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IV. St vy + ve # 1, la fonction ax (t) —|—lby (t), ot a et b sont
des constantes, n’a pour aucune valeur de t une dérivée non
nulle. |

Cela s’applique en particulier aux fonctions z (¢) et y (f) qui

sont par suite des fonctions singuliéres. Mais il n’en est plus
ainsi lorsque v; + v, = 1.

V. Siy;+ vy = 1, les fonctions x (t) et y (t) sont liées par la

relation
Yoz () + iy (t) =1t

et elles ont des dérivées premiéres continues

1 m (t)
/ ] — . d e .
7 ’ v Yo + yim (t)

Yo + Yim(t)

En vertu de II, si vy =1 — v, ;é—;— ces dérivées z’ (t) et
y' (t) sont des fonctions singuliéres.

‘ 1 : :
Le cas out y; = vy, = 5 est effectivement exceptionnel; alors

1 f_ - et la courbe C est une parabole.

Dans un article antérieur *), j’ai établi I pour le cas ou
vi = v, et II, IIT et IV pour le cas ou v; = v, = 1, en utili-
sant des équations fonctionnelles vérifiées par M (¢). Je traiterai
ici le cas général par une méthode directe et plus simple. Ensuite,

revenant sur les équations fonctionnelles, je montrerai que, dans

x=2—8 y=1t,m=

\ 1 /4 . 4 4 .
lecasouy; =1 — v, # =2 les dérivées x’ (t) et y' () se réduisent,
essentiellement & une fonction singuliére trés simple et connue.

§ 2. DEMONSTRATION DES THEOREMES.

Désignons par Q, ; la projection du coté S; Sp., de P, faite
parallelement & une droite donnée quelconque sur une autre

*) «Sur une courbe plane », Journal de Mathématiques pures et appliquées, 39 (1956),
pp. 25-42. Voir aussi sur le méme sujet: « Un peu de mathématiques & propos d’une
courbe plane », Elemente der Mathematik, 2 (1947), pp. 73-76 et 89-97; ainsi que: « Sur
quelques courbes définies par des &quations fonctionnelles », Rendiconti del Seminario
Matemalica dell’ Universila e del Polilzcnico di Torino, 16 (1957), pp. 101-113.

L’Enseignement mathém., t. V, fasc. 1. 3




34 G. DE- RHAM
droite donnée. De la définition méme de la trisection, on déduit

Qn+1,‘2h = o‘Qn,h r Quitane = Bs Qup + B o

(h = 0,1, .. 2" - (1)

Ces relations déterminent par récurrence les Q,, & partir de

‘Qo,o et Q0,1-

Considérons le développement de ¢ dans le systéme binaire

a: 2t (a; = 0 ou 1
i )

1

-~
Il
(=

I
M

et la suite correspondante d’intervalles ¢, = (¢,, t, + 27") avec

n .
b, = Zaifz.

—

-

On sait que s1 ¢ n’est pas une fraction binaire, ce développe-
ment est unique, tandis que si ¢ est une fraction binaire, il en
existe .deux; pour l'un, qu’on appellera le développement a
droite, dés que n est assez grand a, = 0 et t = ¢,, de sorte que
1, est & droite de ¢; pour autre, qu’on appellera le développement
a gauche, dés que n est assez grand, a, = 1 et t = ¢, - 2™, de
sorte que 7, est a gauche de ¢.

Soient (A,, B,) et (C,, D,) les projections sur les axes des
cotés de P, qui contiennent respectivement les points M (z,) et
M (t, + 2™). Si 'on désigne par A, ;, la projection sur Oz de
Sy Sp.y,pour b =2"t, ona A, = A, ;, et G, = A, ;.. Ensuite,
sl a,, =0, on aura Apy = An+1,2h7 Cr = An+1,2h+1 tandis
que st a,y =0 on a A,y =A g Gy = Apionio:
Comme les A, , satisfont aux mémes relations (1) que les Q, ,
cela entraine o

Apyq = oAy et Chg = BoAy + B1G, 81 g,y =0, 2)
A = By A, + B,G, et C 4, = aCy si a, ‘

n+1 n+l
On a des relations tout a fait analogues entre les B, et les D,),

B,y =aB, et D, = BB, +8,Cy si a, 4, =0 ’]} (3)
B = BBy + P1Dyp et Dy =Gy si a,y =1.]

n+i n+1
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Posons
G
X, = —
An
Il résulte de (2) que
[Yl}&n—i_Yz st a,4 =0,
Xn+1 = {l Xn 5 — (4) -
L2 Xn + ¥ el

Pour établir nos théorémes, nous aurons besoin de quelques
propriétés de ces suites X,,. |

Comme A, :% et C,b =0, on a X, = 0. Par suite, si
ay=..=a,; =1et a, =0, ona X, =..=X,_,=0 et
X,.= Y, Le premier terme non nul de la suite X, vaut v, et
correspond au premier terme nul de la suite a,; les suivants sont
tous > 0. Pour ¢ = 1, et seulement dans ce cas, tous les X,
sont nuls. | ,

Sia, = 0 pour n > p, en résolvant I’équation de récurrence
fournie par la premiere relation (4), on obtient (pour n > p)

Ky 4+ — 12 si v, #£ 1,
X — Y]_ ,1 Y]_ 1 7& (5)

Yan + K’ iy =1,

ou K et K’ sont indépendants de n.
Si a, = 1 pour n > p, en considérant la seconde relation (4)
qui peut s’écrire X\, = v, X;! + y,, on obtient (pour n > p)

n

X! — 2 1— v, (6)

LEMME. — St t nlest pas une fraction binaire et si la suile
X,, converge, sa limite est 1 et Z’O{z avy,+ v, = 1.

Pour la suile correspondant au développement a droite d’une
fraction binaire, on a

im X, = ~—2— & v <1 e lmX,=w sy, >1
n=oco ‘ ’

*1_"‘{1
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Pour la suite correspondant au développement a gauche d'une
fraction binaire < 1, on a

im X, = 2= & vy, <1 e lLmX, =0 si y,>1

St les deux suites X, correspondant aux développements d droite
‘et d gauche d’une fraction binaire convergent vers la méme limite,
on a v, +-v, = 1 et cette limite est 1.

Pour établir la premiére assertion, il suffit de remarquer que
si t n’est pas une fraction binaire, chacune des deux relations (4)
est vérifie pour une infinité de valeurs de n, de sorte que si
lim X, = aonai=y; A+ veetl =y, A4 v, dour=1
et v+ vo = 1.

La seconde et la troisieme assertions résultent des formules
(5) et (6) et la dernieére en découle immédiatement.

Pour établir la premiere partie de I, il suffit de montrer que
Paccroissement A, m = m (t, + 2™) —m (¢,) de m(f) dans
Iintervalle i, tend vers zéro_pour n — o lorsque ¢ n’est pas une
fraction binaire. ‘

En vertu de la définition méme de m (t), on a

Bn D, A, Dy — B, G,
m(t) = — mt, + 2" = =~ dou A,m =
() = x> ma+2") =g n X C.
De (2) et (3) on tire alors
(m———————Yl . si  a = 0
Apgm | nXp+ T ki ’ -
Bu Y2 4 g = 4
(T Xp T Yo horl ’
d’ol encore, en vertu de (4),
[ Y ———‘ Xk S1 a 0
1 h+1 ’
B | e ) (8)
Apm ﬁ Xoet . .
Yo X S1 ah+1 =1,
L
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Choisissons p tel que t, + 27 < 1. Alors A, m est fini (ce ne
serait pas le cas si ¢, + 2P =1 car m (1) = o) et 'on peut
écrire, pour n > p,

“10)

Les facteurs de ce produit sont tous < 1, en vertu de (7). St
a, = 0, on a, d’apreés (4), X, = v, X,y + o > va et si de plus
a,,, = 1, en vertu de (7),

Bpym 1

Akm < 1 + Y1 '

On majore donc le produit figurant au second membre de (9) en
remplacant
Apgm ar 1

si q, =0 et a,;, = 1, et par 1 dans tous les autres cas. Par
suite, si N est le nombre d’entiers £ tels que p < k < n et

1 N
B < Apm(l + Y1> '
Comme ¢ n’est pas une fraction binaire, N— oo et par suite
A, m—0 pour n—>oo.

Pour établir la seconde partie de I, supposons que ¢ soit une
fraction binaire << 1 et considérons son développement a droite.
Soit p tel que @, = O pour & > p. On tire de (9) et (8):

A‘ — A n—-p.Xp
n = RBpmy X—n )
Il résulte alors de (5) que, pour n— o, A, m tend vers zéro
si vy, < 1 et vers une limite > 0 si v; > 1. Comme
m(t+0) —m() = lim Aym ,
Nn=oo
la seconde assertion de I est établie. La derniére asser-

tion, concernant la continuité a4 gauche, s’obtient de la méme
maniére.
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Pour démontrer les théorémes suivants, nous ferons constam-
ment usage de la remarque que si une fonction a une dérivée en
un point, sa pente moyenne dans un intervalle contenant ce point
tend vers la dérivée lorsque la longueur de cet intervalle tend vers
zéro. | | |

Ainsi la pente moyenne de m (¢) dans i, étant 2* A, m, si
m’ (1) existe, on a ’

m’ () = lim 2® A, m .
h—co |

Si, de plus, m’ (t) £ 0, on aura

lim St L
h=gs Ly M 2

Mais, en vertu de (7), cela est équivalent a Iim X, = %, et le
h=o0 1

. 1 ., :
lemme montre qu’alors v; = v, = 5+ Ce qui etabllt IT.
De la méme maniére, on voit que si la fonction m (x) a une

dérivée non nulle au point x = m (), on aura

Tt Ah+1 He . Ak+1 z

— 1. (10)

Or A, z est la projection sur Oz du vecteur joignant M (z,) &
M (¢, + 27%) et vaut

Yo Ap + 11 Gy
A,z = . 11
R Y1+ Ya 1)
En tenant compte de (2), on obtient
YiXR+Y1Y2+Y2 .
o si a,q =0,
Ay g2 Y1 Xp + T2 -
Ak‘i"i — \ (12)
R Y1 (1 + va) Xh‘|“Y2- i 4 1
o. == .
| Y1 Xp + Yo kel

Remarquons en passant que la somme des deux expressions
aux seconds membres de (12) est identique & 1, en vertu de
« (1 4+ v, + v2) = 1; en accord avec le fait que la somme des
valeurs correspondantes de A,,, z est égale & A, .
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En utilisant (7) et (12), il vient

v X
2 e si pg = 0,
Apagm B2 o (v, Xp + rave Y2)
. A - ) '
Apm . BpZ _ Y s sioayy = 1;
o[yt + va) X + 1,

d’ou 'on déduit que (10) est équivalent a

. Yo (1 4+ v1)
1 X, = —— —
k1=rilo . Y1 (1 + Yz)

L e qui établis 111,

Enfin, si z () a une dérivée z’ (f) % 0, on a

et le lemme montre qu’alors y; = v, =

ce qui d’apres (12) est équivalent a

: Yo (1 4+ v1— Yo
Iim X, =
h=oc0 A v (1 + va— Y1)

et le lemme montre qu’alors v, + vy, = 1, ce qui établit IV
pour ce qui concerne Z (f).
La méme méthode s’applique a la fonctlon

z(t) = az (1) + by (1

On peut supposer que les constantes a et b ne sont pas toutes
deux nulles. L’accroissement de z = az -+ by sur le coté PSP,
n’est pas autre chose que la projection Q,; de ce coté, faite
parallelement & la droite ax + by = 0, sur une autre droite.
Qn,h+1
Qn,h
h = 2"t) des projections des cotés de P, contenant respective-
ment M (z, + 27™) et M (¢,) satisfait aux mémes relations (4) que

X,,. Par suite, le lemme s’applique & Z,, comme a X, et le rapport

AV : . :

X” des accroissements de z dans 1,,, et dans i, est donné
Y .

Les relations (1) montrent que le rapport Z, = (ou

par la formule obtenue en remplacant X, par Z, dans (12).
Exactement comme ci-dessus pour z (), on en déduit que si z (¢)
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a une dérivée non nulle, on a v, + v, — 1, ce qu1 achéve la
démonstration de IV.
Supposons maintenant que v, + v, = 1. Alors

‘Bl+82:(x:§9

et les relations (1) montrent que si Q,, = 2™ pour tout A,
Quitn = 2™ pour tout k. Pour z= y,z+ v;y, on a
Qo0 = Qpy = 1; on aura par suite Q,, = 2™ pour tout A et
tout n. L’accroissement de z = vy, x + v; ¥ sur tout coté de P,
étant ainsi égal a 27, l'accroissement Az de /

z2(t) = yex(t) + v19 (t)

dans 1, est toujours égal 4 27" et I'on en déduit z () = t.
Cette relation v, x (t) + v, ¥ (t) = t montre que si I'une des
dérivées 2’ (t) ou y’ (t) existe, Pautre existe aussi et

Y22 (8) + vy (1) = 1.
Mais on a aussi ¢’ (t) = m (¢) 2’ (¢), d’ou

1 ,(t) E m(t) .
tum@ YT L am()

2 (t) =

Pour achever la démonstration de V, il suffira dés lors de
prouver que z’ (f) existe partout.

En raisonnant par récurrence, on déduit de (4) que X,, < 1,
c’est-a-dire A, , > A, ;.. L’accroissement de z (f) dans l'in-
tervalle (A2, h27" + 2™), étant égal & v, A, 5, + v1 A, 4y, dimi-
nue donc lorsque %~ augmente. Par suite, 7 étant fixé, il est
maximum pour # = 0. Autrement dit, ¥ étant fixé, A, = est
maximum pour ¢ = 0. Pour calculer sa valeur, remarquons que
la premiére formule (12) peut s’écrire, en tenant compte de (4)

9 An+1 z X

A,z - X

n+2 .

n+1
On en déduit, pour ¢ = 0,
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D’autre part, pour ¢t = 0, en vertu de (),

d’ou

Cette expression est le maximum de la pente moyenne de
z (t) dans les intervalles (k27, k2% + 27%) pour 2 =0, 1,..., 2* — 1.

_ 1 1 ~ .
Sa limite 7 = = 5, pour k — oo est alors la borne supérieure
1 2

de la pente moyenne de z (¢) dans tous les intervalles contenus
dans (0, 1). Cette borne étant finie, la fonction z (¢) est absolu-
ment continue, et d’aprés un théoréme bien connu, x (t) est alors

‘égale a l'intégrale de sa dérivée 2’ (¢) dont on sait qu’elle existe

presque partout et qu’elle est égale (partout ou elle existe) & la

: 1 C : N
fonction g I d’apres I, est continue dans tout I'in-

tervalle (0, 1). Il en résulte que 2’ (t) existe partout, ce qui achéve
la démonstration de V.

Siyy,=1—1v; # —%—,' la fonction m (t) n’ayant pour aucune

valeur de ¢ une dérivée non nulle, les fonctions ' () et y’ (7)
jouissent de la méme propriété.

Supposons maintenant que v; = v, = % Considérons la
parabole tangente aux cotés S S] et S) S de P, en leurs points
milieux M (0) et M (1). En vertu d’une propriété bien connue,
S} et SL étant les points milieux des segments M (0) SY et S? M (1),
cette parabole est tangente au coté S; S} de P, en son point

milieu M(%) Elle est ainsi tangente & chacun des c¢dtés de P,

en son point milieu. En raisonnant par récurrence, on voit pour
la méme raison qu’elle est tangente a chaque c6té de P, en son
point milieu. Par suite, la courbe C est l'arc de cette parabole
limité aux points M (0) et M (1). Son équation étant (z -+ y)2
— 4y = 0, comme z 4 y = 2t, on a

t

= 2 r = 2¢t— 2 et m = .
y ) —
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