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THE POSSIBLE TRANSFORMATIONS OF A REAL
CURVE INTO A CURVE WITH REAL EQUATION
AND PASSING THROUGH THE ISOTROPIC POINTS

by H. G. Green and L. E. Prior, Nottingham (England)

(Recu le 3 mai 1958.)

1. The first problem of this paper is to investigate the possi-
bility of transforming a curve, expressible as a function with real
coefficients of the variables, into a second curve expressible by
an equation in cartesian coordinates with real coefficients and
such that two real points on the curve become the isotropic
points. It should be noted that any real transformation of the
coordinate system will not affect the reality of the equation of
a curve.

Let A and B be two real points on such a curve, and suppose
f(z,y,2) = 0 1s the equation of the curve referred to a real
triangle of reference X YZ where X, Y are harmonic conjugates
with respect to A, B. The lines ZA, ZB are then given by
y + A = 0, where A is some real constant. It is easy to show
that if the equations of ZA, ZB are to become 1y 4+ z = 0, the
necessary transform is equivalent to that in which z is replaced
by z, y by Ay and z by 1z, where the triangle of reference remains
unchanged. X and real points on YZ are the only points
which remain real, and the only real lines which remain real
are YZ and those through X. If we then replace z by unity,
ZA and ZB become isotropic lines, 1y + x = 0, in a cartesian
field with real rectangular axes ZX, ZY. A and B are now the
isotropic points in this field.

Suppose that in the original field we have a non-degenerate
curve of degree IV with real coefficients and of the form

(x: Y, Z) = (UO xN _I_ U2 xN_2 '+' U4xN—4 + ) _{_ (Ul xN_1 +

+ U™ + U2™% + ) =0.
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where U, is homogeneous of degree r in y and z. After the
first transform the curve has equation ‘ |

(g 2™ — ug 22 + uga™* — ) + o (uy 2™ — uga™? +

B u5xN'5f——.;.) =0,

where u, is homogeneous of degree r in y and z and with real
coefficients. Hence, if the curve is to transformx finally into
one through the isotropic points and whose equation.has real
coefficients, the equation must initially have the form when
N =2n

| Upa®™ + U, 2®™? + ... ... + Uppo2?+ Uy =0, (1)
and when N = 2n + 1
U 2™ + Uga®™? + ... .. + Uy yq 22 + U2n+1 =0. (2

In the first case all the odd polar curves with respect to X
have x.as a factor, with YZ as the polar line of X. In the
second case the curve passes through X, which is an inflexion:
the odd polar curves with respect to X have x as a factor (corres-
ponding to the line YZ), the remaining part of the (2n — 1)th.
polar being the inflexional tangent U; = 0. We will refer to
YZ as the conjugate line of X in each case. If the curve has a
multiple point of order & at X, its equation if of the form

U,a™* + U, a™ "2 + .+ Uy, =0,

with V— Lk even. The (k -+ 1)th. polar curve of Xis U,z = 0,
that is the tangents at the multiple point (of necessity inflexional)
and the conjugate line. _ .

- Rewriting the equations in descending powers of z, we have

Voz " + V22"t .+ V,nzzn_ﬁ’{‘ e ‘V2'n =0, (3
or
Vort™ L V2" L VBT LV, =0, (4)

where V, is homogeneous of degree r in x and y. Since only =
even powers of x occur it follows that V., is of the form
r/2 ) 4
11 (as2* + b,y?) when r is even,
1
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or

r/2
yII (ag2® + bgy?) when r is odd.
'1-' /

Hence the set of points on XY, other than X, given by any
V., = 0 form an involution with X, Y as double points. In
particular the points of intersection of the curve with XY,
given by V. = 0, have the same property. The expression of
42 — 2222 on which the transformation was based will be a
factor of V, that is one at least of the expressions a,/b, 1s
negative, and A, B are any pair of points corresponding to such
a factor a, 22 + b,y? It follows that any curve with real
equation which satisfies these conditions can be transformed
into a circular curve with real equation. '

2. Consider the intersections of any curve of this type with
the line py + gz = 0, joining X to any point P on YZ. Their
joins to Z are given by an equation of the same form as V; = 0,
and hence the intersections, other than X, form an involution
with X and P as the double points. .It follows at once that if P
is a 2k + 1 ple point on the curve XP is a tangent to one of the
branches. We shall refer to any real point having the properties
of X with respect to the curve as a pole. We have now shown
that, given a pole, any real point on the curve and 1ts mate in
the involution cut on the line joining the point to the pole can
be transformed into the isotropic points, giving a circular curve
whose equation has real coefficients.

If V, occurs in the equation of the curve, the equation of
the (V — r)th. polar curve with respect to Z is of the same
form as (3), (4): if V, does not occur the equation of the
(N — r)th. polar curve with respect to Z contains z to some
power as a factor and the remaining part is of the same form
as (3, 4). X is therefore a pole of the (IV — r)th. polar curve
of Z or of the remaining part of it, as the case may be, where Z
1s any point on the conjugate line of X. Hence since the first
polar curve of Z passes once through each node and not, in
general through a point of contact of a tangent from X, a node
and such a point of contact cannot be paired together, and
similarly for other singularities. The case of two nodes collinear
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with X in which one of them only has XY as a tangent similarly
cannot arise. The two points which are to become the isotropic
points must therefore be of exactly similar type. Further any
isolated singularity must be at X or on YZ. |

It should be noticed that in the case of a curve of even degree
containing only even powers of z a pole at X implies also poles
at Y and Z. ,

3. The second problem is to discuss the possibility of a second
pole not on YZ. From the preceding results it follows that the
form of the equation of the curve having a pole at X is unaltered
if the triangle of reference is defined by X and any two real
points on YZ. If the curve has a second pole X; not on YZ,
we can therefore take it as lying on XY with Z the common
point of the conjugate lines of X and X,. The intersection of
these lines cannot be at Y since in that case X, ¥ and X;, Y
would be double points of two involutions among the same
points (projecting Y to infinity, X and X; would both become
the mean centre of the same points). The conjugate lines of X
and X, are therefore distinct and lead to a definite point of
intersection Z. .

It follows at once that the points X and X; are poles for
all polar curves with respect to Z of the initial curve and lie on
all such curves of odd degree. The points of intersection of
V.= 0 with XY for any value of r (but excluding X -if r is
odd) may therefore be paired as an involution having X as a
double point (the other double point being Y) or, alternatively
excluding X if r i1s odd they may be paired as an involution
having X; as a double point. In this case the second double
point is the intersection, Y;, of the conjugate line of X, with XY.
Further, since a real point cannot be paired with an imaginary
point in any involution with real double points, nor can a point
of simple intersection be paired with one of multiple intersection,
the various.types of points must be grouped together to form
sub-groups. Each sub-group must separately form involutions
with X, Y and X, Y, as double points. The expression leading to
a sub-group of s points will be denoted by ¢, having the same form
as V, and

V,=9,.9,... Where r=s-F+1t+ ..
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in which some of s, ¢, ... may be equal. The existence of a
second pair of double points X, Y, entails further restriction
on the form of ¢,.

Project Y to infinity and pairs of points on XYV given by
¢. = 0 become symmetric with respect to X.

P, X Py X Y, —s

FIGURE |

Taking r = 2p 4+ 1, X; is a point of ¢, and since there must
be o points between X; and Y;, X must separate X; and Y.
Taking r = 2p (p > 1), X divides the points into two equal
groups (o) and (B) and X;, Y, are the double points of an invo-
lution among («) + (f) in some order. If X; and Y; are not
separated by X, let them be on the side of the group («). Since
there must be p points of ¢, between X; and Y,, they must be
the points («). The harmonic conjugates with respect to X,
Y, of an ordered set of points from X; to Y, are external to
X; Y, and in the reverse order, that is they are the set (B).
Any point of () 1s therefore paired with the same point of (j)
in both involutions and therefore the premise is incorrect and
X must separate X; and Y,. Let one of the intersections of
the perpendicular to XY at X with the circle on X; Y, as dia-
meter be y. Since X 1s between X, and Y, this point is real.
Draw any circle through y with its centre, O, on the normal Xy
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produced through y, and meeting the normal again in z. Denote
any point of the involution by P, where 21 — 1, 2] are the suffixes
of a pair of the involution with double points X and Y. In the
~odd degree case X 1s itself a point of ¢, = 0 and may then be
denoted by P,. Projecting from y as vertex on to the circle
points P, will give points p, which form corresponding involu-
tions on the circle. The centre of the involution on the circle
corresponding to the involution with X, Y as double pointsis Y
at infinity. Xj, Y; become points z;, y; at the ends of a dia-
meter of the circle, and therefore the centre of this involution is
at infinity in the direction perpendicular to z; y;, and the joins
of pairs of points of the second involution on the circle must be
parallel to this direction. Let the angle between the directions
of the two centres of involution which equals yOx, be B. Let
yp, subtend the angle 6, at the centre of the circle.

(1) Even degree, ¢, (r > 1). .
From the involution on the circle formed by the parallel
chords through Y

............

05,4 + 6y, = 0 (mod 2r) , (5)
and adding

2r _
1

Pairing for the involution defined by the double pomts X and Y,
we have snnﬂarly, from parallel chords, r equations

6, + 6, = 2B (mod 2r) (6)
in which ¢, ¢’ take the values 1, 2, 3, ... 2r (¢t = t'). Hence

28T ST

p =" =%,

where s can take any one of the values 1 to r — 1.
If p, is the mate of p, in the first involution and of p,, in
the second, we have
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6, + 6, = 0 (mod 2w) , 6, + 6, = 2f (mod 27:). ,
0, —0;, =28 (mod 27) ,

and the angle between yp,, and yp, is the constant 3 of the
second involution. Since B can take r — 1 values, it follows
that if there are two involutions among the 2r points, there
are r involutions.

The argument used to prove that X separates X;, Y, also
demonstrates that between any two successive points of ¢,,
there cannot be more than one double point (X or Y) of the
possible hyperbolic involutions. Hence the r involutions now
determined form the complete set of hyperbolic involutions
among the points.

(ii) Odd degree, ¢,,.;.

It has already been shown that in the odd case any pole is
itself a point of the group and is a double point of an involution
among the remaining points. Without any loss of generality
we can therefore take X at P, and any possible second pole X,
at P;. Then for the first involution we have 6, = = (mod 2r)
in addition to equations (5). For the second involution we have
0, = B (mod 2x) in addition to equations (6) in which ¢, ¢' take
the values 0, 2, 3 ... 2r, (t = ¢). This finally leads to
’ 25 + 1
‘.r + 1
where s can take any of the values O to 2r. Hence 1f two invo-
lutions can be formed in this manner, 2r + 1 involutions can
be so formed. - Also the angle PyyP; for any P, is a value of
(r — B)/2.

There are 2r 4+ 1 positions for the pole X and Y is fixed
uniquely as the harmonic conjugate of X Wlth respect to the
two points -of ¢, ; nearest to X.

4. We now determine the basic algebraic forms for ¢,. Sup-
pose P is any intersection of ¢, with XY of the triangle XYZ,
given by a factor mx —y = 0 of ¢,. Then when YZ is pro-
jected to great distance P on XY is given by m —y = 0.
Hence the corresponding factor of ¢, in the XYZ field is

zsin 6 — y cos 6, where 6 = < XyP, apart from a possible
scale adjustment.

B--_

L’Enseignement mathém., t. V, fasc. 2. 7
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(i) It has been shown that for all polar curves, ¢, = 0, of
degree > 2 with more than one pole the centres of the involu-
“tions on the circle are at great distance. A curve may also have
a polar curve of degree 2, ¢, = 0, and hence for ¢, we only
consider possible centres of involution at great distance.
Since the join of the two points on the circle has to pass through
two points at great distance, the two points themselves must be
at great distance and are therefore the 1sotropic points and

P, o 22 4+ y* .
Any other point on the line at great distance is a possible centre.

(ii) ¢y, (r > 1) with the corresponding points on XY all real.

Denote the angle Xy P, where P is any of the points, by J;
then

-1
0o oc];)[ [xz sin? (8 + S—r—n) — y? cos? (8 =+ S;)] '
: r—1 |
a (22 + y?)" [1 [cos <2 s +
0

28w
r

) — €08 2 (I)} where tan @ = y/z ,

o (2 + y?)" [cos 273 — coS 2\r<I)] ,
2r(2r —1)

o (2% 4 y?)" cos 278 — 2* [1 o 2] e
+E(2r—1)(221—2)(2r—3)tan4(I)...],
o (2 + y*)" cos 2r8“—|:932r—‘g—r—(zzil———ﬂxzr—zy2
2r(2r—1)(2r —2)(2r— 3
ST TE]L I Y S |

(iii) ¢, (r > 1) with the corresponding points on XY all
imaginary and distinct.

- The product of z sin (6 + STw) + vy cos,(e + %E), where
O=p -+ g (p and ¢ beihg real and ¢ # 0), and its conjugate
gives the expression

(2 + y?) [cosh 24q — cos (@—]—p +37n)]/2 '

where tan ® = y/x. Giving s the values 0, 1, ... (r — 1) the
product of the resulting expressions is proportional to
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(x2 + y?)" [cosh 2rg — cos 27 (® + p)]

2r(2r — 1

= (2% + y?)" cosh 2rg —cos 2rp [9:27' — _7'(+_)x2r-2 y? + ]
. . 2r—1)(2r—2 ¥

—{—ysm2rp[2rx2r1—2r( ! 3)1( r )x2r3y2j+‘-...:,.

Now ¢,, contains even powers of x only, and hence we must take
p = tw/2r, where t is an integer, and cos 2rp = + 1.
Giving s 1ts run of wvalues and ¢t = 0, we get from

2 sin (6 + s;) + y cos (6 + %E) one set of points and a second

set from their conjugates. Changing ¢ by an even number
interchanges each set within itself: changing ¢ by an odd
number interchanges the sets completely. Hence it is sufficient
to take the two values 0 and 1 of ¢, obtaining for v,

(2 4+ y2)" cosh 2rq — |2® — szr'2 y? + - (t=0),

or

(* + y*" cosh 2rq -+ _xzr — 211_2_2(1:_1_):62,._2 y? + t=1).
(The mate of a point s in one set is given by s’ = 2r — 4t — s
in the other.)
An inclusive form for ¢y, is
alz® + y?)" 4+ b [xz" — 2—"<2—2"!—_—1—)x2"“2 y2‘+ ] ,
(iv)  ¢g,,4 With the corresponding points on XY all real and
distinct.

. — s T (r—s)=m

., (r
2 oin2 2 2 Bl
ozriocy|0| [x sin 7 1 y? cos r 1},

r-1
o o (r—3s) ™ Ly\?
ayx lg[[tan STEwE —l—(x)],
(x+ Ly)2r+1——(x——ty)2r+1

* 2t ’

and .

Ogriq XY [:czr.— 2—(2—;'——1) a2y ] .
We have so far considered only the basic forms of ¢. We now
consider the possible combinations and special forms of ¢ which
may occur in a complete V.
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5. If some of the intersections of V, are real and some are
- imaginary (all’ being supposed distinct), then V, must be
replaced by V, V,, where V, is built up from basic ¢'s with
real intersections and Vr_s from basic ¢’s with imaginary inter-
sections. |

The points. of a V2r will not be distinct if for some value or

values of

S,s,8 (s #£s)
tan (3 + sn/r) = £ tan (8 4 &' xfr) ,
that 1s _ , ‘
5 4 sw/r = + (8 + s’ w/r) (mod =) ,

or |
‘ 2rd = 0 (mod =) .
This implies that the points are all repeated and are at r alternate
poles of ¢,,.  These points may be given by a (¢,)? with-cos ré=0,
cos 2rd = — 1 in the case when r is even or with cos 2rd = + 1
when r is odd, and must then be replaced by ¢,,.

Agam 0, to any power may occur in V and for V, we must
have ¢4 V, o).

The modifications required for any combination or extension
of these circumstances or for peculiarities of higher orders are
manifest. It can readlly be shown that b "

2p(8> 2p(8+—) " p( (qp;)> ova(®) ’

where the portlon of the sufﬁx in brackets denotes the value of

“§7” for the attached ¢,, and defines the position of the points

of the involution. The corresponding factor of ¥ is then ¢y,
It can also be shown that

“ap+1) ‘2@ D{mi@p+ D@+ 0} "2@p + D {rriepDEr D T PEp D@1

If p, ¢ are odd.and pris Pprime the expressions ¢, and ¢,,
cannot have a common factor unless the p poles of ¢, are points
of Vo

V.and ¢, wﬂl be referred to. as s of order r and are homogene—
ous of degree r in z-and y. | B

6. ‘We now .consider the assemblage of terms which form
f(z, v, z), Za, V.77, where the s are constants, and the Vs
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are of the forms previously specified. Possible involutions
determined by each V, may be displayed on a circle, and the
only possible poles for the complete curve are given by the
common involution centres of all ¢’s which occur. The iso-
tropic points given by ¢, = 0 belong to every involution. The
number of possible poles is therefore equal to the highest common
factor, p, of the orders of the ¢’s, not including ¢, and its powers.
This implies that for any p the form of V imposes conditions on
the existence or the form of any V,_,. If pis even the number
of involutions is p/2 and both double points of each involution
are possible poles, and the conjugate line of any such point
meets XY in a possible pole. If p is odd the number of invo-
lutions is p, and only one double point of each involution is
a possible pole: the intersection of the conjugate line of such a
point with XY is not a pole. A possible pole will actually be
a pole 1if its conjugate line passes through Z.

The form of the function can be slightly modified by a real
scale change.

7. Consider a curve having a pole at X and with a multipli-
city of order £ > 0 at X. From the basic forms (1) and (2) if
the curve 1s of even degree, k& must be even and if the curve is
of odd degree, £ must be odd. In both cases NV — £k is therefore
even. We will also suppose that there are further possible poles
on XY. Since X is a k-ple point no powers of z greater than
N — k may occur in the equation of the curve and this power
must occur.

Vori © 0 to k, 1f it occurs, must contain y to the power ¢
at least as a factor and “ at least ” must be replaced by exactly
for one or more values of . A V which contains 7' as a factor
is necessarily the product of @ ¢’s of odd order 2m, + 1, s 1 to «a,
and b ¢’s of order 2 (2n; 4 1), s 1 to b, cos 2 2n 4 1) § = 1,
where a + 2b = t. The total number of poles (actual and
possible) on XY is a factor of 2m, + 1 and 2 (2n, + 1) and
hence this number may be taken as p or 2p where p is odd.
From paragraph 5 it follows that ¢, is a single factor of each of
the a ¢’s of odd order and a repeated factor of each of the b ¢’s
of even order, and the corresponding V is the product of (¢ 0p)t
and an expression w. We can now write the equation of the
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curve in the form

f(x,y’Z)anz +O€2z ()2+ —-[—OCNklz 1VN"h_1

t=F
+ Z U pst #t (010)“rT w, =0,
t=0

where © 1s zero or a positive integer for each term. A term
containing 2" is obtained when v is zero and must occur at
least once. ‘
If P is any possible pole on XY and P’ its conjugate phase
point, then the harmonic conjugate of X with respect to P, P’
is also a possible pole and a k-ple point. Hence when the number
of possible poles on XY is odd every such point 1s a k-ple point
and when the number is even every alternate point is a k-ple
point. In each case these possible poles (at k-ple points) are
the intersections of XY with ¢, = 0. Let X' (z": y": 0) be such -
a point. The tangents at. X’ are given by

<X——+Y + Z )hf(x,y,z)::O,
and these together with the conjugate line of X' are given by
R+
(X_+Y +Z ) f(x’y7z)=Oa

where z, y, z, are replaced by ', ¥', o after differentiation and
X, Y, Z, are here used to represent the current coordinates.
Now | '

? 0 ONR kot \trT,,
<Xﬂ + Y@ - sz) 27 (o) "y
k!

_ k-t 0 b)t t+7
_(T—TTZ (k——m(XB—xgrY@ (o) w0,

on putting z = 0 after differentiation. The expression

( 5z T ¥ y) (og) "™
vanishes except when © = 0 since ¢, = 0 when z = 2', y = y’.
‘The tangent form is obtained from those values of ¢ for which
‘the corresponding <’s are zero. If ¢’ is the least of these values,
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the highest power of Z is k— ¢’ and the tangents consist of £ — t
lines not through Z and X' Z counted ¢’ times.

Now V., is of odd order, hence if the number of possible
poles is odd the term oy, 2" V4 either contains ¢, as a
factor or ay 4 = 0, and if the number is even ay, ; must be
zero. In either case the term does not appear after the substi-
tution of z,, 7, for x, y and therefore makes no contribution to
the tangent and conjugate line form. We now obtain

9
oy

4+ 1)] ]Zh't(k——t)l<Xi+ Y
ox

i+1 t+7
¢+ )1 (k—q] ) (ol

leading in exactly the same way as before to & — ¢’ lines not
through Z and X' Z counted t’ times and aline also through Z.
This last line must be the conjugate line of X'. It follows that
the conjugate lines of all the possible poles on XY pass through Z,
a point determined previously by the conjugate lines of X and a
specific pole X;. Hence all the possible poles are actual poles.

Special forms of the V’s can lead to multiple points on XY
which are not poles.

8. The general problem of the total number of poles or of
their distribution has not been solved. From the degeneracy of
the first polar curve with respect to any pole P into a curve of
degree N — 2 and the conjugate line, the Steinerian must have a
multiplicity of order N — 2, or equivalent singularity, at P.
There is therefore, in general, an immediate crude finite limit
to the number of poles. When N is odd another limitation is
provided by the number of real inflexions. It has been possible
however to obtain some detailed information concerning pro-
perties and numbers for certain types of curve.

We show first that any curve of even degree whose equation

1s symmetric in 22, y2, 2% has nine poles on the sides of the triangle
of reference. It’s equation can be written as

J r.s .t __
Dagsyssss =0,
where

s; = 2% + y? + 22 | Sy = Y2z 4+ z2a? + 22 y? Sg = a2 y? 22 .

It clearly has poles at X, Y, Z.
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Making the transformatién

4

=z, yY=y+z, F=y—z,

leads to an equation of even degree in 2, ¥, 7/, and the curve
therefore has poles at X' (which is' X), Y’ and Z’, the vertices
of the new triangle of reference. Referred to the original triangle
the curve has poles at (0: 1: 1) and (0: 1: — 1). Similarly there
are poles at (1:0:1), (—1:0:1), (—1:1:0) and (1:1:0).

ZI

FIGURE 2.

These six new poles are collinear in threes and the lines through
them form a quadrilateral of which X YZ is the harmonic triangle.
Any triangle of type XY’ Z’ is such that each side is the polar
line of the opposite vertex and referred to such a triangle the
curve has poles at its vertices and at points not on the sides.
We have established that if there are r poles on a straight
line they can be transposed on to a circle to form an equispaced
system of points. If ris even and p is the transpose of a pole P,
the point p’ diametrically opposite to p is also the transpose of
a pole P’. If r 1s odd, the point p’ does not correspond to a

‘pole but to a point P’ which is the double point corresponding

to P of an involution formed by the intersections of the curve
with the given line. In either case the conjugate line of P
passes through P’ and that of P’ through P. Any such point,
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P or P’, will be referred to as a phase point, and.if two phase
points are such that the conjugate line of each passes through
the other they will be termed conjugate phase points. From
consideration of the circle it follows that if Q is a phase point,
not necessarily a pole, then its harmonic conjugate with respect
to P, P’ is also a phase point such that both points are poles or
neither are poles. It is obvious for the circle and therefore for
the line that when r is odd the poles alternate with the remain-
ing phase points.

FIGURE 3.

Suppose there are r poles, R, on a line [ and that H is a pole
not on the line (see fig. 3). Let % be the conjugate line of H meet-
ing [1in 0 and let & be the harmonic conjugate of I with respect to
O and k. Then from the previous theorem the join of H to any
- pole R meets kin a point R’ which is also a pole, and hence there
are exactly r poles on % since the process is reversible. If O is
a pole, its conjugate line will pass through H and hence meets %
in a pole H'. The conjugate line of H' is OH and its k& line coin-
cides with the k line of /7.~ HH' will pass through a phase point
on [ which will be a pole only if r is even.

- Suppose P, P, Py P, Py is a regular pentagon with circum-
centre Z and let the regular pentagon formed by the joins of

T e
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alternate vertices be Q; Q, Qs Q, O, with P, ZQ, collinear. Let
the point at great distance on.the side opposite P, be X, and
the point at great distance on P, Q, be Y.. Suppose a curve
can be drawn symmetric about the five lines ZP, and with a
pole at P; with corresponding conjugate line @, X;. By
symmetry all the P.’s are poles. The k-line of P, Q5 Q; P, X
~with respect to the pole P, is X, P; Q; Q, P;, the joins of corres-
ponding points passing through P,. Hence X, Qs, Q,, X, are
poles and by symmetry all Qs and X’s are poles, giving a
closed system of poles. Since P; Q; X; is a self polar triangle
with all the vertices poles, the curve is of even degree. The
~configuration has poles not on the sides of a basic triangle but
no algebraic curve has been found to satisfy the primary condi-
tions. :

The joins of any pair of conjugate phase points on XY to
y (fig. 1) are at right angles and therefore after projecting XY
to great distance from y, the pencil of 2¢ lines joining Z to the
phase points on XY forms an orthogonal involution. Calling
the phase points taken in ordered sequence Zy, Z,, Z,, ... Zy,,,
the lines ZZ,, ZZ,,,. are at right angles. Since the conjugate
of Z. with respeet to Z, and Z, 1s Z,, ., the lines Z2Z,, 27, ,
are equally inclined to ZZ,end ZZ,. All suffixes are mod 2g.
The 2¢ lines therefore form an equi-spaced system, the angle
between any two successive lines being w/2g. Let L be any
point on the curve and let Z, . be a pole. If L’ is the image
of L in ZZ,, the conjugate line of Z ., then ZL, ZL' are har-
monically separated by ZZ,,,, ZZ, and L' also lies on the curve.
The curve is therefore now symmetrical about the conjugate
lines of all the poles at great distance. If H 1s any other phase
point, necessarily finite, its kaleidoscopic images in these con-
jugate lines are, from the symmetry, also phase points and of

the same type.
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