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SUR LES COURBES LIMITES... SB

IV. Si Yi + y2 ^ 1, ia jonction ax (t) + by (t), où a ^ b 50^
des constantes, 77'a aucune valeur de t une dérivée non

nulle.

Cela s'applique en particulier aux fonctions # (t) et y (0 qui
sont par suite des fonctions singulières. Mais il n'en est plus
ainsi lorsque yx + y2 1.

V. Si Yi + y2 1, les fonctions x (t) et y (t) sont liées par la
relation

y2 ^ Ù) + Ti y [A *

elles ont des dérivées premières continues

/ / \
1 / / \

171 (A
X (t) ; 7— y (A j 777 •

y2 '+ Yi ra (A y2 + Yi m {A

/[
En vertu de II, si yx 1 — y2 # ces dérivées (i) et

y' (t) sont des fonctions singulières.
lLe cas où yx y2 est effectivement exceptionnel; alors

x — 2\t — t2, y t2, m — Y~Z~t courbe C est une parabole.

Dans un article antérieur *), j'ai établi I pour le cas où

Ti ~ T2 II? m et IV pour le cas où yx y2 1, en utilisant

des équations fonctionnelles vérifiées par M (t). Je traiterai
ici le cas général par une méthode directe et plus simple. Ensuite,
revenant sur les équations fonctionnelles, je montrerai que, dans

le cas où y-L 1 — y2 7^ — les dérivées x' (t) et y' (t) se réduisent

essentiellement à une fonction singulière très simple et connue.

§ 2. Démonstration des théorèmes.

Désignons par Qn /l la projection du côté S£ S£+1 de Pn, faite
parallèlement à une droite donnée quelconque sur une autre

*) « Sur une courbe plane », Journal de Mathématiques pures et appliquées, 39 (1956),
pp. 25-42. Voir aussi sur le même sujet: « Un peu de mathématiques à propos d'une
courbe plane », Elemente der Mathematik, 2 (1947), pp. 73-76 et 89-97 ; ainsi que: « Sur
quelques courbes définies par des équations fonctionnelles », Rendiconti del Seminario
Matematicà delV Univer>ità e del Polüecnico di Torino, 16 (1957), pp. 101-113.
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34 G. DE RHAM

droite donnée. De la définition même de la trisection, on déduit

Qn+l,2h a Qn,h ' ^nA,2hA ** ß2 Qn,h + ßi ^n,hA

(h 0, 1, 2n) • (1)

Ces relations déterminent par récurrence les Q h à partir de

Qo,o Qo,i-
Considérons le développement de t dans le système binaire

°o

ty ai2_i o ou î)
i=l

et la suite correspondante d'intervalles in (£n, + 2~n) avec

«n S «i 2_i

2 1

On sait que si t n'est pas une fraction binaire, ce développement

est unique, tandis que si t est une fraction binaire, il en
existe tdeux; pour l'un, qu'on appellera le développement à

droite, dès que n est assez grand an 0 et t tn, de sorte que
in est à droite de t; pour l'autre, qu'on appellera le développement
à gauche, dès que n est assez grand, an 1 et t tn + 2~n, de

sorte que in est à gauche de t.

Soient (An, Bn) et (Cn, Dn) les projections sur les axes des

côtés de Pn qui contiennent respectivement les points M (tn) et
M (tn + 2~n). Si l'on désigne par An h la projection sur Ox de

S£+1, pour h 2n tn on a An AUjh et Cn AnMi. Ensuite,
SI ttyi+i aura A-n+1 -^n+i,2h"> ^n*+l J^n+i,2h+l tandis

que si an+^ 0 on a A^i 2/1+17 Qa+i -^n+i,2/1+2*

Comme les An h satisfont aux mêmes relations (1) que les h,

cela entraîne

^n+l a ef ^n+1 ß2 An -j- ßi Cn si anr\ 0 1

An+i ß2 An + ßi Cn et Gn+1 a Cn si an+\ ^
• j

On a des relations tout à fait analogues entre les Bn et les Dn,

^n+l a ^ ^n+1 ß2 "^21 ß* an-t-l ^
>

1

®n+l ß2 "t" ßi Bn Bn+1 a an+l ^ * J
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Posons
Cn

Y — —-n a

Il résulte de (2) que

x»+i

Yi Xn + Ï2 Si an+l0

Xn
„

(4)
1

YiXn+ Y, n+1

Pour établir nos théorèmes, nous aurons besoin de quelques
propriétés de ces suites Xn.

Comme A0 — et C0 0, on a X0 0. Par suite, si
Y2

a1 ap_{ 1 et ap 0, on a Xx Xp_t 0 et

Xp.= y2. Le premier terme non nul de la suite Xn vaut y2 et
correspond au premier terme nul de la suite an \ les suivants sont
tous > 0. Pour t 1, et seulement dans ce cas, tous les Xn
sont nuls.

Si an 0 pour n > p, en résolvant l'équation de récurrence
fournie par la première relation (4), on obtient (pour n > p)

Xn
11 1- Yl

11 ^ ' (5)

où K et K' sont indépendants de n.
Si an — 1 pour n > p, en considérant la seconde relation (4)

qui peut s'écrire X;1^ '= y2 X;1 + y2, on obtient (pour n > p)

(6)

Lemme. — Si t n'est pas une fraction binaire et si la suite
Xn converge, sa limite est 1 et l'on a Yl + y2 1.

Pour la suite correspondant au développement à droite d'une
fraction binaire, on a

lirn Xn
a ^

si y1 < 1 et lim Xn oo si yx > 1
n= co
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Pour la suite correspondant au développement à gauche d'une
fraction binaire < 1, on a

Si les deux suites Xn correspondant aux développements à droite
et à gauche dune fraction binaire convergent vers la même limite,
on a y1 +* y2 1 et cette limite est 1.

Pour établir la première assertion, il suffit de remarquer que
si t n'est pas une fraction binaire, chacune des deux relations (4)
est vérifiée pour une infinité de valeurs de ti, de sorte que si

lim Xn X, on a X Yj X + T2 1 Yi X + y2, d'où X 1

et Ti + Ï2 1-

La seconde et la troisième assertions résultent des formules
(5) et (6) et la dernière en découle immédiatement.

Pour établir la première partie de I, il suffit de montrer que
l'accroissement Anm m (tn + 2~n) —m (tn) de m (t) dans

l'intervalle in tend vers zéro, pour n -> oo lorsque t n'est pas une
fraction binaire.

En vertu de la définition même de m (t), on a

lim Xn si y2 < 1 et lim Xn 0 si y2 ^ t

De (2) et (3) on tire alors

ïi xfe

Tl Xfe + Ï2

d'où encore, en vertu de (4),

si ak+l 1



SUR LES COURBES LIMITES. 37

Choisissons p tel que tp + 2~p < 1. Alors Ap m est fini (ce ne

serait pas le cas si tv + 2~p 1 car m (1) oo) et l'on peut
écrire, pour n > p,

TL~\. ^ yw

AnmA • "(9)
n P XX ^ mh=p

Les facteurs de ce produit sont tous < 1, en vertu de (7). Si

ak 0, on a, d'après (4), Xfe y! XM -f y2 > y2 et si de plus

ah+l 1, en vertu de (7),

Àft+i l
1 + Ti

On majore donc le produit figurant au second membre de (9) en

remplaçant
Aft+im 1
—r par ;Akm

F 1 + Ïi
si ak 0 et ak+i 1, et par 1 dans tous les autres cas. Par
suite, si N est le nombre d'entiers h tels que p < k < n et

ah 0 et ak+i 1, on a

/ 1 \N
A m < m -—n p U H- Yi/

Comme t n'est pas une fraction binaire, Noo et par suite
An m -> 0 pour n -> oo

Pour établir la seconde partie de I, supposons que £ soit une
fraction binaire < 1 et considérons son développement à droite.
Soit p tel que ak 0 pour & > p. On tire de (9) et (8) :

Km Apm rrp Ve

Il résulte alors de (5) que, pour n-> oo, Anm tend vers zéro
si Yi < 1 et vers une limite > 0 si > 1. Comme

m (t + 0) — m (t) lim An m
n=oo

la seconde assertion de I est établie. La dernière assertion,

concernant la continuité à gauche, s'obtient de la même
manière.



38 G. DE RHAM

Pour démontrer les théorèmes suivants, nous ferons constamment

usage de la remarque que si une fonction a une dérivée en

un point, sa pente moyenne dans un intervalle contenant ce point
tend vers la dérivée lorsque la longueur de cet intervalle tend vers

zéro.

Ainsi la pente moyenne de m (t) dans ik étant 2k àk m, si

m' (t) existe, on a

m' (t) lim 2k Ak m
k=oo

Si, de plus, m' (t) ^ 0, on aura

\+l m ilim
Ak m 2

Ï2Mais, en vertu de (7), cela est équivalent à lim Xk — et le
k=O0 Yl

1
lemme montre qu'alors y2 ce qui établit II.

De la même manière, on voit que si la fonction m (x) a une
dérivée non nulle au point x — m (£), on aura

Ab,A m Ah, m x
lim Afe+1 : 1 (10)
k=oo Akm AkX

Or Ak x est la projection sur Ox du vecteur joignant M (tk) à

M (tk + 2~k) et vaut

Ï.A. + ï.C»
V Tl + Ï2

En tenant compte de (2), on obtient

Aft+i x

Akx

T, Xft + Ti Ta + Ta
a — ^—— si ah 0Ti+ Ta A+1

Ti (1 + Ta) + T2
;• y i

S1 1 •

Ti + y2

(12)

/ti"!

Remarquons en passant que la somme des deux expressions

aux seconds membres de (12) est identique à 1, en vertu de

a (1 -j- Yi + y2) 1 ; en accord avec le fait que la somme des

valeurs correspondantes de Afe+1 x est égale à àk x.
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En utilisant (7) et (12), il vient

Ti Xk

Afe+1 Aft+1

A km
' \x

a (t* V -j- Yi Ï2 + Ta)

T2

« [ïi l1 + Ta) ï*]

uk+i 0

— si 1
1

d'où l'on déduit que (10) est équivalent à

lim Xft
Ya j*± Tl|

Ä=oo
ft Ti (1 + Ta)

1
et le lemme montre qu'alors yx y2 ce fi11* établit III.

Enfin, si x (t) a une dérivée x' (t) ^ 0, on a

r \+ix 1
lim —t—— —

k co X

ce qui d'après (12) est équivalent à

y2 (i + Yi — y2)
lim Xk

k=oo
k yi (1 + y2 — Yi)

et le lemme montre qu'alors yi + y2 ce fi11* établit IV
pour ce qui concerne x (t).

La même méthode s'applique à la fonction

z (t) a x (t) + by (t)

On peut supposer que les constantes a et b ne sont pas toutes
deux nulles. L'accroissement de z ax + by sur le côté S^+1

n'est pas autre chose que la projection Qn?l de ce côté, faite
parallèlement à la droite ax + by — 0, sur une autre droite.

Les relations (1) montrent que le rapport Zn J^h+1 (où
^n,h

h 2n tn) des projections des côtés de Pn contenant respectivement

M (tn + 2~n) et M (tn) satisfait aux mêmes relations (4) que
Xn. Par suite, le lemme s'applique à Zn comme à Xn et le rapport
A,i z

A z
des accroissements de z dans ik+i et dans ik est donné

par la formule obtenue en remplaçant Xn par Zn dans (12).
Exactement comme ci-dessus pour x (£), on en déduit que si z (£)
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a une dérivée non nulle, on a yx + y2 1, ce qui achève la
démonstration de IV.

Supposons maintenant que y1 + y2 1. Alors

ßi + ß2 a" — j
et les relations (1) montrent que si Qn h

2~n pour tout A,

Qn+i,h — 2_n_1 pour tout h. Pour % y2 x + yl y, on a

Qo,0 Qo.i 1 ; on aura par suite Qn /l 2~n pour tout h et
tout n. L'accroissement de z y2 x + yx y sur tout côté de Pn
étant ainsi égal à 2~n, l'accroissement An 2 de

z (t) y2x (t) + yxy (t)

dans in est toujours égal à 2~n et l'on en déduit 2 (t) t.

Cette relation y2 x (t) + Ti y (t) t montre que si l'une des

dérivées x' (t) ou y' (t) existe, l'autre existe aussi et

y2 (t) + Yx y' M 1 •

Mais on a aussi y' (t) m (t) x' (t), d'où

1
/ \ • mit)

x M ; TT 5 y W 7 TT 'w Ï2 + Yl m W ' 3 W
Y2 + Ï1 m (t)

Pour achever la démonstration de V, il suffira dès lors de

prouver que x' (t) existe partout.
En raisonnant par récurrence, on déduit de' (4) que Xn < 1,

c'est-à-dire An h > An ?l+1. L'accroissement de x (t) dans
l'intervalle (A2~n, h2~n + 2~n), étant égal à y2 An^h + Arl>h+1, diminue

donc lorsque h augmente. Par suite, n étant fixé, il est
maximum pour h 0. Autrement dit, k étant fixé, Aft x est
maximum pour t 0. Pour calculer sa valeur, remarquons que
la première formule (12) peut s'écrire, en tenant compte de (4)

2
^ ^n+2

^

An x Xn+\

On en déduit, pour t 0,
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D'autre part, pour t0, en vertu de (5),

Xn l-YÎS
d'où

h
1 — ^+1

2hAkx — •

ft 1 — Yi

Cette expression est le maximum de la pente moyenne de

x (t)dans les intervalles (h2~h, h2~k + pour 0,1,2k — 1.

Sa limite r-1— - pour k-* oo est alors la borne supérieurel — Yi Ya r
de la pente moyenne de x (t) dans tous les intervalles contenus
dans (0, 1). Cette borne étant finie, la fonction a; (t) est absolument

continue, et d'après un théorème bien connu, x (t) est alors

égale à l'intégrale de sa dérivée x' (t) dont on sait qu'elle existe

presque partout et qu'elle est égale (partout où elle existe) à la

fonction : 77 qui, d'après I, est continue dans tout l'm-
Ï2 + Yim (0

tervalle (0, 1). Il en résulte que x' (t) existe partout, ce qui achève

la démonstration de V.

Si y2 1 — Yj —, la fonction m (t) n'ayant pour aucune

valeur de t une dérivée non nulle, les fonctions xf (t) et y' (t)

jouissent de la même propriété.

Supposons maintenant que y3 y2 Considérons la

parabole tangente aux côtés Sq Sj et Sj S2 de P0 en leurs points
milieux M (0) et M (1). En vertu d'une propriété bien connue,
S} et S2 étant les points milieux des segments M (0) Sj et Sj M (1),
cette parabole est tangente au côté Sî> de Px en son point
milieu M Elle est ainsi tangente à chacun des côtés de P1

en son point milieu. En raisonnant par récurrence, on voit pour
la même raison qu'elle est tangente à chaque côté de Pn en son

point milieu. Par suite, la courbe C est l'arc de cette parabole
limité aux points M (0) et M (1). Son équation étant (x + y)2
— 4y 0, comme x + y — 2t, on a

y t2 x 2 t — t2 et m -—-— •l — t
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