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SUR L'EXEMPLE DONNÉ PAR M. DE RHAM... 55

Maxima relatifs.

On a
oo

/(*) hn-l (*) + • "(4)
h=n

Pour que x soit un point où / admet un maximum relatif, il suffit
donc que f2n_{ soit constant au voisinage de #, et que fx (4fe x) 1

pour A > n \ la première condition équivaut à xx + x2 + ••• + x2n

zz, la seconde, comme on l'a vu, à x2k+i + x2k+2 1 (k > zz).

Inversement, soit # un point où / admet un maximum
relatif, il admet un développement unique de la forme (2); je
dis qu'il existe une infinité de valeurs de n pour lesquelles

xi + x2 + ••• + x2n n• Sinon, en effet, fn (x) 2 (% +
+ + xn) — n garde un signe constant pour n assez grand,
soit, pour fixer les idées, le signe + ; soit In le segment rectiligne
du graphe de fn_{ qui se projette sur l'axe des x suivant le
segment [p2-n, (p + 1) 2~n] contenantpour cassez grand, In+1 est
à gauche de In, donc ln+j est à gauche de In (/ >1), donc le

point -(#, f (x)) est à gauche de In; comme In est une corde du
graphe de /, f (x) n'est pas un maximum relatif, contrairement
à l'hypothèse. Il existe donc un n tel que x± + x2 + + x2n zz,

et tel que, sur l'intervalle contenant x où /2n_1 est constant, f (x)
soit le maximum de /. D'après (4), il s'ensuit que f± (4ft x) 1

pour k > n.

Ainsi, Vensemble des points où f admet un maximum relatif est
Vensemble des x, de la forme (2), satisfaisant les égalités + x2

+ + x2k k pour k assez grand. C'est un F0, dense sur la
droite, de mesure nulle.

2. Exemple d'une fonction continue sans dérivée, dont
LE MODULE DE CONTINUITÉ SATISFAIT 00 (h) < £ (A), J ÉTANT

UNE FONCTION DONNÉE.

Si X (h) < 00 l'inégalité oo (h) ^ X (h) entraîne que
la fonction est lipschitzienne 2), donc admet une dérivée presque

2) En vertu de l'inégalité co (nS) < n<ù (S), valable pour tout 5 > 0 et tout entier
naturel n.
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partout. Nous devons donc supposer, pour construire notre
exemple, que lim h~{ x W =oo. Moyennant cette hypothèse,

h->- oo

la construction est possible.
Considérons en effet

oo

g (x) 2 2
*v

9 (2*vfl?) (5)

v=l

où kv est une suite d'entiers croissants à déterminer. Le
raisonnement de M. de Rham montre que g n'est dérivable en aucun
point.

D'autre part *

| g (x -f h) — g (x) | < vh -{-2-2 ^v+1
pour tout v

Soit co (h) le module de continuité de g; pour 2 hv+i < h < 2~^v,

on a oo (h) < (v + 2) h.

Quitte à diminuer x W? on Peu^ supposer h~{ x {h) j 00

et Z(A)|0 quand h \ 0. Il suffit alors de choisir { kv} de sorte que

v + 2 < y (2 ^v) pour avoir 00 (h) < x (h) pour tout h > 0.

Ainsi, dans toute classe de fonctions, définie par une majoration
des modules de continuité, contenant des fonctions non lipschit-
ziennes, il existe des fonctions n'admettant de dérivées en aucun
point.

3. Exemple d'une fonction continue, dont le module de
CONTINUITÉ EN CHAQUE POINT EST MINORÉ PAR UNE FONCTION

DONNÉE.

Soit h > 0, (h) une fonction positive tendant vers zéro

quand h j 0. Nous allons construire une fonction continue dont
le module de continuité cùx (h) satisfait en chaque point x

<*x W > + W (6)

quitte à majorer ^ (^), on peut supposer croissante.
Considérons

00Si(4^Pv2K9(2KX) (7)

V=1
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