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POINTS RATIONNELS SUR CERTAINES COURBES

ET SURFACES CUBIQUES

par F. Chatelet, Besançon

La recherche des points à coordonnées rationnelles (en abrégé

points rationnels) sur une variété algébrique est un problème
mathématique très ancien; on en trouve des exemples dans les

œuvres de Diophante au 111e siècle de notre ère. Ce problème a
fait l'objet de travaux de mathématiciens les plus célèbres, tels

Fermât, Euler, Lagrange, Gauss, Hilbert, Poincaré. Pourtant il
n'est entièrement résolu que pour des variétés très particulières

[1].
1. L'étude des points rationnels sur certaines courbes

cubiques a été abordée par de nombreux auteurs depuis Fermât.
Mais c'est seulement H. Poincaré [2] qui a proposé une méthode
générale qui s'applique à toutes les courbes de genre un. Cette
méthode a été perfectionnée par L. J. Mordell et A. Weil [3];
pourtant, comme nous le préciserons ultérieurement, elle ne

permet l'étude complète des points rationnels sur ces courbes

que dans des cas particuliers.
La méthode de Poincaré, Mordell et Weil nécessite en général

l'utilisation des propriétés des idéaux de nombres d'un corps
algébrique convenable. Toutefois, l'utilisation de tels idéaux
peut être évitée pour une catégorie relativement importante de

cubiques, les cubiques de la forme:

où C et D sont des nombres rationnels donnés, x et y sont les
coordonnées rationnelles cherchées. On trouvera un exposé
élémentaire et détaillé de ce cas dans un mémoire récent de
A. Buquet [4]. Pour simplifier un peu l'exposé, nous considérons
seulement dans ce mémoire le cas plus particulier des cubiques
de la forme:

(Reçu le 31 juillet 1959.)

y2 x (x2 -f Cx + D)

i

y2 x (x — at) (x — a2)
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154 F. CHATELET

où ax et a2 sont des nombres rationnels donnés. Sans entrer dans
le détail des démonstrations, nous rappelons d'abord les résultats
essentiels concernant les points rationnels sur ces courbes.

La représentation d'une cubique de genre un par des fonctions

elliptiques permet d'introduire une composition entre les

points de cette cubique: le composé, ou somme, de deux points
de la cubique est le point dont l'argument elliptique est la
somme des arguments des deux points composants. Cette
définition peut encore être traduite par une condition géométrique:
le composé de trois points alignés est indépendant de la droite
qui joint ces points. La composition ainsi définie dépend du
choix de la représentation par fonctions elliptiques ou du choix
de la somme de trois points alignés. Si cette somme est un point
rationnel, l'ensemble des points rationnels sur la cubique forme
un groupe additif. En particulier, pour les cubiques C de la forme :

y2 x (x — ad (x — a2)

on peut choisir pour somme de trois points alignés le point à

l'infini sur cette cubique; comme ce point est un point d'inflexion,
il est l'élément nul (ou neutre) du groupe G ainsi obtenu.

L'ensemble des doubles de G (obtenus en composant avec
eux-mêmes les points de G) forme un sous-groupe 2G de G. On
montre que les éléments du groupe 2G sont les points rationnels
sur C tels que x, x — ax et x — a2 sont des carrés parfaits. Un
élément du groupe quotient G/2G, c'est-à-dire une classe du

groupe G par rapport à son sous-groupe 2G, est un ensemble de

points rationnels sur C tels que:

x d a2 x — a± d± ax2 x — a2 d2 oc22

où a, a-L, a2 sont des nombres rationnels arbitraires et où d, d2

sont des nombres entiers rationnels fixes vérifiant les deux
conditions :

1° le produit ddxd2 est un carré parfait;
2° chacun des entiers d, dx, d2 n'a aucun facteur carré.

Ces conditions entraînent que d divise ax a2, dx divise ax

(ax — a2) et d2 divise a2 (ax — a2). Il n'existe donc qu'un nombre
fini de triplets d, dx, d2 vérifiant les conditions précédentes; le

groupe quotient G/2G est fini.
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Toutefois, les résultats précédents ne suffisent pas pour
construire le groupe quotient G/2G. En effet, un triplet d, d2

peut correspondre à un système

x z= d oc2 x —= doc,2 x <z2 - d% 0^2

sans solution rationnelle; un tel triplet ne correspond à aucun
élément du groupe quotient G/2G. Les conditions imposées au

triplet d, d2 permettent seulement de construire un groupe
contenant le groupe G/2G, sans qu'on sache discerner les éléments

de ce groupe qui appartiennent à G/2G.
On montre ensuite que le groupe G admet une base finie qui

peut être déduite d'un ensemble de points rationnels sur C

représentant les différents éléments de G/2G, Une base de G est

un ensemble fini de points rationnels Ml7 M2, Mr sur C tel
que tout point rationnel sur C peut être obtenu par une composition

convenable des points de base:

M 11^ M-| + 7?-2 M2 ~f~ nr Mr

où ntî n2, nY sont des entiers. Comme la composition peut être
définie par des opérations rationnelles sur les coordonnées des

points considérés, ce résultat montre que tout point rationnel
sur C peut être déduit par des opérations rationnelles sur les

points de base.

Puisqu'on ne sait pas encore construire le groupe G/2G, on ne
sait pas obtenir une base des points rationnels sur une cubique C.

Toutefois certains auteurs ont pu obtenir de telles bases pour
des cubiques particulières (pour des valeurs numériques
convenablement choisies des coefficients, ou même pour des coefficients
vérifiant des conditions arithmétiques convenables) [5].

2. L'étude des points rationnels sur certaines surfaces
cubiques a été abordée par divers auteurs. Les résultats les plus
étendus sont dus à B. Segre [6], mais sont encore très incomplets.

Je vais traiter ici le cas d'une classe nouvelle de surfaces
cubiques dont l'étude présente de grandes analogies avec celle
des courbes cubiques.

B. Segre a proposé d'utiliser une notion de composition entre
les points rationnels d'une surface cubique définie par la même
condition gréométrique que pour les courbes cubiques: la somme
de trois points alignés est constante, par exemple nulle. Malheu-
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reusement, cette notion de composition ne permet pas
d'introduire une structure de groupe dans l'ensemble des points
rationnels pour deux raisons:

1° le composé d'un point rationnel avec lui-même n'est pas
déterminé de façon unique: ce composé est l'un quelconque
des points rationnels situé sur l'intersection de la surface et
du plan tangent au point considéré;

2° la composition ainsi définie n'est pas associative; la somme
de trois points dépend de la façon d'obtenir cette somme.

Pour ces raisons, cette notion de composition n'a conduit
qu'à des résultats secondaires.

Mais, si on étudie la méthode de Pomcaré-Mordell-Weil, on
peut remarquer qu'elle n'utilise pas toutes les propriétés qui
résultent de la structure de groupe introduite dans l'ensemble
des points rationnels sur une cubique. Les propriétés qui semblent
les plus importantes dans cette démonstration sont l'existence
d'un sous-groupe 2G défini par une condition simple et la possibilité

de répartir les éléments de G en classes par rapport à ce

sous-groupe. Or il est possible d'obtenir des propriétés analogues
dans d'autres structures que celle de groupe.

D'autre part, toute surface cubique à coefficients rationnels
admet des représentations birationnelles à coefficients
algébriques. En particulier, la surface S:

2/2 — az2, — x [x — %) (x — a2)

où a, ax et a2 sont trois nombres rationnels donnés admet la
représentation à cofficients quadratiques:

x X(x

1y — X (x -— %) -f- [x (x — a2) 20z X (x — ax) — fx (x — a2)

y -f 0J3

_ y — 62
À — [X —

x — x — a2

où A et [x sont deux paramètres et où 0 est le nombre quadratique
défini par:

62 a

Cette représentation permet d'obtenir tous les points de S à

coordonnées dans le corps R (0) engendré par 0; il suffit de

considérer toutes les valeurs de X et p. dans R (0).
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Si 6 est rationnel, c'est-à-dire si a est carré parfait, le résultat

précédent permet d'obtenir tous les points rationnels sur S.

Supposons donc 6 irrationnel et désignons^par 0 — 0 son

conjugué. Plus généralement, désignons par oc le conjugue^ d un

nombre a de R (6) et par M le point dont les coordonnées x, y, 2

sont les conjuguées de celles d'un point M de R (0) (c'est-à-dire

d'un point M dont les coordonnées .x, y, z sont des nombres du

corps R (0)). ~

__
Considérons le composé de deux points conjugués M et M

de R (0) sur S, c'est-à-dire le troisième point d'intersection de S

et de la droite qui joint M et M. Cette droite peut être définie par
des équations à coefficients rationnels, puisque les fonctions

symétriques des coordonnées de M et M sont des nombres

rationnels. L'intersection de cette droite avec S est formée par
les deux points conjugués M et M et un troisième point P dont
les coordonnées sont des fonctions symétriques à coefficients

rationnels de celles de M et M, donc .sont rationnelles. Il est

d'ailleurs facile d'écrire les expressions des coordonnées X, Y, Z

de P en fonction des coordonnées x, y, z de M:

(xy — xy)2 — a (xz — xz)2

XX (x — x)2

y y— y x + xy — xy z
z — * x +

xz ~~~ f2
x — x x — x x — x x — X

On peut aussi exprimer X, Y, Z en fonction des paramètres X,

fx de M, par exemple:

[(Xjjl — ax) X — (X[jl — a2) fi.] [Xjjl — a2) (jl — (Xy — ax) X]

(X(JL — Xfi.)2.

Les coordonnées Y et Z peuvent être déduites des formules:

Y + 0Z

| (X{jl — a2) [i. — (Xjjl — ax) X] [(Xfx — ax) X — (Xy — a2) fx] [(Xjjl — ax) X — (Xjjl — a2) jx]

(XfJL — X[i.)3

y — ez

(Xpi — ax) X — (Xfx — a2) [(Xjjl — ad X — (Xjjl — a2) jjl] T(Xjjl — ad X — (\\i —a2) (jl]

(Xjjl — X(d3

Ces formules montrent que X, Y, Z sont rationnels et que
de plus X est le produit de deux nombres conjugués de R (0),
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c'est-à-dire de la forme oc2 — aß2 avec a et ß rationnels. Comme
les trois expressions x, x — ax et x — a2 jouent des rôles
symétriques dans l'équation de S, il y a lieu d'étudier également la
forme de X — ax et de X — a2 :

_ [(Xfx — ax) X — (Xß — a2) (x] [(Xpt — a2) p. — (Xp, — ax) X]

(X^jl — M2

^ _
[(XfjL — ax) X — (Xpi — a2) fx] [(Xp, — a2) p — (X(x — ax) X]

(Xp. — Xp)2

On constate encore que X — ax et X — a2 sont des produits de

nombres conjugués de R (0).

Réciproquement, considérons un point P de coordonnées X,
Y, Z telles que X, X — aXl X — a2 soient les normes de nombres
de R (0), c'est-à-dire telles qu'il existe des nombres rationnels a,
ß, a1? ßl5 a2, ß2 vérifiant les relations:

X a2 — a ß2

X — ax a2x — a ß2i

X — a2 a22 — a ß22

S'il existe des nombres X, (x du corps R (0) vérifiant les relations:

(Xp — ax) X — (Xp — a2) p

Xp — Xp

(XfA — dry) X -- (Xp — a2) [x

Xp -— Xp

(X(X — ax) X -— (Xp — a2) [x
H~ 0ß2

Xp — Xp

le composé du point M de S de paramètres X, p, et de son conjugué
a même abscisse que P. Or on constate que ce système de
relations est équivalent au système de deux relations:

[X oc — ax + 0 (ß — ßd X a — a2 + 0 (ß — ß2)

ou encore au système:
X a — a2 — 0 (ß — ß2) [x a — ax + 0 (ß — ßj

Les coordonnées Yx, Zx du composé de M et de M peuvent être
différentes des coordonnées Y et Z de P. Mais, si on remplace
le point M par le point M' de paramètres:

_
X p _ (x p

À — — [X —
P P
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où p est un nombre arbitraire de R (0), le composé de M' et de M'
a même abscisse X que le composé de M et de M; par contre,
ses coordonnées et Z\ vérifient:

Y/ + 6Z/ (Y, + ezj A
p

Yf - 0Z/ (Y, - ÖZJ ïp
Or il est possible de choisir p de manière que :

Y + ÔZ (Y, + 6ZJ 4- Y — 0 Z {Y1 — eZj)
P P

puisque :

Y2 — aZ2 X (X — af (X — a2) Yx2 — aZ^

Pour un tel choix de p, le point P est le composé de M' et de M'.
Il y a lieu de remarquer que les nombres rationnels a, ß, a1? ßx,

a2, ß2 ne sont pas déterminés de façon unique par X, Y, Z; il
existe une infinité de couples M, M dont le composé est le point P

donné.
Nous avons ainsi obtenu le résultat:

Pour qu'un point rationnel P sur S, de coordonnées X, Y, Z,
soit le composé de deux points conjugués du corps R (0), il faut et

il suffit qu'il existe des nombres rationnels a, ß, ai7 ßlJ a27 ßä telles

que :

X a2 — aß2 'X — a± ax2 — aßx2 X — a2 ß22 — aß22

Ce résultat est analogue au résultat de Poincaré-Mordell-Weil :

Pour qu'un point rationnel P sur C de coordonnées X, Y soit
le double d'un point rationnel de C, il faut et il suffit qu'il existe des

nombres rationnels a, al5 a2 tels que:

X a2 X — a± dp X — a2 a22

3. Avant de poursuivre l'étude des points rationnels sur S,

précisons encore certains aspects du théorème précédent.
Considérons d'abord un point P sur la cubique C:

2/2 x (x — ax) (x — a2)

et cherchons les points M tels que:

P 2M
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Les propriétés classiques des fonctions elliptiques montrent
qu'il existe quatre points qui vérifient cette relation et que la
différence de deux quelconques d'entre eux a pour argument
elliptique la moitié d'une période. Cette différence est donc l'un
des quatre points:

0 2/1 0

^2 ax 2/2 0

^3 «2 Vz 0
»

x4 00 2/4 00 •

Au sens de l'addition des points sur C, ces quatre points
forment un produit direct de deux groupes cycliques d'ordre 2.

La théorie de Galois montre alors que les coordonnées de M
peuvent être déduites de celles de P par des opérations rationnelles

et l'extraction de deux racines carrées. Le théorème
précédent de Poincaré-Mordell-Weil précise seulement qu'on peut
choisir pour ces deux racines carrées celles de X — ax et de

X — a2. (Si X — ax et X — a2 sont carrés parfaits, il en est de

même de X d'après l'équation de C).
Considérons maintenant un point rationnel P sur la surface S:

y2 — az2 — x (x — afi (x — a2)

et cherchons les points M de R (6) sur S tels que le composé de

M et de son conjugué M soit le point P considéré. Ces points,
s'ils existent, sont en nombre infini et se déduisent les uns des

autres par des correspondances sur S formant un groupe que
nous allons préciser.

En fait, il est plus commode de construire le groupe des

correspondances sur S qui conservent l'abscisse du composé de M
et de son conjugué M; le groupe cherché des correspondances
qui conservent les trois coordonnées de ce composé s'en déduit
comme groupe-quotient.

La surface S coupe le plan à l'infini suivant une droite
unique D0 (la droite à l'infini du plan yOz). Sur cette droite D0

existent deux points conjugués I et I multiples pour la surface;
ce sont les intersections de cette droite et des deux plans
conjugués:

P y + 0z 0

P y — 6js 0
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En chacun de ces points, la surface admet un plan tangent

multiple, respectivement le plan P en I et le plan P en I. La

section de S par un plan passant par D0 (plan pour lequel x est

constant) est une conique qui passe par I et I et est tangente en

ces points aux plans P et P respectivement.
Considérons un point M de R (0) sur S et construisons la

conique y intersection de S et du plan passant par M et D0. La

conique y conjuguée de y (définie par les équations obtenues en

remplaçant les coefficients d'un système d'équations de y par
leurs conjugués) est l'intersection de S et du plan défini par D0 et le

conjugué M de M. Puisque les coniques y et y ont en commun
les points I et I, il existe une quadrique Q et une seule qui
contient y, y et la droite MM. Cette quadrique Q peut être

définie par une équation à coefficients rationnels. Elle coupe S

suivant les coniques y, y et suivant une troisième conique Y

dont le plan est rationnel.
| Montrons que le plan de Y passe par D0. En effet, les inter-
[ sections de Q et S par un plan II passant par D0 sont deux
î coniques qui contiennent I et I et sont tangentes en ces points
| aux intersections de II avec les plans P et p. Ou bien ces deux
| coniques n'ont aucun point d'intersection autre que I et I, ou
| bien ces deux coniques sont confondues. Choisissons le plan II
ij déterminé par D0 et un point P de Y distinct de I et ï ; les deux
i coniques intersections de II avec S et Q ont en commun les

points I, I et P, donc sont confondues. Cette conique unique
| fait partie de l'intersection de S et Q et est distincte de y et de

| y; c'est donc la conique Y. Ce qui montre que le plan de cette
l conique Y passe par D0. On sait qu'une quadrique Q qui contient
I une génératrice rationnelle contient une infinité de génératrices
| rationnelles [7]. Une telle génératrice coupe les coniques y et y
S en deux points conjugués M' et M' et coupe Y en un point
| rationnel P' qui est le composé de M' et de M'. Or il existe une

infinité de correspondances birationnelles à coefficients rationnels

sur Q qui transforment chaque génératrice rationnelle en
une génératrice rationnelle et qui conservent en outre les
intersections de Q par les plans qui contiennent D0. Une telle
correspondance transforme un point M de y en un point M' de y;
en outre, les composés des points conjugués M, M et M', M' sont
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sur la conique T dont le plan passe par D0, donc ont même
abscisse. Ainsi cette correspondance conserve l'abscisse du
composé de deux points conjugués. Toutefois elle n'est définie

que pour les points de la conique y.
Mais considérons les homographies H de l'espace qui

conservent les plans passant par D0, et qui laissent invariants les

points I et I et les plans P et p. Une telle homographie transforme

toute conique qui est située dans un plan contenant D0,

qui passe par I et I et qui est tangente respectivement en ces

points aux plans P et P en une conique qui vérifie les mêmes
conditions. Si une homographie H conserve en outre une des

coniques précédentes, elle les conserve toutes. Une homographie

H vérifiant cette dernière condition conserve la surface

cubique S car elle peut être engendrée par des coniques vérifiant
les conditions précédentes. Une quadrique Q déterminée comme
précédemment par un point arbitraire M de R (0) sur S peut
aussi être engendrée par de telles coniques. Donc elle est
transformée en elle-même par l'homographie H et chacune de ses

génératrices est transformée en une génératrice puisque H transforme

toute droite en une droite. Si H est définie par des
relations à coefficients rationnels, elle transforme toute génératrice
rationnelle de Q en une génératrice rationnelle. Ainsi une
homographie H qui vérifie toutes les conditions précédentes détermine
sur chaque quadrique Q une correspondance du type précédent;
H conserve donc le composé de chaque point de R (0) sur S et
de son conjugué. Une telle homographie H doit vérifier les quatre
conditions :

1° H conserve chaque plan passant par D0, donc l'abscisse x\
2° H conserve les plans P et p, donc multiplie par un coefficient

constant de proportionnalité y + 0z et y — 0z;

3° H conserve les coniques passant par I et I et tangentes aux
plans P et P, donc conserve le produit {y + Qz) (y — 0z);

4° l'homographie H conjuguée de H est confondue avec H.

Ces homographies H peuvent donc être définies par les

systèmes de relations de la forme:

p (y' + 6z') _ p [y' — Qz')

p (y + (y — Oz) z
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On constate que ces homographies forment un groupe isomorphe

au groupe multiplicatif des nombres de R (0) de la forme £>

c'est-à-dire des nombres de R (0) de norme unité.
D'autre part, la surface S contient aussi les six droites

intersections des plans P et P par les trois plans x 0, x % et

x =» a2. Désignons par D1 la droite située dans le plan x 0 et

le plan P; par D2 la droite située dans le plan x 0 et le plan p.
Ces deux droites ont leurs coefficients dans R (0) et sont conjuguées

l'une de l'autre. Considérons un point M de R (0) sur S

et la conique y intersection de S et du plan déterminé par Dx

et M. Cette conique passe par I et y est tangente au plan de

l'infini; elle coupe Dx en I et en un autre point variable avec y.
La conique y conjuguée de y est l'intersection de S et du plan
déterminé par D2 et M. L'intersection des plans des coniques y
et y coupe S au point commun à D1 et D2 et en deux autres points
qui sont situés sur y et y. Il existe donc une quadrique Q qui
contient les coniques y, y et la droite MM. Cette quadrique
coupe S suivant les coniques y et y et suivant une troisième
conique T dont le plan est rationnel.

Montrons que le plan de la conique F passe par D0. En effet,
les intersections de Q et de S par un plan II passant par D0 sont
deux coniques qui passent par les quatre points d'intersection
du plan II et des deux coniques y et y; un tel plan II coupe y
en I et en un point variable et coupe y en I et en un point variable.
Ou bien ces deux intersections n'ont pas de point commun
autre que les quatre points précédents; ou bien elles sont confondues.

Choisissons le plan II déterminé par D0 et un point P de T
situé ni sur y ni sur y; les deux coniques intersections de Q et S

par ce plan ont en commun les quatre points situés sur y ou sur y
et le point P, donc sont confondues. Cette conique unique fait
partie de l'intersection de Q et de S et est distincte de y et de y;
c'est donc la conique F. Ce qui montre que le plan de la conique F
passe par D0.

La quadrique Q qui contient la génératrice rationnelle MM
contient une infinité de génératrices rationnelles. Une telle
génératrice coupe les coniques y et y en deux points conjugués M'
et M' et coupe F en un point rationnel P' qui est le composé
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de M7 et de M7; ce composé P7 a même abscisse que le composé
P de M et de M, puisque P et P7 sont tous deux sur la conique F
dont le plan passe par D0. Il existe des correspondances bira-
tionnelles à coefficients rationnels entre les génératrices rationnelles

de Q. Mais il n'est pas possible de définir une telle
correspondance par une transformation entre les points de Q qui
conserve à la fois les plans passant par Di et les plans passant
par D2. Toutefois, considérons une correspondance birationnelle
à coefficients rationnels T entre les droites d'un des systèmes
de génératrices de Q. La correspondance T engendre une
correspondance birationnelle t à coefficients dans R (0) entre les points
de la conique y: le transformé par t d'un point M de y est obtenu
en prenant l'intersection de y et de la transformée par T de la
génératrice du système considéré qui passe par M. La correspondance

T engendre de la même façon une correspondance entre
les points de y; cette correspondance est d'ailleurs la conjuguée t
de t. Donc t transforme le conjugué M d'un point M de y en le

conjugué M7 du transformé M7 de M par £; par suite, T conserve
l'abscisse du composé d'un point de R (0) sur y et de son
conjugué.

Pour déterminer une correspondance birationnelle entre les

génératrices d'un système de la quadrique Q, il suffit de
connaître la correspondance qu'elle engendre sur l'intersection de Q

par un plan fixe. En effet, il ne passe qu'une génératrice du

système considéré par chaque point de cette intersection.
Choisissons l'intersection de Q par le plan x 0; c'est une
conique qui passe par I et I. Elle peut donc être définie par une
équation de la forme:

(y + dz -f X) (y — Os + X) d

où X et X sont deux nombres conjugués de R (0) et où d est un
nombre rationnel. Les coefficients X, X, d peuvent être exprimés
en fonction des coordonnées du point M. Parmi les correspondances

à coefficients rationnels sur cette conique, celles qui
conservent les points I et I peuvent être définies dans tout le plan
et pour toutes les coniques qui passent par ces deux points. Les
formules de ces transformations sont

y' +Qz' + X (y+ + A)
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y' — Qz' — X 4 (y — 0z + X).
P

Elles forment donc un groupe isomorphe au groupe multiplicatif
des nombres de R (0) de norme unité.

Les correspondances ainsi obtenues ne sont pas toutes les

correspondances qui conservent l'abscisse du composé d'un
point de R (0) sur S et de son conjugué. En effet, nous n'avons

pas utilisé toutes les correspondances birationnelles à coefficients
rationnels entre les points d'une quadrique Q. Mais, si nous
considérons les deux droites D3 et D4 situées dans le plan x %,

| nous pouvons construire un nouveau groupe isomorphe au
I groupe multiplicatif des nombres de R (0) de norme unité. De
; même, en utilisant les deux droites D5 et D6 situées dans le
\ plan x =-a2, nous pouvons construire un troisième groupe iso-

| morphe aux deux précédents. On peut montrer que le produit
\ direct de ces trois groupes isomorphes entre eux est le groupe
lj de toutes les correspondances qui conservent l'abscisse du
[I composé de deux points conjugués arbitraires de R (0) sur S.

| Le groupe des transformations qui conservent le composé de

| deux points conjugués de R (0) peut être obtenu comme groupe
| quotient: il est donc isomorphe au produit direct de deux groupes
| isomorphes au groupe multiplicatif des nombres de R (0) de
I norme unité.

5 La théorie de Galois permet donc de montrer qu'un point
rationnel P sur S est le composé de deux: points conjugués de R (0)

j sur S si et seulement si deux fonctions convenables des coordon-
j nées de P sont normes de nombres de R (0). Le résultat final du
1 paragraphe précédent précise seulement qu'on peut choisir ces

deux fonctions égales respectivement à X — ax et X — a2.
4. Nous avons distingué, dans l'ensemble des points rationnels

sur S, le sous-ensemble (P) formé par les points P dont
l'abcisse X vérifie les relations:

X a2 — aß2 X — a, a,2 — aßx2 X — a2 a22 — aß22

avec a, ß, ax, ßx, a2, ß2 nombres rationnels.
Il s'agit maintenant d'étudier les points rationnels sur S

qui ne font pas partie du sous-ensemble (P), c'est-à-dire les
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points M d'abscisse x, tel que l'un au moins des trois nombres xy
x — aly x — a2 n'est pas norme d'un nombre de R (0).

Or la formule qui donne l'abscisse x du composé des points M'
et M":

_ (xf y" — x" y')2, — a (x' z" — x" z')2
x' x" (x' — x")2

montre que cette abscisse x est le produit des abscisses x' et x'r x

de M' et M" et de la norme d'un nombre de R (0). Les formules
analogues :

x a [(^ — ax) y" — (x" — ax) y'Y — a [(F — ax) z" — (x" — ax) z']2
(x' — a}) (xf/ — ax) (x'. — x")2

x a
[(^ — a2) y" —(x" — aa)y'~\* — a[{.x' — a2) z" — (x" — qa) zH2

(x' — a2) (x,/ — a2) (x' — x")2

montrent aussi que x — ax est le produit de x' — aly de x" — ax
et de la norme d'un nombre de R (0), et que x — a2 est le produit
de x' — a2l de x" — a2 et de la norme d'un nombre de R (0).

Répartissons l'ensemble des points rationnels sur S en sous-
ensembles de telle manière que, si deux points Mr et M"
appartiennent à un même sous-ensemble, les quotients:

x' x' — ax x' — a2

x'" ' x" — a±
' x" — a2

'

sont normes de nombres de R (0). Pour construire un tel sous-
ensemble, nous pouvons choisir un triplet de nombres rationnels
d, dly.d2 et considérer tous les points de S qui vérifient les
relations :

X d (y2.— a<$2) x — ax dx (y!2 — aSx2) x — a2 d2 (y22 — aS22)

où y, S, y3," X-l, y2, S2 sont des nombres rationnels arbitraires. Un
triplet d, dly d2 détermine ainsi un sous-ensemble, mais inversement

un sous-ensemble ne définit chacun des trois nombres df
dly d2 qu'au produit près par une norme d'un nombre de R (0).

Les résultats précédents montrent que la composition des

points de S introduit entre ces sous-ensembles une loi de composition:

le composé des deux sous-ensembles déterminés par les
deux triplets d\ d\, d'2 et d", d'\, d"2 peut être défini par le triplet
d'd", d\ d"ly df2 d"2. Ces sous-ensembles forment alors un groupe
pour cette loi de composition. En particulier, le sous-ensemble
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distingué (P) est l'unité de ce groupe; nous pouvons obtenir tous
les points d'un autre sous-ensemble en composant un de ses

points avec tous les points du sous-ensemble distingué (P). On

dit que chacun de ces sous-ensembles est une « classe » de points
rationnels par rapport au sous-ensemble (P).

Mais un triplet d'entiers rationnels rf, dx, d2 ne peut déterminer

j une classe de points rationnels que s'il satisfait à une condition
i que nous allons expliciter. Le produit ddx d2 de ces trois nombres
:î doit être norme d'un nombre de R (0) ; en effet les coordonnées x,

y, z d'un point de la classe vérifie l'équation de S, donc:

y2 — az2 — x (x — afi (x — a2)

ddx d2 y2 — a82) (yx2 — aSx2) (y22 — a822)

D'autre part, nous avons dit qu'une classe ne détermine
chacun des entiers d, dXl d2 qu'au produit près par la norme d'un
nombre de R (0); nous allons utiliser ce facteur arbitraire pour
simplifier d, dx, d2 autant que possible. Or la théorie des entiers
d'un corps quadratique [8] montre qu'on peut distinguer deux
espèces d'entiers rationnels premiers:
1° ceux qui sont normes d'idéaux premiers de R (0);

2° ceux qui engendrent des idéaux premiers du corps R (0).

Tout nombre premier p de la première espèce peut être mis
sous la forme du produit d'un entier rationnel choisi parmi un
ensemble fini (l'ensemble des normes de représentants des classes

d'idéaux du corps R (0) par la norme d'un nombre de R (0).
Si un tel entier divise l'un des entiers d, dXl d2, nous pouvons donc

; le remplacer par un entier choisi dans l'ensemble fini précédent.
,] Tout nombre premier p de la seconde espèce qui divise la norme
j d'un nombre de R (0) figure dans la décomposition en facteurs

premiers rationnels de ce nombre avec un exposant pair. Si un
j tel entier premier p divise le produit ddx d2, il doit soit figurer
j dans la décomposition de chacun des entiers d, dXl d2 avec un
I exposant pair, soit diviser deux au moins de ces nombres. Mais

si p figure dans la décomposition de d, dx ou d2 avec un exposant
j pair, nous pouvons le remplacer dans ce coefficient par l'unité.

Si un tel entier p divise d et dly les relations:

1 X d (y2 — a 82) dl iyP — a 8p) -f ax
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montrent qu'il divise aussi ax\ s'il divise d et d2l il divise aussi a2;
s'il divise dx et d2, il divise aussi a1 — a2.

Ainsi, si un triplet d, dd2 détermine une classe de points
rationnels sur S, il peut être remplacé par un triplet dont chaque
terme est un produit d'entiers rationnels choisis dans un ensemble
fini: ensemble des normes de représentants des classes d'idéaux
de R (0) et des diviseurs premiers de a1? de a2 et de ax — a2. Les
triplets d, dl7 d2 peuvent donc être choisis dans un ensemble fini.
Ce qui démontre le résultat:

Les classes de points rationnels sur S par rapport au sous-
ensemble distingué (P) sont en nombre fini.

Ce résultat est analogue au théorème de Poincaré-Mordell-
Weil :

Les classes du groupe G des points rationnels sur C par rapport
au sous-groupe 2G sont en nombre fini.

5. Les formules:

[Çk[i — ai) X — (X[X — a2) [(Xjjt. — a2) jjl — (Xjz — a3) X]

Y + 0Z

[(\{i — a2) ^ — (V — ai) ^1 L"(Xfx — gi) X — (X[x — a2) ^l] [(X[x — af) X — (X[x — a2) (xj

(Xfx — X{x)3

Y — 0Z

[(Xfx — äff X — Çk[i — a2) [xi [(X[x — äff X — (Xpi — a2) pi] [(X{jl — aff X — (Xfx — a2) ;z]

(X[x — X[x)3

permettent d'obtenir les points du sous-ensemble (P) en fonction
de deux paramètres X et ^ à valeurs dans R (0). Or nous pouvons
exprimer deux tels paramètres au moyen de quatre paramètres
rationnels :

X Xj_ —f— 0X2 [x + 0^2 •

Les formules ainsi obtenues expriment rationnellement les
coordonnées X, Y, Z d'un point P en fonction de Xl7 X2, (jt1? p,2, les
coefficients de ces formules étant rationnels.
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j Toutefois, les paramètres Xl5 X2, [jl2 ne peuvent être expri-
més rationnellement en fonction des coordonnées X, Y, Z et il

I existe même une infinité de tels paramètres pour un même
| point P. Ainsi les points du sous-ensemble distingué (P) s'ob-

tiennent de façon simplement rationnelle en fonction de quatre
paramètres rationnels.

Nous avons dit que les points d'une classe par rapport au
sous-ensemble (P) s'obtiennent en composant un point fixe de

cette classe avec tous les points du sous-ensemble (P). Puisque
les points du sous-ensemble (P) ont été obtenus en fonctions
rationnelles à coefficients rationnels de quatre paramètres
rationnels et que les formules de composition de deux points
de S sont rationnelles, nous pouvons aussi obtenir tous les points
d'une même classe en fonctions rationnelles de quatre
paramètres rationnels. Comme le nombre des classes est fini, nous
obtenons le résultat:

Tous les points rationnels sur S peuvent être obtenus au moyen
(Tun nombre fini de formules simplement rationnelles en fonction
de paramètres rationnels.

Ce résultat diffère sensiblement du théorème de Poincaré-
Mordell-Weil:

Les points rationnels sur la cubique C peuvent être obtenus par
des opérations rationnelles sur les points d'une base finie.

6. Le résultat du paragraphe précédent ne résoud pas entièrement

le problème des points rationnels sur une surface cubique S.

En effet, pour obtenir effectivement une représentation
simplement rationnelle d'une classe de ces points, nous avons besoin
de connaître un point de cette classe. Or nous avons déterminé
les différentes classes par des triplets d'entiers rationnels d,
dx, d2; nous avons obtenu des conditions nécessaires pour qu'un

; tel triplet puisse représenter une classe, mais nous ne connaissons
: aucune condition suffisante pour qu'il en soit ainsi. A fortiori,
| nous ne savons pas obtenir un point rationnel d'une classe

déterminée par un tel triplet.
Le problème des points rationnels sur une surface cubique S

{ pose encore une question ouverte analogue d'ailleurs à la ques-
j L'Enseignement mathém., t. V, fasc. 3. 12



170 F. CHATELET

tion de Poincaré-Mordell-Weil : déterminer les triplets d, dx, d2

qui correspondent effectivement aux classes du groupe G par
rapport au sous-groupe 2G.

Enfin, signalons que les résultats précédents peuvent être
généralisés aux surfaces cubiques de la forme:

y2 — az2 P (x)

où P (x) est un polynome du troisième degré à coefficients rationnels.

Cette généralisation utilise les propriétés des idéaux dans
le corps cubique défini par une solution de l'équation:

P (x) 0
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