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SUR L’EXEMPLE, DONNE PAR M. DE RHAM,
D'UNE FONCTION CONTINUE SANS DERIVEE

PAR
Jean-Pierre Kanane (Montpellier)
(Recu le 16 juin 1958)
Un exemple trés simple de fonction continue sans dérivée

a été donné par M. G. de Rham dans I’ Enseignement mathéma-
tique (111, 1, 1957, p. 71-72). 11 s’agit de la fonction

fla) = D) 27 o(2"a) (1)
k=0
ou
o) = || si |z| <3 et plz+1) = ol

Cet exemple se préte a des remarques intéressantes?. En
premier lieu, nous mettrons en évidence les ensembles de points
ol f admet un extremum (minimum relatif, maximum, maximum
relatif); ¢’est 1la un simple exercice, pouvant illustrer un cours
d’analyse. En second lieu, nous verrons que l’exemple de
M. de Rham;, a peine modifié, témoigne qu’aucune condition de
majoration sur le module de continuité d’une fonction, stricte-
ment plus faible que la condition de Lipschitz, n’assure la déri-
vabilité fut-ce en un seul point. Enfin, une modification supplé-
mentaire permet de construire facilement une fonction continue
dont le module de continuité en chaque point est « aussi mau-
vals qu’on veut ».

1) C’est ainsi que M. de Vito a montré, dans le vol. IV, fasc. 3, que f appartient &
la classe Lip o pour tout « positif inférieur & 1. Notre remarque n° 3 apporte une pré-
cision & I'observation faite par M. de Rham, et rapportée par M. de Vito, qu’on peut
construire des fonctions continues sans dérivées, n’appartenant & aucune classe Lip «.
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1. PoINTS 00 f ADMET UN EXTREMUM.
Soit
T = ., Ty Ty oun Ty e (2)

un développement de x en numération binaire (il y en a deux
quand z est un nombre binaire), et soit ‘

fole) = D) 27" o (2"2) . (3)
k=0
Minima relatifs.
Sia=..a0a,..a,=p2" (pentier),on a f,_, (a) = f, (a)

= ... = [ (a) et réciproquement. Pour m assez grand (m > 2n),
f» admet en g un minimum relatif; comme f > f, et f(a) =, (a),
f admet également en ¢ un minimum relatif. Inversement, si f (x)
est le minimum de f sur un segment [a,a’] = [p2™", (p + 1) 27"],
n impair, les relations |

flo) > foql2)  fla =1, (@, fl@)="f,, (@

jointes au fait que f,, est linéaire et non constant sur [a, a'],
entrainent que x = aouz = a'.

Donc Pensemble des points ou f admet un minimum relatif est
Uensemble des nombres binaires p2™. C’est un ensemble dénom-
brable, dense sur la droite.

Mazximum.
On a f(x) = D &*f; (4" x). Or f, (4" x) est maximum, et
0

égal a1, siet seulement si zq,  ; + %9, = 1 (pour au moins un
développement de z sous la forme (2)). o

Donc lensemble des points ou f atteint son maximum, égal a
4/3, est Uensemble des x, de la forme (2), satisfaisant Xq 4 4 Toy 4o
=1 pour k = 0,1, ... Cest un ensemble parfait totalement
discontinu, de mesure nulle. |
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Mazxima relatifs. -

On a
flz) = fgn_1 (x) +24—k fl([th)~ e (4)

h=n

Pour que z soit un point ou f admet un maximum relatif, il suffit
donc que f,, , soit constant au voisinage de z, et que f, (4" z) = 1
pour k£ > n;la premiere condition équivaut & z; + x5 + ... + g,
= n, la seconde, comme on I'a vu, & Zg, .y + Loy = 1 (K> n).

Inversement, soit z un point ou f admet un maximum
relatif, il admet un développement unique de la forme (2); je
dis qu’il existe une infinité de valeurs de n pour lesquelles
x; + 2y + ... + 3, = n. Sinon, en effet, f, (z) = 2 (x; + z,
+ ... + x,) — n garde un signe constant pour n assez grand,
soit, pour fixer les idées, le signe - ; soit I le segment rectiligne
du graphe de f,_; qui se projette sur 'axe des z suivant le seg-
ment [p2™, (p + 1) 2] contenant x; pour n assez grand, I, , est
a gauche de I, donc I, ; est & gauche de I, (j > 1), donc le
point (z, f (x)) est & gauche de I ; comme I, est une corde du
graphe de f, f () n’est pas un maximum relatif, contrairement
a Phypothése. Il existe donc un n tel que 2, + x, + ... + z,, = n,
et tel que, sur I'intervalle contenant z ou f,,_, est constant, f ()
soit le maximum de f. D’aprés (4), il s’ensuit que f; (4" ) = 1
pour k > n.

Ainst, U'ensemble des points ot £ admet un maximum relatif est
Pensemble des x, de la forme (2), satisfaisant les égalités x, -+ x,
+ ... + 2y, = k pour k assez grand. C’est un F_, dense sur la
droite, de mesure nulle.

2. EXEMPLE D’UNE FONCTION CONTINUE SANS DERIVEE, DONT
LE MODULE DE CONTINUITE SATISFAIT o (h) < x (h), ¥ ETANT
UNE FONCTION DONNEE.

. lim TSR Ty
Si ﬁ 'y (k) < oo, linégalité w (h) < y (k) entraine que
la fonction est lipschitzienne 2, donc admet une dérivée presque

2) En vertu de 'inégalité o (n §) < no (3), valable pour tout 8§ > 0 et tout entier
naturel n.

e R
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partout. Nous devons donc supposer, pour construire notre
exemple, que lim A’! % (k) = . Moyennant cette hypothése,

h—oo

la construction est possible.
Considérons en effet

= S g™elae) - 5)
v=1 , _ _
ou k, est une suite d’entiers croissants & déterminer. Le raison-
nement de M. de Rham montre que g n’est dérivable én aucun
point. | ' ) "
D’autre part St

]g(x—i—h)—g(x)|<vh—}—2-2~hv+1 pour tout v .

Soit @ (%) le module de continuité de z; pour 27 < b < 27,
onaw(h) < (w4 2)h

Quitte & diminuer y (h), on peut supposer h‘i h) | @
et x (h) | 10 quand kl 0. Il suffit alors de choisir { & } de sorte que

v+ 2 < 2™ X<2 ) pour avmr_co(h) < y (k) pour tout ~ > 0.

Ainsi, dans toute classe de fonctions, définte par une majoration
des modules de continuité, et contenant des fonctions non lipschit-
ziennes, il existe des fonctions n’admettant de dérivées en aucun
- point.

3. EXEMPLE D’UNE FONCTION CONTINUE, DONT LE MODULE DE
.CONTINUITE EN CHAQUE POINT EST MINORE PAR UNE FONCTION
DONNEE.

Soit 2 > 0, ¢ (k) une fonction positive tendant vers zéro
quand & | 0. Nous allons construire une fonction continue dont
le module de continuité o, (k) satisfait en chaque point z

oy (h) > b (k) | (6)

quitte a majorer ¢ (h), on peut supposer ¢ croissante.
Considérons | : |

2 (2™ 2) , - (7)
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o {k,} et { p,} sont des suites croissantes de nombres positifs,
4 déterminer. Vu la croissance de ¢, (6) est satisfaite dés que,
pour tout v,

o (2™ > ¢e™1) —¢ . )

X

Or un calcul immédiat donne
-k -k 1 ~k;
cox(Z V) > 2 "(va — Pyq — Pygq v P1) — 2 Pg'2 1.

Donc (8) est vérifiée dés que, pour chaque j, on a
pj > 13 pj—i
o . 1
(Ce qlll entralne pV"i + p‘)—Q + von pl < 1-2' pV

—hs: 1 —R: -
7+1 2 s ]
Piyr?2 T < 13 P2

: N

A 7 il v

(ce qui entraine ;i pj2 ' <P, 2 >
v

: -k

Pour cela, il suffit de choisir %; de sorte que 1° ¢, 4 < ]1—3 &

20 9" g > 13 VAR e;y (ces inégalités permettent le choix de
k;, une fois fixés k; , et k), puis, de choisir p; = 12 . 9 g

- Le lecteur aura remarqué que dans ce § 3 la fonction ¢ pour-
rait étre remplacée par n’importe quelle fonction périodique
lipschitzienne, non constante. En fait, les considérations du § 3
se rattachent autant & I'exemple classique de Weierstrass qu’a
celui de M. de Rham, au contraire de celles du § 2. |
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