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SUR L’EXEMPILE DONNE PAR M. DE RHAM... 55

Mazxima relatifs. -

On a
flz) = fgn_1 (x) +24—k fl([th)~ e (4)

h=n

Pour que z soit un point ou f admet un maximum relatif, il suffit
donc que f,, , soit constant au voisinage de z, et que f, (4" z) = 1
pour k£ > n;la premiere condition équivaut & z; + x5 + ... + g,
= n, la seconde, comme on I'a vu, & Zg, .y + Loy = 1 (K> n).

Inversement, soit z un point ou f admet un maximum
relatif, il admet un développement unique de la forme (2); je
dis qu’il existe une infinité de valeurs de n pour lesquelles
x; + 2y + ... + 3, = n. Sinon, en effet, f, (z) = 2 (x; + z,
+ ... + x,) — n garde un signe constant pour n assez grand,
soit, pour fixer les idées, le signe - ; soit I le segment rectiligne
du graphe de f,_; qui se projette sur 'axe des z suivant le seg-
ment [p2™, (p + 1) 2] contenant x; pour n assez grand, I, , est
a gauche de I, donc I, ; est & gauche de I, (j > 1), donc le
point (z, f (x)) est & gauche de I ; comme I, est une corde du
graphe de f, f () n’est pas un maximum relatif, contrairement
a Phypothése. Il existe donc un n tel que 2, + x, + ... + z,, = n,
et tel que, sur I'intervalle contenant z ou f,,_, est constant, f ()
soit le maximum de f. D’aprés (4), il s’ensuit que f; (4" ) = 1
pour k > n.

Ainst, U'ensemble des points ot £ admet un maximum relatif est
Pensemble des x, de la forme (2), satisfaisant les égalités x, -+ x,
+ ... + 2y, = k pour k assez grand. C’est un F_, dense sur la
droite, de mesure nulle.

2. EXEMPLE D’UNE FONCTION CONTINUE SANS DERIVEE, DONT
LE MODULE DE CONTINUITE SATISFAIT o (h) < x (h), ¥ ETANT
UNE FONCTION DONNEE.

. lim TSR Ty
Si ﬁ 'y (k) < oo, linégalité w (h) < y (k) entraine que
la fonction est lipschitzienne 2, donc admet une dérivée presque

2) En vertu de 'inégalité o (n §) < no (3), valable pour tout 8§ > 0 et tout entier
naturel n.

e R
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partout. Nous devons donc supposer, pour construire notre
exemple, que lim A’! % (k) = . Moyennant cette hypothése,

h—oo

la construction est possible.
Considérons en effet

= S g™elae) - 5)
v=1 , _ _
ou k, est une suite d’entiers croissants & déterminer. Le raison-
nement de M. de Rham montre que g n’est dérivable én aucun
point. | ' ) "
D’autre part St

]g(x—i—h)—g(x)|<vh—}—2-2~hv+1 pour tout v .

Soit @ (%) le module de continuité de z; pour 27 < b < 27,
onaw(h) < (w4 2)h

Quitte & diminuer y (h), on peut supposer h‘i h) | @
et x (h) | 10 quand kl 0. Il suffit alors de choisir { & } de sorte que

v+ 2 < 2™ X<2 ) pour avmr_co(h) < y (k) pour tout ~ > 0.

Ainsi, dans toute classe de fonctions, définte par une majoration
des modules de continuité, et contenant des fonctions non lipschit-
ziennes, il existe des fonctions n’admettant de dérivées en aucun
- point.

3. EXEMPLE D’UNE FONCTION CONTINUE, DONT LE MODULE DE
.CONTINUITE EN CHAQUE POINT EST MINORE PAR UNE FONCTION
DONNEE.

Soit 2 > 0, ¢ (k) une fonction positive tendant vers zéro
quand & | 0. Nous allons construire une fonction continue dont
le module de continuité o, (k) satisfait en chaque point z

oy (h) > b (k) | (6)

quitte a majorer ¢ (h), on peut supposer ¢ croissante.
Considérons | : |

2 (2™ 2) , - (7)
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