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CALCUL D'UNE INTÉGRALE DOUBLE
PAR DEUX INTÉGRATIONS SIMPLES SUCCESSIVES

(INTÉGRALE DE RIEMANN)

PAR

Michel Godefroid (Montpellier)

(Reçu le 15 juin 1958)

Nous nous proposons d'établir le résultat suivant: soit f (x, y)
une fonction bornée intégrable au sens de Riemann dans le carré C

de centre 0 de côtés parallèles aux axes et de longueur 2a. Pour
toute fonction F (x) satisfaisant sur [—- a, a] aux conditions

f_a f (s, y) dy < F (x) < / (x, y) dy

^J et J intégrales sup. et inf. de Darboux^

F (x) dx existe et est égale à JJc f (x, y) dx dy.

Pour démontrer ce résultat, nous nous appuierons sur les

inégalités suivantes: pour toute fonction g bornée dans C,

et

J Jc £ (s, y) dx dy > dx g (x, y) dy

\ïg (x, y) dx dy < (a dx fa g (x, y) dy
J u c J —CL J —Ci

Démontrons, par exemple, la première : divisons G en n2 carrés

partiels par les verticales d'abscisses x0 — a,x± —- a + ^
xn_{ a — ~ xn a et les horizontales d'ordonnées

analogues. Soit a une valeur quelconque de [x^ xi+i] ; M^ désignant
la borne sup. de g sur le jeme carré pour la numérotation par
colonnes verticales successives,

n(i+1)

g (x, y)dy < 2 Mj •

: 3=1 +ni
j:
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Ceci étant'vrai, pour tout a de [xi9 #i+1],

~ra r 2
1

dx f g (x, y) dy < 2 Mj *

J xt J -a - j=i +ni

En formant la somme pour tous les intervalles (xi7 xiH), on

obtient
~Ta ~fa 4 a2 ^I dx j g (x, y) dy < — ^ Mj •

J -a J -a

Mais le deuxième membre peut être-rendu arbitrairement voisin
de

JJC g («> 2/) dx'dy

d'où le résultat annoncé.
De ces inégalités résulte, si / est intégrable dans C,

P dx P f (x, y) dy f f / (a?, y) dx dy P dx Ja f (x, y) dy
J_-a J_-a J J c J -ci J -a

donc, si F (x) satisfait aux conditions indiquées,

~Ja F (x) dx f"a F (x) dx

ce qui signifie que F est intégrable sur le segment (— a, a), son
intégrale étant égale à

J Jc / (*, y) dx dy

De plus, l'ensemble des valeurs de x pour lesquelles

P / (*, 2/) dy ^ Ja f (x, y) dy
—Cl J —CL

est la réunion des ensembles où

f" f (x,y) dy > f° f (x, y) dy + — entier > 0.
*> —ci J —a p

Ces ensembles (en infinité dénombrable) sont chacun d'étendue
(intégrale de Riemann de la fonction caractéristique) nulle.
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Le résultat indiqué s'étend immédiatement au cas classique
de l'intégrale d'une fonction continue sur un compact convexe K,
il suffit de considérer un carré C contenant K et de prolonger /
par 0 hors de K, ce qui donne une fonction intégrable sur C.

** *

Légèrement affaibli, notre énoncé signifie que

JJc / l*> y) dxdyJ"a dx J"a y) dy

chaque fois que les deux membres ont un sens (selon la définition

de Riemann). On peut se demander si l'existence du second
membre entraîne l'existence du premier. Il n'en est rien, comme
le montre l'exemple suivant soit un une suite de rationnels de

[— 1, 1] partout dense sur ce segment, E l'ensemble des points
de coordonnées ^,uq1q>\p\>0 entiers premiers entre eux,

/ la fonction caractéristique de E. On vérifie que sur toute
verticale il y a au plus un point en lequel / ^ 0 d'où

P dx ja / (x, y)dy 0
J -a J -a

Sur l'horizontale d'ordonnée ~ il y a au plus 2q points en lesquels

f r/z 0 et sur une horizontale d'ordonnée irrationnelle, il n'y en

a pas, donc

P dy (a f (x, y) dx 0
J —a J —a

Mais tout point de C est point de discontinuité de / (par rapport
à l'ensemble des variables), / n'est intégrable sur aucun carré

partiel.


	CALCUL D'UNE INTÉGRALE DOUBLE PAR DEUX INTÉGRATIONS SIMPLES SUCCESSIVES (INTÉGRALE DE RIEMANN)

