposants n tels que 2 < n < 4002, et pour une
infinité d'autres n. La démonstration pour n 3 est difficile;
elle est plus simple pour n — 4.

Existe-t-il, sauf 8 23 et 9 32, deux nombres naturels
successifs dont chacun soit une puissance d'un nombre naturel
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avec un exposant > 1 Catalan a exprimé l'hypothèse qu'il
n'y a pas de tels nombres.

Existe-t-il trois nombres naturels successifs dont chacun soit
une puissance d'un nombre naturel avec un exposant > 1 On
démontre sans peine qu'il n'existe pas quatre de ces nombres
naturels successifs.

Est-il vrai que pout tout nombre naturel m il existe seulement

un nombre fini de systèmes d'entiers > 1, x, y, z, t
satisfaisant aux inégalités 0 < xv — zl < m En 1945 S. Pillai a

exprimé une hypothèse qui est équivalente avec celle que la
réponse à ce problème est positive.

Soit n un nombre naturel > 10 dans le système décimal.
Est-il toujours possible de remplacer deux de ses chiffres par
d'autres chiffres de sorte qu'on obtienne un nombre premier
Il est à remarquer qu'il n'est pas toujours possible de changer
un seul chiffre d'un nombre naturel de. sorte qu'on obtienne un
nombre premier. On peut démontrer que 200 est le plus petit
nombre dont on n'obtient jamais un nombre premier, en
changeant un seul chiffre.

Existe-t-il trois entiers impairs > 1, x, y, z tels que xx yv zz?

Est-il vrai que si x, y et £ sont des nombres naturels > 1 tels

que xx yv 'zz, alors x et y ont les mêmes diviseurs premiers
Ce problème fut posé par A. Schinzel.

On a démontré que tout nombre rationnel positif dont le

dénominateur est impair est une somme d'un nombre fini de

fractions distinctes, de la forme —, où n est un nombre naturel
n1

impair. Or nous ne savons pas si le procédé suivant, proposé par
S. Stein en 1955 amène toujours à une telle décomposition.

Etant donné un nombre rationnel positif r avec un dénominateur

impair, déterminons le plus petit nombre naturel im-

pair w1? tel que r > —. En supposant que nous avons déjà déter-
ni

miné les nombres ft2. nk, déterminons le plus petit nombrelllinaturel impair nk+i, tel que r > Le pro-nk ni+k
blême posé par S. Stein est de savoir si, en procédant ainsi, on
arrive toujours après un nombre fini s de pas, à l'égalitéil ilr — —, qui donnerait la décomposition

nx n2 tïs_1 ns' ^ r
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cherchée du nombre r en une somme d'un nombre fini de

fractions distinctes où ndésigne des nombres naturels impairs.

Il y a quelques années, j'ai posé le problème suivant: étant

un nombre naturel > 1, rangeons les nombres 1, 2, 3, n?-en

n lignes, n nombres dans chaque ligne:

1,2, 3,..., n
71 -j- 1, Yl -|- 2, 271

2n -f- 1,Sn
(n — 1) n -f 1, •••, n2

Est-il vrai qu'on trouvera toujours au moins un nombre

premier dans chaque ligne
La première ligne contient évidemment (pour n > 1) le

nombre premier 2. La proposition que la deuxième ligne contient
toujours (pour n > 1) au moins un nombre premier équivaut au
théorème qui a été démontré il y a plus d'un siècle par Tcheby-

cheff, notamment que pour n > 1 il existe au moins un nombre

premier entre n et 2ft. On peut aussi démontrer que, pour n > 9,

chacune des neuf premières lignes de notre table contient au
moins un nombre premier.

André Schinzel a vérifié à l'aide des tables de Western

que pour n < 3000 la réponse à notre problème est positive.
Il est à remarquer que de l'hypothèse que chacune des deux

dernières lignes de notre table contient au moins un nombre
premier, il résulte tout de suite qu'entre deux carrés consécutifs
de nombres naturels ils existe toujours au moins deux nombres

premiers. Or, on n'a pas encore démontré cela. Une autre
conséquence facile de l'hypothèse dont nous parlons est qu'entre
deux cubes successifs de nombres naturels il existe toujours au
moins deux nombres premiers. Or il est à remarquer qu'en 1947

W. H. Mills a démontré que pour les nombres naturels n
suffisamment grands il existe entre ns et (n + l)3 au moins un nombre
premier.

A. Schinzel a exprimé l'hypothèse que si k est un nombre
< n et premier avec ft, la /c-ième colonne de notre table contient
au moins un nombre premier. M. Gorzelewski a vérifié que
cela est vrai pour n < 100.
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De l'hypothèse que (pour n > 1) toute ligne de la table (1)
contient au moins un nombre premier, on déduit sans peine
qu'entre deux nombres triangulaires consécutifs il existe toujours
au moins un nombre premier, en d'autres termes, si l'on écrit
successivement les nombres naturels en lignes, n nombres dans
la ft-ième ligne

l
2, 3

4, 5, 6

7, 8, 9, 10

11, 12, 13, 14, 15

alors chaque ligne à partir de la deuxième contient au moins un
nombre premier. On ne sait pas si cela est vrai.

A. Schinzel a énoncé récemment une hypothèse plus forte
que l'hypothèse sur la table dont nous avons parlé. C'est l'hypothèse

suivante:
Si x est un nombre réel > 117, il existe au moins un nombre

premier entre x et x + <\/x.
A. Schinzel a vérifié son hypothèse pour tous les nombres x

tels que 117 < x < 107. Il est à remarquer que Legendre a

exprimé l'hypothèse que pour les nombres x suffisamment grands,
il existe au moins un nombre premier entre x et x + V^-

Une autre hypothèse de A. Schinzel est que pour tout
nombre réel x > 8 il existe au moins un nombre premier entre x
et x + (log x)2. Si l'on désigne par pn le ft-ième nombre premier,
et si l'on pose ici, pour n > 4, x pw on obtient l'inégalité
/?n+1 — pn < (log pn)2, qui est plus forte que l'hypothèse de

H. Cramer sur la différence pn+l — pn de l'année 1937, énoncée
à la page 24 du volume 2 du journal Acta Arithmetica paraissant
en Pologne.

En 1957 A. Schinzel a énoncé encore une autre hypothèse
sur les nombres premiers (qui a paru dans le volume IV des Acta
Arithmetica).

Soit s un nombre naturel donné et soient f1 (x), /2 (x),..., /s (#)
des polynômes en x aux coefficients entiers où le coefficient de

la plus grande puissance de x est positif. Nous dirons que les

polynômes f1 (x), fs (#) satisfont à la condition S s'ils sont
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irréductibles et s'il n'existe aucun entier > 1 qui, pour tout
x entier, soit un diviseur du produit f1 (x) f2 (x) fs (x).

L'hypothèse H de A. Schinzel est la suivante:
H. Soit s un nombre naturel et f± (x), /2 (x), fs (x) une

suite de polynômes aux coefficients entiers, où le coefficient de la

plus grande puissance de x est positif. Si ces polynômes satisfont
à la condition S, il existe une infinité de nombres naturels x pour
lesquels chacun des nombres f1 (x), /2 (#), fs (x) est premier.

De l'hypothèse H de A. Schinzel résultent sans peine
plusieurs conséquences, par exemple celle que tout nombre entier
peut être d'une infinité de manières représenté comme différence
de deux nombres premiers consécutifs. Une autre conséquence
de l'hypothèse H est qu'il existe des progressions arithmétiques
aussi longues que l'on veut, formées des nombres premiers
consécutifs. Une autre conséquence est celle qu'il existe pour
tout nombre naturel m une infinité de nombres naturels x pour
lesquels le nombre x2 + m est premier.

Voici encore deux problèmes non résolus:
Est-il vrai que dans le développement décimal du nombre

\/2 le chiffre 1 se trouve une infinité de fois
Est-il vrai que dans le développement décimal du nombre iz

la suite formée de chiffres consécutifs 123456789 se trouve au
moins une fois

Il y a beaucoup d'autres problèmes non résolus d'arithmétique.

Leur nombre augmente toujours, puisqu'on pose plus
rapidement les nouveaux problèmes qu'on ne résout les anciens
parmi lesquels il y a des problèmes posés il y a quelques centaines
d'années et encore non résolus.1) Or notre connaissance de
l'arithmétique consiste non seulement à savoir ce qui est déjà établi,
mais aussi à savoir quels sont les problèmes importants qui ne
sont pas encore résolus.

Lorsque j'ai dit cela à ma conférence à l'Université de Rennes, le professeur
Antoine a dit qu'alors il y aurait des problèmes qui ne seraient jamais résolus. J'ai
répondu que cela pouvait naturellement arriver, mais que si l'humanité existait un
temps infini, il pourrait aussi arriver cette situation paradoxale que le nombre des
problèmes non résolus croisse indéfiniment et que néanmoins chaque problème soit
résolu en son temps. En effet, imaginons qu'on pose chaque année dix problèmes, tous
numérotés au moyen des nombres naturels consécutifs et qu'on résolve chaque année
un seul problème: celui des problèmes posés jusqu'à ce moment qui a le numéro le plus
petit. (Par exemple, après dix années seront posés les problèmes 1, 2, 3, 100 et résolus
les problèmes, 1, 2, 10). Le problème numéro n sera donc résolu après n années.
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