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SUR L'EXEMPLE, DONNÉ PAR M. DE RHAM,

D'UNE FONCTION CONTINUE SANS DÉRIVÉE

PAR

Jean-Pierre Kahane (Montpellier)

(Reçu le 16 juin 1958)

Un exemple très simple de fonction continue sans dérivée

a été donné par M. G. de Rham dans YEnseignement mathématique

(III, 1, 1957, p. 71-72). Il s'agit de la fonction

oo

j(x)2 r(1)

k=0

où
1

9 (x) j m | si | x | < — et 9 (x + 1) 9 (x)

Cet exemple se prête à des remarques intéressantes1}. En
premier lieu, nous mettrons en évidence les ensembles de points
où / admet un extremum (minimum relatif, maximum, maximum
relatif); c'est là un simple exercice, pouvant illustrer un cours
d'analyse. En second lieu, nous verrons que l'exemple de
M. de Rham, à peine modifié, témoigne qu'aucune condition de

majoration sur le module de continuité d'une fonction, strictement

plus faible que la condition de Lipschitz, n'assure la déri-
vabilité fut-ce en un seul point. Enfin, une modification
supplémentaire permet de construire facilement une fonction continue
dont le module de continuité en chaque point est « aussi mauvais

qu'on veut ».

i) C'est ainsi que M. de Vito a montré, dans le vol. IV, fasc. 3, que / appartient à
la classe Lip a pour tout a positif inférieur à 1. Notre remarque n° 3 apporte une
précision à l'observation faite par M. de Rham, et rapportée par M. de Vito, qu'on peut
construire des fonctions continues sans dérivées, n'appartenant à aucune classe Lip a.
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1. Points ou / admet un extremum.

Soit

x xn (2)

un développement de # en numération binaire (il y en a deux
quand x est un nombre binaire), et soit

n

/„(*) 2 Fh<?(2kx).(3)
fe=0

Minima relatifs.

Si a a2 an /?2"n (/? entier), on a (a) fn (a)

...=/ (a) et réciproquement. Pour m assez grand (m > 2n)t
fm admet en a un minimum relatif ; comme /
/ admet également en a un minimum relatif. Inversement, si / (#)
est le minimum de / sur un segment [a, a'] [p 2~n, (p + 1) 2-n],
n impair, les relations

/ (*) > /n-l W > / H /n-1 <a) ' / <a') /n-1 <a')

jointes au fait que est linéaire et non constant sur [a, a'],
entraînent que # a ou # a'.

Donc Vensemble des points où f admet un minimum relatif est

Vensemble des nombres binaires p2~n. C'est un ensemble dénom-
brable, dense sur la droite.

Maximum.
oo

On a / (x) 2 ^~k fi k x)- Or f1 (4A #) est maximum, et
o

égal à 1, si et seulement si x2k+i -f- x2k+2 1 (pour au moins un
développement de x sous la forme (2)).

Donc Vensemble des points où f atteint son maximum, égal à

4/3, es£ Vensemble des x, de Za /orme (2), satisfaisant x2fe+1 +
«== 1 pour k — 0, 1, C'est un ensemble parfait totalement
discontinu, de mesure nulle.



SUR L'EXEMPLE DONNÉ PAR M. DE RHAM... 55

Maxima relatifs.

On a
oo

/(*) hn-l (*) + • "(4)
h=n

Pour que x soit un point où / admet un maximum relatif, il suffit
donc que f2n_{ soit constant au voisinage de #, et que fx (4fe x) 1

pour A > n \ la première condition équivaut à xx + x2 + ••• + x2n

zz, la seconde, comme on l'a vu, à x2k+i + x2k+2 1 (k > zz).

Inversement, soit # un point où / admet un maximum
relatif, il admet un développement unique de la forme (2); je
dis qu'il existe une infinité de valeurs de n pour lesquelles

xi + x2 + ••• + x2n n• Sinon, en effet, fn (x) 2 (% +
+ + xn) — n garde un signe constant pour n assez grand,
soit, pour fixer les idées, le signe + ; soit In le segment rectiligne
du graphe de fn_{ qui se projette sur l'axe des x suivant le
segment [p2-n, (p + 1) 2~n] contenantpour cassez grand, In+1 est
à gauche de In, donc ln+j est à gauche de In (/ >1), donc le

point -(#, f (x)) est à gauche de In; comme In est une corde du
graphe de /, f (x) n'est pas un maximum relatif, contrairement
à l'hypothèse. Il existe donc un n tel que x± + x2 + + x2n zz,

et tel que, sur l'intervalle contenant x où /2n_1 est constant, f (x)
soit le maximum de /. D'après (4), il s'ensuit que f± (4ft x) 1

pour k > n.

Ainsi, Vensemble des points où f admet un maximum relatif est
Vensemble des x, de la forme (2), satisfaisant les égalités + x2

+ + x2k k pour k assez grand. C'est un F0, dense sur la
droite, de mesure nulle.

2. Exemple d'une fonction continue sans dérivée, dont
LE MODULE DE CONTINUITÉ SATISFAIT 00 (h) < £ (A), J ÉTANT

UNE FONCTION DONNÉE.

Si X (h) < 00 l'inégalité oo (h) ^ X (h) entraîne que
la fonction est lipschitzienne 2), donc admet une dérivée presque

2) En vertu de l'inégalité co (nS) < n<ù (S), valable pour tout 5 > 0 et tout entier
naturel n.
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partout. Nous devons donc supposer, pour construire notre
exemple, que lim h~{ x W =oo. Moyennant cette hypothèse,

h->- oo

la construction est possible.
Considérons en effet

oo

g (x) 2 2
*v

9 (2*vfl?) (5)

v=l

où kv est une suite d'entiers croissants à déterminer. Le
raisonnement de M. de Rham montre que g n'est dérivable en aucun
point.

D'autre part *

| g (x -f h) — g (x) | < vh -{-2-2 ^v+1
pour tout v

Soit co (h) le module de continuité de g; pour 2 hv+i < h < 2~^v,

on a oo (h) < (v + 2) h.

Quitte à diminuer x W? on Peu^ supposer h~{ x {h) j 00

et Z(A)|0 quand h \ 0. Il suffit alors de choisir { kv} de sorte que

v + 2 < y (2 ^v) pour avoir 00 (h) < x (h) pour tout h > 0.

Ainsi, dans toute classe de fonctions, définie par une majoration
des modules de continuité, contenant des fonctions non lipschit-
ziennes, il existe des fonctions n'admettant de dérivées en aucun
point.

3. Exemple d'une fonction continue, dont le module de
CONTINUITÉ EN CHAQUE POINT EST MINORÉ PAR UNE FONCTION

DONNÉE.

Soit h > 0, (h) une fonction positive tendant vers zéro

quand h j 0. Nous allons construire une fonction continue dont
le module de continuité cùx (h) satisfait en chaque point x

<*x W > + W (6)

quitte à majorer ^ (^), on peut supposer croissante.
Considérons

00Si(4^Pv2K9(2KX) (7)

V=1
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où { ftv} et { pv} sont des suites croissantes de nombres positifs,
à déterminer. Vu la croissance de <];, (6) est satisfaite dès que,

pour tout v,

<ox(2-M >4-(2"Vl) "
(8)

Or un calcul immédiat donne

cox(2"N > 2^ - Pv_{ - Pv_o ...-M-2 ^ 2
V 7

V + l

Donc (8) est vérifiée dès que, pour chaque /, on a

Pj > 13 pH

l 1
(ce qui entraîne />v_i + pv_2 + Pi < ^ /\

7) 2'3+1 <r — d. 2' 3

Pj+i1 < is PJ

ce qui entraîne 2 Pj 2 3 < J2
2

v + l

2 3 > 12 Sj

\Pour cela, il suffit de choisir de sorte que 1° z^+i < ^ e3-;

k~ k • \2° 2 3
s3- > 13 2 3-1

£3-_1 (ces inégalités permettent le choix de

ft., une fois fixés ft^ et /c3_2), puis, de choisir — 12 2 3 z-.

Le lecteur aura remarqué que dans ce § 3 la fonction 9 pourrait

être remplacée par n'importe quelle fonction périodique
lipschitzienne, non constante. En fait, les considérations du § 3

se rattachent autant à l'exemple classique de Weierstrass qu'à
celui de M. de Rham, au contraire de celles du § 2.
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