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42 G. DE RHAM

§ 3. Equations fonctionnelles.

Considérons la transformation linéaire F0 du plan en lui-même
qui change S® en S- (i 0,1, 2). Elle change S£ en S£+1

(h 0, 1, 2n), comme on le vérifie immédiatement par
récurrence. Par suite, elle change M (h2~n) en M(A2~n-1) et l'on
en déduit, par continuité, pour 0 < £ '< 1,

F0M (t) M
2

D'une manière analogue, si F1 est la transformation linéaire
du plan en lui-même qui change S? en S?+1 (i 0, 1, 2), on voit
que

FxM(t)

Il est facile de calculer les coordonnées (xa, ya) de l'image du

point (x, y) par la transformation Fa (a 0, 1), ainsi que le

coefficient angulaire ma de l'image d'une droite de coefficient

angulaire m; on trouve:

x0 ccx + ßx 2/

2/o ßi y i

_ Yi m
m0 i + Yi m

xx ß2 x -f 1 — ß2

2/i ß2 s + « y + ßi

Y* -f- m
m-, —=

Y2

On a, par suite, les équations fonctionnelles

x(^j (X.X (t) -F ßx y (t) x ß2 ® M + 1 — ß2

2/(y) ßi2/W 182 + a2/W'+'ßi

ainsi que

(13)

Yi m (*).

1 + Yi m(t) '

1 + t Y2 + m (0

Y2

J'ai établi et utilisé ces équations fonctionnelles, pour le cas

où yx y2, dans l'article de 1956 cité plus haut. Considérons
ici le cas particulier où

Yi + Y2 — 1 et a — — ßi — ß2 —
2
Y 2
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Comme
y2 x' (t) + Yi y' (t) l

on peut poser

Yi y' (0 / W > y2 ^ (0 i — / M •

Par substitution dans les relations dérivées de (13), il vient

/ (y) Yi / M > / (^j~) Ti + f1 — ïi) / (0 •

J'ai montré que / (£) est la seule fonction bornée satisfaisant
à ces équations, ce qui en fournit une définition très simple,

et pour y1 ^ ~ c'est une fonction singulière déjà étudiée par
plusieurs auteurs (voir mon article de 1957 cité plus haut, où
l'on trouvera aussi quelques indications bibliographiques).
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