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POINTS RATIONNELS SUR CERTAINES COURBES
ET SURFACES CUBIQUES

par F. CHATELET, Besangon

(Regu le 31 juillet 1959.)

La recherche des points & coordonnées rationnelles (en abrégé
points rationnels) sur une variété algébrique est un probleme
mathématique trés ancien; on en trouve des exemples dans les
ceuvres de Diophante au 111e siécle de notre ere. Ce probleme a
fait Pobjet de travaux de mathématiciens les plus célebres, tels
Fermat, Euler, Lagrange, Gauss, Hilbert, Poincaré. Pourtant il
n’est entiérement résolu que pour des variétés tres particu-
lieres [1].

1. L’étude des points rationnels sur certaines courbes
cubiques a été abordée par de nombreux auteurs depuis Fermat.
Mais ¢’est seulement H. Poincaré [2] qui a proposé une méthode
générale qui s’applique & toutes les courbes de genre un. Cette
méthode a été perfectionnée par L. J. Mordell et A. Weil [3];
pourtant, comme nous le préciserons ultérieurement, elle ne
permet 'étude compléte des points rationnels sur ces courbes
que dans des cas particuliers.

La méthode de Poincaré, Mordell et Weil nécessite en général
Putilisation des propriétés des idéaux de nombres d’un corps
algébrique convenable. Toutefois, l'utilisation de tels idéaux
peut étre évitée pour une catégorie relativement importante de
cubiques, les cubiques de la forme:

y: =z (2 + Czx + D)

ou G et D sont des nombres rationnels donnés, z et y sont les
coordonnées rationnelles cherchées. On trouvera un exposé
élémentaire et détaillé de ce cas dans un mémoire récent de
A. Buquet [4]. Pour simplifier un peu I'exposé, nous considérons
seulement dans ce mémoire le cas plus particulier des cubiques
de la forme:

y: =z (x — ay) (z — a,)
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154 F. CHATELET

ou a, et a, sont des nombres rationnels donnés. Sans entrer dans
le détail des démonstrations, nous rappelons d’abord les résultats
essentiels concernant les points rationnels sur ces courbes.
La représentation d’'une cubique de genre un par des fonc-
tions elliptiques permet d’introduire une composition entre les
points de cette cubique: le composé, ou somme, de deux points
de la cubique est le point dont Vargument elliptique est la
somme des arguments des deux points composants. Cette défi-
nition peut encore étre traduite par une condition géométrique:
le composé de trois points alignés est indépendant de la droite.
qui joint ces points. La composition ainsi définie dépend du
choix de la représentation par fonctions elliptiques ou du choix
de la somme de trois points alignés. Si cette somme est un point
rationnel, I’ensemble des points rationnels sur la cubique forme
un groupe additif. En particulier, pour les cubiques C de la forme:

y: =z (x—ay) (x — ay) ,

on peut choisir pour somme de trois points alignés le point &
Pinfini sur cette cubique; comme ce point est un point d’inflexion,
il est ’élément nul (ou neutre) du groupe G ainsi obtenu.
L’ensemble des doubles de G (obtenus en composant avec
eux-mémes les points de G) forme un sous-groupe 2G de G. On
montre que les éléments du groupe 2G sont les points rationnels
sur C tels que z, x — a; et x — a, sont des carrés parfaits. Un
élément du groupe quotient G/2G, c’est-a4-dire une classe du
groupe G par rapport & son sous-groupe 2G, est un ensemble de

points rationnels sur G tels que:
x=d0624, x—alzdlalg, x_"‘az':dzazz

ol «, oy, o sont des nombres rationnels arbitraires et ou d, dy, d,
sont des nombres entiers rationnels fixes vérifiant les deux
conditions: '

10 le produit dd, d, est un carré parfait;
20 chacun des entiers d, d,, d, n’a aucun facteur carré.

Ces conditions entrainent que d divise ay a,, d; divise a,
(a; — a,) et dy divise a, (a; — a,). Il n’existe donec qu'un nombre
fini de triplets d, d;, d, vérifiant les conditions précédentes; le
groupe quotient G/2G est fini. '
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Toutefois, les résultats précédents ne suffisent pas pour
construire le groupe quotient G/2G. En effet, un triplet d, d,, d,
peut correspondre & un systeme

x=do*, x— ay = di 2% T — ay = dy otg?

sans solution rationnelle; un tel triplet ne correspond a aucun
élément du groupe quotient G/2G. Les conditions imposees au
triplet d, d;, d, permettent seulement de construire un groupe
contenant le groupe G/2G, sans qu’on sache discerner les éléments
de ce groupe qui appartiennent & G/2G.

On montre ensuite que le groupe G admet une base finie qui
peut étre déduite d’un ensemble de points rationnels sur G
représentant les différents éléments de G/2G. Une base de G est
un ensemble fini de points rationnels M;, M,, ..., M, sur C tel
que tout point rationnel sur C peut étre obtenu par une compo-
sition convenable des points de base:

M=nM +n,M + ..+ n M,

ol 7y, Ny, ..., 1, s00t des entiers. Comme la composition peut étre
définie par des opérations rationnelles sur les coordonnées des
points considérés, ce résultat montre que tout point rationnel
sur C peut étre déduit par des opérations rationnelles sur les
points de base.

Puisqu’on ne sait pas encore construire le groupe G/2G, on ne
sait pas obtenir une base des points rationnels sur une cubique C.
Toutefois certains auteurs ont pu obtenir de telles bases pour
des cubiques particulieres (pour des valeurs numeériques conve-
nablement choisies des coefficients, ou méme pour des coefficients
vérifiant des conditions arithmétiques convenables) [5].

2. L’étude des points rationnels sur certaines surfaces.

cubiques a été abordée par divers auteurs. Les résultats les plus
étendus sont dus a B. Segre [6], mais sont encore trés incom-
plets. Je vais traiter ici le cas d’une classe nouvelle de surfaces
cubiques dont I’étude présente de grandes analogies avec celle
des courbes cubiques.

B. Segre a proposé d’utiliser une notion de composition entre
les points rationnels d’une surface cubique définie par la méme
condition gréométrique que pour les courbes cubiques: la somme
de trois points alignés est constante, par exemple nulle. Malheu-
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reusement, cette notion de composition ne permet pas d’in-
troduire une structure de groupe dans I’ensemble des points
rationnels pour deux raisons:

10 le composé d’un point rationnel avec lui-méme n’est pas

~ déterminé de facon unique: ce composé est 'un quelconque

des points rationnels situé sur P'intersection de la surface et
du plan tangent au point considéré;

20 la composition ainsi définie n’est pas associative; la somme

de trois points dépend- de la fagon d’obtenir cette somme.

Pour ces raisons, cette notion de composition n’a conduit
qu’a des résultats secondaires.

Mais, si on étudie la méthode de Poincaré-Mordell-Weil, on
peut remarquer qu’elle n’utilise pas toutes les propriétés qui
résultent de la structure de groupe introduite dans I’ensemble
des points rationnels sur une cubique. Les propriétés qui semblent
les plus importantes dans cette démonstration sont ’existence
d’un sous-groupe 2G défini par une condition simple et la possi-
bilité de répartir les éléments de G en classes par rapport a ce
sous-groupe. Or il est possible d’obtenir des propriétés analogues
dans d’autres structures que celle de groupe.

D’autre part, toute surface cubique a coefficients rationnels
admet des représentations birationnelles & coefficients algé-
briques. En particulier, la surface S:

y:—az? = z (z — ay) (x — a,)

ou a, a; et a, sont trois nombres rationnels donnés admet la
représentation a cofficients quadratiques:

T = AW
2 = Az —ay) + plz—ay) , 26;:)\(x—a1)——u(x—-a2)
x_y—}—@z y— 0Bz
T x—a; oz — a,

ou A et u sont deux parameétres et ot 6 est le nombre quadratique
défini par:

02 = a .
Cette représentation permet d’obtenir tous les points de S a
coordonnées dans le corps R (0) engendré par 0; il suffit de
considérer toutes les valeurs de A et w dans R (0).




POINTS RATIONNELS SUR CERTAINES COURBES 157

Si 0 est rationnel, ¢’est-a-dire si a est carré parfait, le résultat
précédent permet d’obtenir tous les points rationnels sur S.

Supposons donc 0 irrationnel et désignons par § = — 0 son
conjugué. Plus généralement, désignons par « le conjugué d’un
nombre « de R (6) et par M le point dont les coordonnées z, y, P
sont les conjuguées de celles d’un point M de R (0) (c’est-a-dire
d’un point M dont les coordonnées .z, y, z sont des nombres du
corps R (0)).

Considérons le composé de deux points conjugués M et M
de R (0) sur S, c¢’est-a-dire le troisiéme point d’intersection de S
et de la droite qui joint M et M. Cette droite peut étre définie par
des équations a coefficients rationnels, puisque les fonctions
symétriques des coordonnées de M et M sont des nombres

~ rationnels. L’intersection de cette droite avec S est formée par

les deux points conjugués M et M et un troisiéme point P dont
les coordonnées sont des fonctions symétriques a coefficients
rationnels de celles de M et M, donc sont rationnelles. Il est
d’ailleurs facile d’écrire les expressions des coordonnées X, Y, Z
de P en fonction des coordonnées z, y, z de M:

X — (xg—;i/)z—a_(x;—;cz)z
xx (x — x)2
e Y
xr— X x—z xT—zx x—x

On peut aussi exprimer X, Y, Z en fonction des parametres A,
u de M, par exemple: |

X — [(7\}*—@1) i“(m“‘%) pl[Ap — a,) @—(ﬁﬁaﬂ AJ
(A — A

Les coordonnées Y et Z peuvent étre déduites des formules:
Y + 07 = | |

I(X—FL_“az) %:”— (M——al)_k][(—m—%) A — (E — ay) ;] [(Ap —ay) 7\_(7%1-_’@2):“]

(A — Ap)?
Y —0Z =

| (E = g3} K — (?\H — ay) ;] [ — a) r— (g — a,) ] [(7\—M — ay) r— (m —.Qs) E_’-J

(A — Ap)?

Ces formules montrent que X, Y, Z sont rationnels et que
de plus X est le produit de deux nombres conjugués de R (6)

?

i

i
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c’est-a-dire de la forme o2 — af? avec « et B rationnels. Comme
les trois expressions x, £ — a; et z — a, jouent des roles symé-

triques dans I’équation de S, il y a lieu d’étudier également la

forme de X — @, et de X — a,:

[(Ap — ay) A — (Ap — ay) p] [:(_j\éI — a,) Ejv — (m — ay) 2]

X —a = A
' (A — Ap)?

% o= LOw—a) % — (i — a) p] [P — @) b — (A —ay) 3]
" (A — Ap)?

On constate encore que X — a, et X — a, sont des produits de
nombres conjugués de R (). -

Réciproquement, considérons un point P de coordonnées X,
Y, Z telles que X, X — a,, X — a, soient les normes de nombres
de R (0), c’est-a-dire telles qu’il existe des nombres rationnels «,
B, ay, By, %, By vérifiant les relations:

X =o*—ap?,
X'—— ay = 0121——"CZB21 ’
X_agzazz_‘agzz

S’1l existe des nombres A, p. du corps R (0) vérifiant les relations:

(M—al)i—(ﬁ—az)u _

—— = o 4 68
AL — AW ‘
Bp—a)2r—Pp—ap . g
AL — AW
(lp,—al) )\—(ly.—az) v 4y - 0,
ML———ML

le composé du point M de S de parametres A, u et de son conjugué
a méme abscisse que P. Or on constate que ce systeme de rela-
tions est équivalent au systeéme de deux relations:

—a—o + B —B), A=o—o+0(B—8y)
ou encore au systeme: |
l:a—az—ﬂ(ﬂ—ﬁz), H:“—O‘l_“e(@_*@l)'

Les coordonnées Y, Z; du composé de M et de M peuvent étre
~différentes des coordonnées Y et Z de P. Mais, si on remplace
le point M par le point M’ de parameétres:

O

A
)\’:_P . &L’:L
P P
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ol p est un nombre arbitraire de R (0), le composé de M’ et de M’
a méme abscisse X que le composé de M et de M; par contre,
ses coordonnées Y'; et Z’; vérifient:

Y, + 02, = (Y, + 6Z,)

Y, — 02y = (Y; — 0Z,)

'o['0|'ol’0I

Or il est possible de choisir o de maniére que:

Y —0Z= (Y, —0Z,) &~
o

Y + 0Z = (Y, + 07

el II’O

puisque:
Y2 g7 = X (X —ay) (X — a)) = Y2 — aZ?

Pour un tel choix de g, le point P est le composé de M et de M'.
Il y a lieu de remarquer que les nombres rationnels «, 3, a4, By,
%y, B, ne sont pas déterminés de facon unique par X, Y, Z; il
existe une infinité de couples M, M dont le composé est le point P
donné.

Nous avons ainsi obtenu le résultat:

Pour qu’un point rationnel P sur S, de coordonnées X, Y, Z,
soit le composé de deux points conjugués du corps R (0), il faut et
il suffit qu’il existe des nombres rationnels «, B, oy, By, oy, By lelles
que:

X = o —af?, X —ap = a® —aPs® , X —ay = B> — aps?
Ce résultat est analogue au résultat de Poincaré-Mordell-Weil :

Pour qu’un point rationnel P sur C de coordonnées X, Y soit
le double d’un point rationnel de C, il faut et il suffit qu’il existe des
nombres rationnels a, oy, o, tels que:

X = o, X —a; = o?, X —ay, = o2

3. Avant de poursuivre ’étude des points rationnels sur S,
précisons encore certains aspects du théoréme précédent.
Considérons d’abord un point P sur la cubique C:

Yt = — ) (@ — ay)
et cherchons les points M tels que:

P =2M.
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Les propriétés classiques des fonctions elliptiques montrent
qu’il existe quatre points qui vérifient cette relation et que la
différence de deux quelconques d’entre eux a pour argument
elliptique la moitié d’une période. Cette différence est donc 'un
des quatre points: |

Ty =0 , ¥y, =0,
Lo = Q1 , Yo =0,
Iy = Qg , ys = 0,
Ly = 0, Yy = B

Au sens de l'addition des points sur C, ces quatre points
forment un produit direct de deux groupes cycliques d’ordre 2.
La théorie de Galois montre alors que les coordonnées de M
peuvent étre déduites de celles de P par des opérations ration-
nelles et 'extraction de deux racines carrées. Le théoréme pré-
cédent de Poincaré-Mordell-Weil précise seulement qu’on peut
choisir pour ces deux racines carrées celles de X — a, et de
X — ay. (St X — @, et X — a, sont carrés parfaits, il en est de
meéme de X d’apres ’équation de C).

Considérons maintenant un point rationnel P sur la surface S:

y:—az? = z (¢ — a;) (x — a,)

et cherchons les points M de R (0) sur S tels que le composé de
M et de son conjugué M soit le point P considéré. Ces points,
s’ils existent, sont en nombre infini et se déduisent les uns des
autres par des correspondances sur S formant un groupe que
nous allons préciser.

En fait, il est plus commode de construire le groupe des
correspondances sur S qui conservent I’abscisse du composé de M
et de son conjugué M; le groupe cherché des corres$pondances
qui conservent les trois coordonnées de ce composé s’en déduit
comme groupe-quotient.

La surface S coupe le plan & l'infini suivant une droite
unique D, (la droite & I'infini du plan yOz). Sur cette droite D,
existent deux points conjugués I et T multiples pour la surface;
ce sont les intersections de cette droite et des deux plans
conjugués:

P y+60z=0

P y—60z=0.

1

}
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En chacun de ces points, la surface admet un plan tangent
multiple, respectivement le plan P en I et le plan Pen I La
section de S par un plan passant par Dy (plan pour lequel  est
constant) est une conique qui passe par I et T et est tangente en
ces points aux plans P et P respectivement. -

Considérons un point M de R (0) sur S et construisons la
conique v intersection de S et du plan passant par M et D,. La
conique v conjuguée de y (définie par les équations obtenues en
remplacant les coefficients d’un systéme d’équations de y par
leurs conjugués) est 'intersection de S et du plan défini par Dy et le
conjugué M de M. Puisque les coniques vy et y ont en commun
les points T et I, il existe une quadrique Q et une seule qui
contient v, vy et la droite MM. Cette quadrique Q peut &tre
définie par une équation a coefficients rationnels. Elle coupe S
suivant les coniques vy, vy et suivant une troisiéme conique I’
dont le plan est rationnel.

Montrons que le plan de I' passe par D,. En effet, les inter-
sections de Q et S par un plan Il passant par D, sont deux
coniques qui contiennent I et T et sont tangentes en ces points
aux intersections de IT avec les plans P et P. Ou bien ces deux
coniques n’ont aucun point d’intersection autre que I et I, ou
bien ces deux coniques sont confondues. Choisissons le plan II
déterminé par D, et un point P de IT" distinct de I et T; les deux
coniques intersections de II avec S et Q ont en commun les
points I, T et P, donc sont confondues. Cette conique unique
fait partie de I'intersection de S et Q et est distincte de v et de
v; ¢’est donc la conique I'. Ce qui montre que le plan de cette
conique I' passe par D,. On sait qu’une quadrique Q qui contient
une génératrice rationnelle contient une infinité de génératrices
rationnelles [7]. Une telle génératrice coupe les coniques vy et v
en deux points conjugués M’ et M’ et coupe I' en un point
rationnel P’ qui est le composé de M’ et de M'. Or il existe une
infinité de correspondances birationnelles & coefficients ration-
nels sur Q qui transforment chaque génératrice rationnelle en

une génératrice rationnelle et qui conservent en outre les inter-

sections de Q par les plans qui contiennent D,. Une telle corres-
pondance transforme un point M de y en un point M’ de v;
en outre, les composés des points conjugués M, M et M’, M’ sont
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sur la conique I' dont le plan passe par D, donc ont méme
abscisse. Ainsi cette correspondance conserve I’abscisse du
composé de deux points conjugués. Toutefois elle n’est définie
que pour les points de la conique .

Mais considérons les homographies H de I’espace qui con-
servent les plans passant par D,, et qui laissent invariants les
points I et T et les plans P et P. Une telle homographie trans-
forme toute conique qui est située dans un plan contenant D,
qui passe par I et T et qui est tangente respectivement en ces
points aux plans P et P en une conique qui vérifie les mémes
conditions. Si une homographie H conserve en outre une des
coniques précédentes, elle les conserve toutes. Une homogra-
phie H wvérifiant cette derniére condition conserve la surface
cubique S car elle peut étre engendrée par des coniques vérifiant
les conditions précédentes. Une quadrique Q déterminée comme
précédemment par un point arbitraire M de R (6) sur S peut
aussl étre engendrée par de telles coniques. Donc elle est trans-
formée en elle-méme par ’homographie H et chacune de ses
génératrices est transformée en une génératrice puisque H trans-
forme toute droite en une droite. Si H est définie par des rela-
tions a coefficients rationnels, elle transforme toute génératrice
rationnelle de Q en une génératrice rationnelle. Ainsi une homo-
graphie H qui vérifie toutes les conditions précédentes détermine
sur chaque quadrique () une correspondance du type précédent;
H conserve donc le composé de chaque point de R (0) sur S et
de son conjugué. Une telle homographie H doit vérifier les quatre
conditions:

1o H conserve chaque plan passant par D,, donc l’.abscissé %5

2° H conserve les plans P et P, donc multiplie par un coefficient
constant de proportionnalité y + 0z et y — 0z;

39 H conserve les coniques passant par I et T et tangentes aux

plans P et P, donc conserve le produit (y + 0z) (y — 0z);
40 Phomographie H conjuguée de H est confondue avec H.

Ces homographies H peuvent donc é&tre définies par les
systémes de relations de la forme:

o
oly + 6z)  p(y—02)

' +0s) _ply —0s) 27
x
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On constate que ces homographies forment un groupe isomorphe

au groupe multiplicatif des nombres de R (06) de la forme %7

¢’est-a-dire des nombres de R (0) de norme unité.

D’autre part, la surface S contient aussi les six droites inter-
sections des plans P et P par les trois plans x = 0, z = q, et
& = a,. Désignons par D, la droite située dans le plan z = 0 et
le plan P; par D, la droite située dans le plan 2 = 0 et le plan P.
Ces deux droites ont leurs coefficients dans R (0) et sont conju-
guées 1'une de Pautre. Considérons un point M de R (6) sur S
et la conique v intersection de S et du plan déterminé par D,
et M. Cette conique passe par I et y est tangente au plan de I'in-
fini; elle coupe D; en I et en un autre point variable avec vy.
La conique y conjuguée de v est I'intersection de S et du plan

déterminé par D, et M. L’intersection des plans des coniques vy
et v coupe S au point commun & D, et D, et en deux autres points
qui sont situés sur y et y. Il existe donc une quadrique Q qui

contient les coniques vy, vy et la droite MM. Cette quadrique
coupe S suivant les coniques y et y et suivant une troisiéme
conique I' dont le plan est rationnel.

Montrons que le plan de la conique I' passe par D,. En effet,
les intersections de ) et de S par un plan II passant par D, sont
deux coniques qui passent par les quatre points d’intersection
du plan II et des deux coniques y et y; un tel plan IT coupe ¥y
en I et en un point variable et coupe y en T et en un point variable.
Ou bien ces deux intersections n’ont pas de point commun
autre que les quatre points précédents; ou bien elles sont confon-
dues. Choisissons le plan II déterminé par D, et un point P de T’
situé ni sur y ni sur y; les deux coniques intersections de Q et S
par ce plan ont en commun les quatre points situés sur vy ou sur v
et le point P, donc sont confondues. Cette conique unique fait
partie de 'intersection de Q et de S et est distincte de v et de y;
c’est donc la conique I'. Ce qui montre que le plan de la conique T’
passe par D,.

La quadrique Q qui contient la génératrice rationnelle MM
contient une infinité de génératrices rationnelles. Une telle géné-
ratrice coupe les coniques vy et y en deux points conjugués M’
et M’ et coupe I' en un point rationnel P’ qui est le composé
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de M’ et de M’; ce composé P’ a méme abscisse que le composé
P de M et de M, puisque P et P’ sont tous deux sur la conique I’
dont le plan passe par D,. Il existe des correspondances bira-
tionnelles & coefficients rationnels entre les génératrices ration-
nelles de Q. Mais il n’est pas possible de définir une telle corres-
pondance par une transformation entre les points de Q qui
conserve a la fois les plans passant par D, et les plans passant
par D,. Toutefois, considérons une correspondance birationnelle
4 coefficients rationnels T entre les droites d’un des systémes
de génératrices de Q. La correspondance T engendre une corres-
pondance birationnelle ¢ & coefficients dans R (0) entre les points
de la conique +y: le transformé par ¢ d’un point M de + est obtenu
en prenant l'intersection de y et de la transformée par T de la
génératrice du systéme considéré qui passe par M. La correspon-
- dance T engendre de la méme fagcon une correspondance entre
les points de v; cette correspondance est d’ailleurs la conjuguée ¢
de ¢. Donc ¢ transforme le conjugué M d’un point M de vy en le
conjugué M’ du transformé M”* de M par ¢; par suite, T conserve
Iabscisse: du composé d’un point de R (0) sur vy et de son
conjugueé.
- Pour déterminer une correspondance birationnelle entre les
génératrices d’'un systeme de la quadrique Q, il suffit de con-
naitre la correspondance qu’elle engendre sur 'intersection de Q
par un plan fixe. En effet, il ne passe qu’une génératrice du
systéme considéré par chaque point de cette intersection.
Choisissons I'intersection de Q par le plan 2 = 0; c’est une
conique qui passe par I et . Elle peut donc étre définie par une
équation de la forme:

(y + 0z 4+ 2) (y—0z+ A =d
ou A et A sont deux nombres conjugués de R () et ou d est un
nombre rationnel. Les coefficients A, %, d peuvent dtre exprimés
en fonction des coordonnées du point M. Parmi les correspon-
dances a coefficients rationnels sur cette conique, celles qui
conservent les points I et T peuvent étre définies dans tout le plan
et pour toutes les coniques qui passent par ces deux points. Les
formules de ces transformations sont

y 4 07 + A=

'o"ol

(y + 0z + )
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y — 0z — A = (y — 0z + A)-

'0||'o

Elles forment donc un groupe isomorphe au groupe multiplicatif
des nombres de R (0) de norme unité. v
Les correspondances ainsi obtenues ne sont pas toutes les
correspondances qui conservent l’abscisse du composé d’un
point de R (0) sur S et de son conjugué. En effet, nous n’avons

pas utilisé toutes les correspondances birationnelles & coefficients
rationnels entre les points d’une quadrique Q. Mais, si nous

considérons les deux droites D, et D, situées dans le plan x = ay,
nous pouvons construire un nouveau groupe Iisomorphe au
groupe multiplicatif des nombres de R (0) de norme unité. De
méme, en utilisant les deux droites Dy et D, situées dans le
plan & = a,, nous pouvons construire un troisiéme groupe iso-
morphe aux deux précédents. On peut montrer que le produit
direct de ces trois groupes isomorphes entre eux est le groupe
de toutes les correspondances qui conservent I’abscisse du
composé de deux points conjugués arbitraires de R (0) sur S.

Le groupe des transformations qui conservent le composé de
deux points conjugués de R (0) peut étre obtenu comme groupe
quotient: il est donc isomorphe au produit direct de deux groupes
1somorphes au groupe multiplicatif des nombres de R (0) de
norme unité.

La théorie de Galois permet donc de montrer qu’un point
rationnel P sur S est le composé de deux points conjugués de R ()
sur S si et seulement si deux fonctions convenables des coordon-
nées de P sont normes de nombres de R (0). Le résultat final du
paragraphe précédent précise seulement qu’on peut choisir ces
deux fonctions égales respectivement & X — a; et X — q,.

4. Nous avons distingué, dans I’ensemble des points ration-
nels sur S, le sous-ensemble (P) formé par les points P dont
Pabcisse X vérifie les relations: |

X:“Z“agza X_al——‘“lz—afhza X—-azzoczz——aﬁzz

avec a, B3, ay, By, oy, B, nombres rationnels. .
Il 's’agit maintenant d’étudier les points rationnels sur S
qui ne font pas partie du sous-ensemble (P), c’est-a-dire les
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points M d’abscisse z, tel que I'un au moins des trois nombres x,
r — a;, * — a, n’est pas norme d’un nombre de R (6).
Or la formule qui donne Pabscisse  du composé des points M’
et M'': |
(x/ y// _ x// y/)g —a (x/ Z// . .’IJN Z/)z
xr = 7’ 144 4 144
x' " (xf — x”)?

montre que cette abscisse x est le produit des abscisses 2’ et '’
de M’ et M’ et de la norme d’un nombre de R (0). Les formules:
analogues:

g W —a)y — (2" —a) ¥ P—alle’—a) 2" — (& —ay) P
t (2" — a,) (" — a;) (@ x'’)?

ey Lol —as) y — (@ — ay) yP—alfa’ — a,) 3 — (27— a,) &'
* (&" — ay) (@" — ap) (2" — 2”)?

montrent aussi que x — a, est le produit de " — a,, de '’ — a4
et de la norme d’un nombre de R (0), et que z — a, est le produit
de ' — a,, de 2" — a, et de la norme d’un nombre de R (0).

Répartissons I’ensemble des points rationnels sur S en sous-
ensembles de telle maniére que, si deux points M’ et M"" appar-
tiennent & un méme sous-ensemble, les quotients:

! ' — aq x’ — a,

K

77 ? 144 ? 24 ’

x "’ — ay ' — a,

sont normes de nombres de R (0). Pour construire un tel sous-
ensemble, nous pouvons choisir un triplet de nombres rationnels
d, dy,.dy et considérer tous les points de S qui vérifient les rela-
tions:

r=d(y>*—ad¥), z—a =d;(y2P—ad?, z—a,=d, (Y22 — ad?y)

ol v, 0, Y1, 01, Ya, 02 SONt des nombres rationnels arbitraires. Un
triplet d, d,, d, détermine ainsi un sous-ensemble, mais inverse-
ment un sous-ensemble ne définit chacun des trois nombres d,
dy, dy qu’au produit pres par une norme d’un nombre de R (6).

Les résultats précédents montrent que la composition des
points de S introduit entre ces sous-ensembles une loi de compo-
sition: le composé des deux sous-ensembles déterminés par les
deux triplets d’,d’;, d’y et d”’, d"’;, d"', peut étre défini par le triplet
d'd”’,d'yd”",,d'yd"”,. Cessous-ensembles forment alors un groupe
pour cette loi de composition. En particulier, le sous-ensemble
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distingué (P) est I'unité de ce groupe; nous pouvons obtenir tous
les points d’un autre sous-ensemble en composant un de ses
points avec tous les points du sous-ensemble distingué (P). On
dit que chacun de ces sous-ensembles est une « classe » de points
rationnels par rapport au sous-ensemble (P). B

Mais un triplet d’entiers rationnels d, dy, d, ne peut déterminer
une classe de points rationnels que §’il satisfait & une condition
que nous allons expliciter. Le produit dd, d, de ces trois nombres
doit étre norme d’un nombre de R (0); en effet les coordonnées z,
y, z d’un point de la classe vérifie I’équation de S, donec:

Y2 —az? = z(x — a;) (x — ay)
= dd; d, {v* — ad?) (v — ad:?) (v:* — ads?)

D’autre part, nous avons dit qu’'une classe ne détermine
chacun des entiers d, d,, d, qu’au produit pres par la norme d’un
nombre de R (0); nous allons utiliser ce facteur arbitraire pour
simplifier d, d;, d, autant que possible. Or la théorie des entiers
d’un corps quadratique [8] montre qu’on peut distinguer deux
espéces d’entiers rationnels premiers:

10 ceux qui sont normes d’idéaux premiers de R (0);

20 ceux qui engendrent des idéaux premiers du corps R (0).

Tout nombre premier p de la premiére espéce peut étre mis
sous la forme du produit d’un entier rationnel choisi parmi un
ensemble fini (I’ensemble des normes de représentants des classes
d’idéaux du corps R (6) par la norme d’un nombre de R ().
S1 un tel entier divise I'un des entiers d, d;, d,, nous pouvons done
le remplacer par un entier choisi dans ’ensemble fini précédent.
Tout nombre premier p de la seconde espéce qui divise la norme
d’un nombre de R (0) figure dans la décomposition en facteurs
premiers rationnels de ce nombre avec un exposant pair. Si un
tel entier premier p divise le produit dd, d,, il doit soit figurer
dans la décomposition de chacun des entiers d, d,, d, avec un
exposant pair, soit diviser deux au moins de ces nombres. Mais
s p figure dans la décomposition de d, d; ou d, avec un exposant
pair, nous pouvons le remplacer dans ce coefficient par 1'unité.
Si un tel entier p divise d et d,, les relations:

r=d(y*—ad)=4d (v, —ad? + a
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montrent qu’il divise aussi a,; 8’il divise d et dy, 1l divise aussi a,;
¢'1l divise d, et d,, il divise aussi a; — a,.

Ainsi, si un triplet d, d;, d, détermine une classe de points
rationnels sur S, il peut étre remplacé par un triplet dont chaque
terme est un produit d’entiers rationnels choisis dans un ensemble
fini: ensemble des normes de représentants des classes d’idéaux
de R (0) et des diviseurs premiers de a,, de a, et de a;, — a,. Les
triplets d, d,, d, peuvent donc étre choisis dans un ensemble fini.
Ce qui démontre le résultat:

Les classes de points rationnels sur S par rapport au sous-
ensemble distingué (P) sont en nombre fini.

Ce résultat est analogue au théoréme de Poincaré-Mordell-
Weil :

Les classes du groupe G des points rationnels sur C par rapport
au sous-groupe 2G sont en nombre fini.

5. Les formules:

[ —a) A — O —ay) p] [ — as) w— (g —a;) 2]

X =

(e — Ap)”
Y 1 0Z = |
[ — ap) p — (e —a) M (g —ay) & — O —ay) p] (A — a3 2 — (o —ay) w
(A — Ap)?
Y —0Z =

[()\_U* — a;) A — (Ag —a,) IL] [(7\@— ) A — (A —as) @] [(i—!; — a,) A — (7\—!;-—“ as) vl
(p — ap)?

permettent d’obtenir les points du sous-ensemble (P) en fonction

de deux paramétres A et p. & valeurs dans R (6). Or nous pouvons

exprimer deux tels parametres au moyen de quatre paramétres
rationnels: '

A=+ 02y, =t + Opy .

Les formules ainsi obtenues expriment rationnellement les coor-
données X, Y, Z d’un point P en fonction de A;, Ay, @y, Wy, les
coefficients de ces formules étant rationnels.
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Toutefois, les paramétres Ay, Ay, [y, Wy Ne peuvent tre expri-
més rationnellement en fonction des coordonnées X, Y, Z et il
existe méme une infinité de tels paramétres pour un meéme
point P. Ainsi les points du sous-ensemble distingué (P) s’ob-
tiennent de facon simplement rationnelle en fonction de quatre
parameétres rationnels.

Nous avons dit que les points d’une classe par rapport au
sous-ensemble (P) s’obtiennent en composant un point fixe de
cette classe avec tous les points du sous-ensemble (P). Puisque
les points du sous-ensemble (P) ont été obtenus en fonctions
rationnelles & coefficients rationnels de quatre parametres
rationnels et que les formules de composition de deux points

de S sont rationnelles, nous pouvons aussi obtenir tous les points

d’une méme classe en fonctions rationnelles de quatre para-
meétres rationnels. Comme le nombre des classes est fini, nous
obtenons le résultat:

Tous les points rationnels sur S peuvent étre obtenus au moyen
d’un nombre fini de formules simplement rationnelles en fonction
de parameétres rationnels.

Ce résultat difféere sensiblement du théoréme de Poincaré-
Mordell-Weil :

Les points rationnels sur la cubique C peuvent étre obtenus par
des opérations rationnelles sur les poinis d’une base finie.

6. Lerésultat du paragraphe précédent ne résoud pas entiére-
ment le probléme des points rationnels sur une surface cubique S.
En effet, pour obtenir effectivement une représentation sim-
plement rationnelle d’une classe de ces points, nous avons besoin
de connaitre un point de cette classe. Or nous avons déterminé
les différentes classes par des triplets d’entiers rationnels d,
dy, dy; nous avons obtenu des conditions nécessaires pour qu’un
tel triplet puisse représenter une classe, mais nous ne cornnaissons
aucune condition suffisante pour qu’il en soit ainsi. A fortiori,
nous ne savons pas obtenir un point rationnel d’une classe
déterminée par un tel triplet.

Le probleme des points rationnels sur une surface cubique S
pose encore une question ouverte analogue d’ailleurs a la ques-
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tion de Poincaré-Mordell-Weil: déterminer les triplets d, d;, d,
qui correspondent effectivement aux classes du groupe G par
rapport au sous-groupe 2G. .

Enfin, signalons que les -résultats precedents peuvent étre
généralisés aux surfaces cubiques de la forme:

y* — az® = P (x)

ou P (z) est un polynome du troisiéme degré & coefficients ration-
nels. Cette généralisation utilise les propriétés des idéaux dans
le corps cubique défini par une solution de I’équation:

P(x) =0.
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