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A SPECIAL CASE OF RUMMER'S CONGRUENCE

(mod 2e)

by L. Carlitz, Duke University, Durham

(Reçu le 30 janvier 1959.)

Put

Sillh «
" 2 D2n (2n) • D2n+1 0 ' ^

1

where [3, p. 27-28]

m 4- 1 \n (D ^ ^ (n — t)
' ~\0 (^ < 1);

also
Dn (2B 4- l)n (2 — 2n) Bn (2)

and Bn is defined by
oo

X'

j
0

The first few values of D2n are

1 7 21 127
D0 I,D2 -|, D4 ^, D6 — D8 —

If we define

An (D2 _l)n 2 (_ 1)"- (4 D2r (3)

r=0

we find that
22 25 29 211

A° 1 ' Al ^ 3~ ' Aa
15 ' As

105 ' A*
105 *

(Compare [1, p. 821].)
By the second part of (2), both numerator and denominator

of D2n (in reduced form) are odd. Moreover by the Staudt-
Clausen theorem for the Bernoulli numbers Bn, we have

/ — 1 (mod p) (p — 1 I 2ti)
2n 1 0 (mod p) (p — Id 2ti) '
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where p is any odd prime. Thus the denominator of An can be
determined (see below). The numerators of An for 0 > n > 4

are all powers of 2. However this is really too good to be true;
indeed we find that

215 217.191
A5

3.7.11 ' 6 3.5.7.11.13

It may be of interest to determine the highest power of 2

dividing An. A result of this sort is analogous to Rummer's

congruences for the Bernoulli or Euler numbers [2, Chapter 14];
however the standard results on Rummer's congruences are
restricted to odd moduli.

It is convenient to first transform An. We have, using the

symbolic notation,

'An (D2 — l)n ((2B + l)2 — l)n (4B2 + 4B)n 4n (B2 + B)n

and therefore
n -,

n

r
A» 22nS (")Bn+r (4)

r= 0

Since 2B2r 1 (mod 2) it follows readily that the denominator
of

S (") B»+,
r+0

X '

(in reduced form) is odd. Consequently

An 0 (mod 22n) (5)

Incidentally (4) is a bit more convenient for computation than
(2). For example

215
A5 210 (5B6 + 10B8 + B10) - 3-^
A6 ~ 212 (B6 + 15Bg + 15B10 + B12)

ftl9/l 15 75 691 \ 217.191
_ \42 30 + 66 27302 ~ 3.5.7.11.13 "

The congruence (5) can be improved. We make use of the

explicit formula

B« s r+i s <

r= 0 s 0

s"



A SPECIAL CASE OF RUMMER'S CONGRUENCE 173

whicli yields

(B2 + B)» 2 2 2 (- !)S (I) <s + vf (6)

r=0 s=0,

However allowance must be made for the denominator r -T 1.

Clearly the highest power of 2 contained in r -f 1, where
0 < r < 2ft, is at most 2e, where e is determined by

2e < 2n < 2e+1 (7)

Hence by (4) and (6),

An 0 (mod 23n-e) (8)

This result also can be improved for n > 2. Suppose first
that ft is even and let

I ^2fe+1 ^ (k > i) (9)

Then for arbitrary odd u we have

un 1 (mod. 2/i+2) • (10)

S3. S/'-)=_S (;) (0 < / < 3)
s—? (mod 4) \

Put

_ g.(c) 2
s=j (mod 4)

It is easily verified that

2 (S,-S,) (1 + i)r~l (1 - i)r_1 •

Hence for r odd

s o _ { 0 (r 3 (mod 4))
1 (— l)1^"1) 2i;2(m) (r 1 (mod 4))

'

Since s (s -f- l)/2 is odd if and only if «9 1 or 2 (mod 4), it
follows from (10) that (n>2)

' r
S 2 (— l)s (g) (Is (« + I})" S2 — Sx (mod 2ft+2)

and therefore

S 0 (mod 2fe+2) (,- ~ 3 (mod 4)J (11)

8 0 (mod (2/i+2? 22^r ^)) (r 1 (mod 4)) (12)

Now when r 1 (mod 4), r + 1 is divisible by 2 but not
by 22; hence the term S/(r + 1) is integral (mod 2) provided



174 L. CARLITZ

r > 1. When r 3 (mod 4), let 2er denote the highest power
of 2 dividing r + 1. Then it follows from (11) that S/(r + 1)

is of the form 2k+2 6fA, where A is integral (mod 2). The least
favorable case arises when er has its maximum value e as
determined by (7). We have therefore

An 0 (mod 23n~e+fe+2) (13)

provided jfc + 2 > e; when h -f 2 < e we have

An 0 (mod 23n_1) (14)

since for example the term r — 1 has denominator 2.

In the next place for n odd, let

2k I n — 1 2k+l d 7i — 1 (/c > 1) ;

Then (10) is replaced by
,.71—1 __ a lrnnrl ok + 2\

where u is odd. Put
l

s=j(mocl4)

a(»-2) - o(r-l)- (;)
Thus

T, - T2 (^) (S<r"2) — S^2)) + r (s- S<M)

i(J){(i + irl-(i- ^r1} + ~ {(i + if + »1 -
Simplifying we get (for r >3)

-r (r + 1) 2*(r~1) iè(r+1> Ir 3 (mod 4))

Ti — T2
4

ir m 1 (mod 4)).

Also n>3)

T
s=0

V

2(_ 1)8 («) (Is (s + 4))n s Ta ~Ti (mod 2*+2)

and therefore in particular

T 0 (mod (2*(r-1) 2^+2)) (r 3 (mod 4)) (15)
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As in the case n even, it will suffice to take r 3 (mod 4). Let
2&r denote the highest power of 2 dividing r + 1, and consider

2~er j por ^ ^ 2, we get the exponent — 1 ; for er > 3 it
follows that y (r — 1) > er. Hence if ft + 2 < we get the

exponent ft + 2 — er, while if ft + 2 > er we again get — 1

(at most). Consequently

An 0 (mod 23n"e+fe+2) (A: + 2 < er) (16)

An 0 (mod 23n_1) (k + 2 > er) (17)

Comparing (16) and (17) with (13) and (14) we may. accordingly

state the following

Theorem. Let 2e < 2n < 2e+i and let 2h denote the highest

power of 2 dividing n or n — 1 according as n is even or odd.

Then An as defined by (1) and (3) satisfies (16) and (17).
Applying the Staudt-Clausen theorem, it follows from (3)

that

where p Im, + 1 is an odd prime. It can be shown that
2 (p — 1 I re)

(- l)n~m (rnm) ^(7)(P -1 I « + k, 0 < <VZ-J
r>0

0 otherwise.

In particular the prime factors of the denominator of An are
simple and cannot exceed 2ra + 1.

In connection with formula (4) above it may be of interest
to cite the formula [2, p. 189]

(_ 1)n 2 !ra!... 0.
r= 0 + r + 1

1

2 (2n + 1)
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