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SUR LES POLYGONES
ET LES POLYEDRES REGULIERS ENTIERS

par E. EarEART, Strasbourg

(Recu le 18 avril 1959.)

Un polygone ou un polyédre est dit entier si tous ses som-
mets le sont, c’est-d-dire si ces points, rapportés & des axes
rectangulaires de méme unité, ont pour coordonnées des nombres
entiers. Nous nous proposons de chercher les polygones et les
polyédres réguliers entiers et démontrerons & ce sujet les sept
propositions suivantes:

1. Dans le plan XOY tout vecteur d extrémités entiéres est le cété
d’un carré entier. '

Car les vecteurs (a, b) et (— b, a) sont égaux et perpendicu-
laires.

2. A part ces carrés, il n’existe dans le plan XOY aucun poly-
gone convexe régulier entier. -
. 27 ,‘ , Sy B 3% , .
So;t ¢ = — l'angle formé par un c6té d’un polygone régulier

entler & n sommets et le prolongement du c6té consécutif. Les
m’ — m

pentes m, m’ de ces cotés étant rationnelles, X = tg o = E—

Iest aussi.
a) n est impair. tg no = tg 2r = 0 donne
n-1
CLX—CX +CX° 4. 4+ (—1)2% Xn=0.

Les seules racines rationnelles non nulles que pourrait avoir
cette équation & coefficients entiers sont donc les diviseurs de
. 9 : :
n=C,.0r0< thn < 1sin>9 et I'on sait que th—nTEest

irrationnel pour n = 3, 5, 7. |

- L’Enseignement mathém., t. V, fasc. 2. 6
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b) n= 2*n" (« entier, n’ impair). — Si le polygone était
régulier entier, il existerait un polygone de méme nature ayant
n' cotés. |

¢) n = 2% (« entier > 2). — Il existerait un octogone régu-

2 y s .
% est irrationnel, tandis que le

cosinus de I’angle des vecteurs-cotés (a, b), (a', b') est flzzj;—[;f

lier entier. Or on sait que cos

donc rationnel.

3. Les seuls polygones réguliers entiers de U'espace sont des carrés
et des triangles équilatérauz.
Comme dans la proposition 2, il ne reste qu’a examiner le

cas de n impair. Pour l'angle ¢ des vecteurs-cotés (a, b, c),
(a', 0, ¢)

(b’ — b’¢)?2 + (ca’ — ¢’ a)®* + (ab” — a’ b)?
(aa” + bb'+ cc’)?

X =tg?o =

est rationnel et doit étre racine de 1’équation a coefficients

entiers
n-1 n-1

C—CX+CX 4.+ (—1) X2 =0,
Les racines rationnelles possibles sont les diviseurs de G, = n.
- Or tg? —2;; <1sin>9, et Pon sait que tgz %n est irrationnel

pour n =5 et n = 7.

4, Il n’existe ni dodécaédre ni icosaédre régulier entier.

Les faces du dodécaédre régulier sont des pentagones régu-
lrers. Les faces issues d’un sommet de l'icosaédre sont cinqg
triangles équilatéraux dont les cOtés opposés & ce sommet
forment un pentagone régulier. Or on a vu qu’'un pentagone
régulier ne peut étre entier.

5. Tout cube entier donne deux tétraédres réguliers entiers inscrits.

Si ABCD, A’ B’ C’ D’ sont les bases du cube, ces tétraédres
sont AB"CD’ et A’ BC' D. Tout cube entier donne un octaédre
régulier entier par inscription et, éventuellement, une homothétie
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de rapport deux centrée & Porigine, car les centres des faces du
cube, sommets de 'octaédre, sont des points entiers ou semi-
entiers.

6. Réciproquement, tout téiraédre régulier entier donne un' cube
entier par circonscription et, éventuellement, une homo-
thétie de rapport deux centrée & 1’origine.

Soit AB’ CD’ le tétraédre. Pour construire le sommet A’
par exemp]e du cube circonscrit, remarquons que AA’ est équi-

pollent & MM/ qui joint les milieux de AC et de B’ D’. A’ est
donc entier ou semi-entier puisque la composante scalaire de
MM’ sur OX, par exemple, est —;— (X, + X, — X, — X))

De méme fout octaédre régulier entier donne un cube entier par
circonscription et, éventuellement, une homothétie de rapport
deux centrée a ’origine. — Soient ABCD, A’ B’ C' D’ les bases
du cube circonscrit. Les centres N, N, P des faces ABCD, ABB’A’,
BCC’ B’ et les centres M/, N’, P’ des faces opposées sont les
sommets de 'octaédre. Le sommet A, par exemple, du cube est
un point entier ou semi-entier, car son abscisse, par exemple, est

Xy + 5 Xy — Xy) + 5 (Xp — Xp).

7. 1l existe deux familles de cubes entiers a trois paraméires.

Nous ne distinguons pas deux cubes déduits 'un de Pautre
par une translation entiére ou par une méme permutation des
trois coordonnées de chaque sommet.

—_— —

Famille A. Le cube construit sur les vecteurs OA, OB,

"-OC de composantes scalaires (a, b, 0), (— b, a, 0), (o, o, ¢) est

entier si les entiers a, b, ¢ satisfont ¢ = a? 4+ b2 On sait que
cette équation diophantienne a pour solution générale a = k
(m? — n?), b = 2kmn, ¢ = k(m* + n?, ou k, m, n sont des
entiers arbitraires (& I’échange de a et de b prés).

Famille B. Le tétraédre construit sur les vecteurs 6K

(a, b, c), OB (b, c, a), 0oC (¢, a, b) est entier et régulier si les entiers
a, b, c satisfont |

cos (OA, OB) = C;Z;_—ll:zgi?:%
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Cette équation diophantienne, équivalente a

2ab+2bc+20d~a2—b2—02=0
ou :

(Va + 45 + 1¢) \/a+\/b+x/_ \/a——\/b+\/)
\/a+\/b—\/_

est satisfaite par

a=(m—n)?, b=m?, c=n?.

Le cube circonscrit au tétraédre OABC est entier (et non
semi-entier). On voit en effet facilement que les composantes
scalaires des bimédianes NM’, NN’, PP’ du tétraédre sont
entiéres quels que soient les entiers m, n et leurs signes. Une
homothétie de rapport entier k, centrée a I'origine, introduit le
troisiéme parametre.

Eziste-t-il d’autres familles de cubes entiers a trois paraméires ?
Nous soumettons au lecteur cette question que nous n’avons pas

pu trancher.

Remarque I. La mesure de Uaréte de tout cube entier est
un nombre entier. Pour les cubes A et B on le vérifie facilement.
En effet, si X est la mesure de I'aréte, A donne X = ¢ = K
(m? 4+ n?) et B fournit 2X2 = OA2 = K2[m* + nt 4 (m — n)?4]
= 2K2 (m% — mn + n?)?, donc X = K (m? — mn + n?).

Montrons dlrectement que la propriété appartient a tout
cube entier. Soient v (a, b, c), i (a', b, ¢') deux vecteurs d’ori-
gine O, a extremltes entiéres, égaux et perpendiculaires. Le
Vecteur; —V X ' a pour composantes scalaires A = bc —b'c,
B = ca’ — ¢’ a,C = ab’ — a’ b. Les longueurs p, ¢ de p, v sont
liées par p = ¢ ou |/ A% + B2 ;}— C2=a%+4 b2+ 2 Si
- M (z, y, 2) est un point du suppbrt de p tel que OM = ¢, on peut
écrire o |

L i

Si M est un point entier, le premier membre de cette égalité est
‘rationnel. Le dernier doit donc I'étre aussi: a? + b% 4 ¢ est un

carré parfait.
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Remarque II. La proposition 7 fournit des solutions de
deux systémes diophantiens symétriques homogénes. La recherche
des carrés entiers de I’espace est équivalente a la résolution du
systeme diophantien | |

‘X-2—I—1Y2+Z2=X’2—}—Y’2+Z’2

(1)
XX+ YY + ZZ' =0,

qui exprime que deux vecteurs & extrémités entiéres, sont égaux
- et perpendiculaires.
La famille des cubes A fournit en particulier la solution

X=Km—n), Y=2Kmn, Z=0,
X' =0, Y =0, 7 = K (m* + n?).

La famille B donne

X=Km—mn), Y = Kmn, = K (n? — mn) ,

X' =K(@n?—mn), Y =Km—mn), Z = Kmn.

De méme la recherche des triangles équilatéraux entiers de
Pespace conduit au systéme diophantien

| X2 X Y2 Z2 = X2 + Y2 4 22 = 2 (XX' + YY' + ZZ). (2)
On voit la solution par B

X=K(m—n)2, Y = Km? Z, = Kn?
X" = Km?, Y = Kn?2, Z' = K(m—n)?.

Par A on trouve

X=K(m*—n?, Y =2Kmn, Z = K (m? + n?) ,
X' = —2Kmn, Y = K(m?—n?, Z' = K((m?+ n
et aussi

X =K (m*—n?), Y = 2Kmn, = K (m? + n2) ,

X'=K(m*—n?—2mn), Y =K (m*—n?+2mn), 7' —
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