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A SPECIAL CASE OF KUMMER’S CONGRUENCE
(mod 2¢)

by L. Carritz, Duke University, Durham

(Recu le 30 janvier 1959.)

Put
a8 o 2
sinh z ; Dan (2n)1° Doney =0 2
' where [3, p. 27-28]
; n__ a2 (n =1)
(D+1) (D 1) —‘lO (n<,1)’
- also ;
| D" = (2B +1)" = (2 — 2" B, (2)
~ and B,, is defined by
i r__S'B, x_?": .
et —1 0 -
The first few values of D,, are
| 1 7 31 12 |
D0:17D2=—_§’ D4=Ra D6:ﬂa DS"T;
x If we define
" n
| Ap = (D2 — 1" = SV (g (r) D,, (3)
r=90
we find that
B B 2_2 B g B 99 : B 911 %
AO‘"‘ia Al’_37 Az_‘lSa As““m_f)> A4—T6'5
(Compare [1, p. 821].)
By the second part of (2), both numerator and denominator
of Do, (in reduced form) are odd. Moreover by the Staudt-
Clausen theorem for the Bernoulli numbers B,, we have
pD _[—1 (modp) (p—1]2n)
1 0 (modp) (p—1+%2n)°
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where p is any odd prime. Thus the denominator of A, can be
determined (see below). The numerators of A_ for 0> n> 4
are all powers of 2. However this is really too good to be true;
indeed we find that

| ot 279

3.7.11° ° 7 8.5.7.11.13 "

Ay = —

It may be of interest to determine the highest power of 2
dividing A,. A result of this sort is analogous to Kummer’s
congruences for the Bernoulli or Euler numbers [2, Chapter 14];
however the standard results on Kummer’s congruences are

restricted to odd moduli.
It is convenient to first transform A, . We have, using the

symbolic notation, )
An — (Dz _ 1)n _— ((2B _|_ 1)2 - /1)’71 — (4B2 + 4B)?’L — /in (Bz _+_ B)’n

-and therefore

A, = 22n éﬂ (’;) B, . (4)
Since 2B, = 1 (mod 2) it follows readily that the denominator
of
S ()

r+0
(in reduced form) is odd. Consequently
A, =0 (mod 2*") . | (5)

Incidentally (4) is a bit more convenient for computation than
(2). For example
915
3.7.11°
A, = 212 (Bg + 15B, + 15B; + Byy)

1 15 75 691)_ 217 191
"~ 3.5.7.11.18 °

As = 210 (5Bg + 10Bg + Byy) = —

N 12(15_3_6+6'6—2730
The congruence (5) can be improved. We make use of the

“explicit formula
n r

Bn=2r—_%—'12 (_ 1)3<2>311,

r=_0 =0

w
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which yields

(B: + B)" = 2”’2;—1—1 éﬂ(— " (7) (s ts+0)" - o)

However allowance must be made for the denominator r 4 1.
Clearly the highest power of 2 contained in r ++ 1, where
0 <r < 2n, is at most 2°, where e is determined by
2¢ < 2n < 20t (7)
Hence by (4) and (6),
A, = 0 (mod 2377 . (8)

This result also can be improved for n > 2. Suppose first.

that n 1s even and let
ok [ nottlyn (k> 1). (9)
Then for arbitrary odd u we have

u" = 1 (mod 2*t?) : (10)
Put

S=80= 2 (I) p<j<s).
§=j (mod 4)

It is easily verified that

o~

208, —8) =@+ + (1 —gTt.
Hence for r odd

3 (mod &))
1 (mod 4))

0 (r
(_ 1)1/4(7'—1) 21/2(7'—'1) (’,,

l

(
S =8 =1

I

Since s (s -+ 1)/2 is odd if and only if s =1 or 2 (mod 4), it
follows from (10) that (n > 2)

5= g () (gee )" =8 —8 (mod 2++2),

and therefore
S = 0 (mod 2*%?) (r = 3 (mod 4)) , (11)
S = 0 (mod (2*** 28 ™Dy (» = 1 (mod 4)) . (12)

Now when r =1 (mod 4), r 4 1 is divisible by 2 but not
by 2%; hence the term S/(r 4 1) is integral (mod 2) provided
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r>1. When r=3 (mod 4), let 2 denote the highest pOWer
of 2 dividing r + 1. Then it follows from (11) that S/(r + 1)

1s of the form 2h+2_e’”A, where A is integral (mod 2). The least
favorable case arises when e, has its maximum value e as deter-
mined by (7). We have therefore

provided £ + 2 > e; when £ + 2 < e we have
A, = 0 (mod 23" | (14)

since for example the term r =1 has denominator 2.
In the next place for n odd, let |

2k | n—1, 22l yn—1 (k>1);
Then (10) is replaced by |
w1 =1 (mod 281?) |

where u is odd. Put
| 1 -
T, = T,V = — _Z- (") s (5 - 1)
2 s=j(mod4) § |
PN Qr2) -, (r-1)
= (2) Site S
Thus
AW (r-2) (r-1) (1)
T, — T, = (2) (sg — g ) +or (SO 8 )

=i () + it —a—} + L {o+ o+ a—i}.

Simplifying we get (for r > 3)

r%r (r + 1) 28D J30HD (0 — 3 (mod 4))
T]_ - T2 = ’ | ' |
| —;—7“ (Zi)%(ffi) (r =1 (mod &)).

Also (n > 3)

T

I

0 (— 1)8 (Z) <%s (s + 1))” = T, — T, (mod 2*7?)

8=
and therefore in particular

= 0 (mod (2} 2F+?) (r = 3 (mod 4)) . (15)
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As in the case n even, it will suffice to take r = 3 (mod 4). Let
9°r denote the highest power of 2 dividing r + 1, and consider
27 T. For e, < 2, we get the exponent — 1; for ¢, > 3 it
follows that —12—(7' — 1) >e. Hence if k + 2 < ¢,, we get the

e

exponent %k -+ 2—e, while if £ + 2 >e, we again get —1

(at most). Consequently

A,
A,

lll

0 (mod 2°™¢Th+?) (k+2 <e) , (16)
0 (mod 2°™ ) (k+2>e¢). (17)

Hl

Comparing (16) and (17) with (13) and (14) we may. accord-
ingly state the following

TuEOREM. Let 28 < 2n < 2°7' and let 2% denote the highest

power of 2 dividing n or n — 1 according as n is even or odd.
Then A, as defined by (1) and (3) satisfies (16) and (17 ).
Applying the Staudt-Clausen theorem, it follows from (3)

that

_‘
A, ————_.' n—rm( )modp ,
r>0

where p = 2m + 1 1s an odd prime. It can be shown that
2 (p—11n)

Y yn-rm (rm> (’;:) p—1fn+k0<hk<m
0 otherwise.

In particular the prime factors of the denominator of A, are
simple and cannot exceed 2n + 1.

In connection with formula (4) above it may be of interest
to cite the formula [2, p. 189]

e B Il
4N n n+r+1 nin! L
| 1)2(7‘>n+r—|—1+2(2n—{-1)!—0'
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