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SUR LES COURBES LIMITES DE POLYGONES
OBTENUS PAR TRISECTION

par Georges pE Ruam (Lausanne)
(Regu le 25 octobre 1958)

§ 1. DgeriniTION. ENONCE DE THEOREMES.

Soit P une ligne polygonale a n cotés, de sommets S,, S, ...,
A J4 v ’ . 4 4 .
S,.. Sur le coté S; S,;,,, considérons les pomt/s Sy; et Sy;y qul le
. . . 4 ’ 4 .
divisent en trois segments S; So;, So; Soiiq1, Soi S proportion-
nels a trois nombres positifs donnés B,, «, B, de somme 1,

B1,+0€+62:1-

Les points S;, S, ..., Sg,y sont les sommets d’une nouvelle ligne
polygonale P" a 2n — 1 cOtés.

Nous appelons trisection I'opération faisant passer de P
a P’. Cette opération est completement déterminée par la

donnée des nombres

B Be

Y1=—u‘, Yzz‘;

que nous appellerons les rapports de la trisection. Ce sont deux
nombres positifs qui peuvent étre choisis arbitrairement.

I1 est clair que le point M qui divise le coté S; S,,, de P en
deux segments S; M et MS,,, proportionnels & B; et B, divise
aussi le coté S;; Sy, de P’ en deux segments proportionnels &
B, et B, (fig. 1). Autre remarque évidente qui sera utile: si la
longueur des cotés de P ne dépasse pas [, la longueur des cotés
de P’ ne dépasse pas le plus grand des nombres ol et (8; + B,) I.

Partons d’une ligne polygonale P, & deux cdtés et répétons
cette opération. On obtient une suite de lignes polygonales P,
a 2" + 1 cotés (n = 0,1, 2,...), P, se déduisant de P, par
une trisection de rapports donnés indépendants de n. Toutes ces
lignes polygonales sont convexes et elles tendent vers une courbe
limite C que nous nous proposons d’étudier. '
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Soient S} (i = 0,1, ..., 2" + 1) les sommets de P,. D’aprés
la premiére remarque ci-dessus, le point M qui divise le coté
Sy Sp.4 de P, dans le rapport B,: B,, divise dans le méme rapport

le coté Spit Skt de P, et aussi d’une maniére générale le

coté Sy Sper, de P,... Appartenant a tous les polygones

P,.(k=0,1,2,..), ce point appartient aussi & la courbe C

Fig. 1.

et comme 1l est bien déterminé par la fraction binaire 2™, nous
le désignerons par M (h27").

D’aprés la seconde remarque ci-dessus, st [ est le plus grand
coté de Py, la longueur des cdtés de P, ne dépasse pas lo", ou
o = sup{ By + Py o} << 1, et il en est de méme pour la distance
des points M (h27") et M (h2™ 4 27). Cela entraine que l’en-
semble des points M (A2™) associés aux fractions binaires h2™
est dense sur la courbe C et que I'application A2™ — M (h27") est
uniformément continue et se prolonge par suite en une applica-
tion continue ¢ — M () de I'intervalle 0 << ¢t < 1 sur la courbe C,
qui se trouve ainsl paramétrisée d’une maniére naturelle.

Introduisons un systéme de coordonnées cartésiennes Oxy,
tel que M (0) = (0, 0), M (1) = (1, 1) et S} = (1, 0). Le pre-
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mier coté de P, est alors sur Oz et le second coté de P, sur la
droite d’équation 2 = 1 (fig. 2). On désignera par z (¢) et y (7)
les coordonnées de M (). Ce sont des fonctions continues de ¢,
qui croissent de 0 & 1 lorsque ¢ croit de 0 & 1. |

Les polygones P, étant tous convexes, la courbe C est aussi
convexe. Par suite, elle a en chaque point M (¢) une tangente a

— ) — e ——- —O—-—-= .
S0 L1 o) sl %P o) M©)=(0,0) S, =00 $0=01,0
0 182 0 /32 , /

,/
[
Fig. 2

droite et une tangente & gauche, et sauf éventuellement aux
points d’un ensemble au plus dénombrable, ces deux tangentes
coincident en une tangente unique. Nous désignerons le coeffi-
cient angulaire de cette tangente par m (¢). C’est une fonction
croissante de ¢, parce que C est convexe. Aux points anguleux
correspondent des discontinuités de premiére espéce de m (1), les
coefficients angulaires des tangentes a droite et a4 gauche étant
m(t+ 0) et m(@—0). S1t= h2™ est une fraction binaire, le
coté de P, qui contient M (A2™), ne traversant pas C, a un
coefficient angulaire égal a m (R27") si M (h2™) n’est pas un




32 ' G. DE RHAM

point anguleux et compris entre m (h2™ — 0) et m (h2™ + 0)

si M (R2™) est un point anguleux; dans ce dernier cas, nous

conviendrons de définir m (h2™) en le posant égal au coefficient
angulaire du cété de P, qui contient M (h2™). Le point M (¢)
n’étant jamais un point anguleux si ¢ n’est pas une fraction
binaire, comme on verra, il en résultera que m () est univoque-
ment définie dans tout Iintervalle 0 < ¢t < 1. On a m (0) = 0,
m (1) = o et pour 0 < t < 1, m(¢) est fini > 0.

Dans cet article, je me propose d’établir quelques propriétés
des fonctions m (t), m (z), x (¢) et y (¢), qui sont énoncées dans
les théorémes suivants. :

1. La fonction m (t) est continue pour toute valeur de t qui
n’est pas une fraction binaire. Pour toute fraction binaire t,
0<t <1 (resp.0 <t <1),lafonction m (t) est continue

ou discontinue a droite (resp. a gauche) selon que v, < 1-

ou y; > 1 (resp. vo < 1 ou v, > 1).

La premiere assertion entraine que m () est univoquement
défini dans tout I'intervalle 0 << ¢ << 1, comme 1l a été dit. La
seconde assertion montre que, si v; << 1 et v, << 1, la courbe C
n’a pas de points anguleux, tandis que si y; > 1 ou v, > 1,
elle a une infinité de points anguleux: tous les points M (¢) pour
lesquels ¢ est une fraction binaire, 0 < t << 1.

II. Sauf dans le cas on v, = vy = %—, la fonction m (t) n’a pour

aucune valeur de t une dérivée non nulle.

La dérivée de m (t) est donc nulle partout ou elle existe, et
comme elle existe presque partout, d’apres un théoréme bien
connu de Lebesgue, m (t) est une fonction singuliére. En consi-
dérant m comme fonction de z, on a une fonction m (z) qui jouit
aussi de cette propriété.

>

III. Sauf dans le cas ou v = v, :%, lq fonction m (x) n’a

pour aucune valeur de x une dérivée non nulle.

La fonction m (z) est donc aussi une fonction singuliére, ce
qui signifie que la courbure de C est presque partout nulle.
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IV. St vy + ve # 1, la fonction ax (t) —|—lby (t), ot a et b sont
des constantes, n’a pour aucune valeur de t une dérivée non
nulle. |

Cela s’applique en particulier aux fonctions z (¢) et y (f) qui

sont par suite des fonctions singuliéres. Mais il n’en est plus
ainsi lorsque v; + v, = 1.

V. Siy;+ vy = 1, les fonctions x (t) et y (t) sont liées par la

relation
Yoz () + iy (t) =1t

et elles ont des dérivées premiéres continues

1 m (t)
/ ] — . d e .
7 ’ v Yo + yim (t)

Yo + Yim(t)

En vertu de II, si vy =1 — v, ;é—;— ces dérivées z’ (t) et
y' (t) sont des fonctions singuliéres.

‘ 1 : :
Le cas out y; = vy, = 5 est effectivement exceptionnel; alors

1 f_ - et la courbe C est une parabole.

Dans un article antérieur *), j’ai établi I pour le cas ou
vi = v, et II, IIT et IV pour le cas ou v; = v, = 1, en utili-
sant des équations fonctionnelles vérifiées par M (¢). Je traiterai
ici le cas général par une méthode directe et plus simple. Ensuite,

revenant sur les équations fonctionnelles, je montrerai que, dans

x=2—8 y=1t,m=

\ 1 /4 . 4 4 .
lecasouy; =1 — v, # =2 les dérivées x’ (t) et y' () se réduisent,
essentiellement & une fonction singuliére trés simple et connue.

§ 2. DEMONSTRATION DES THEOREMES.

Désignons par Q, ; la projection du coté S; Sp., de P, faite
parallelement & une droite donnée quelconque sur une autre

*) «Sur une courbe plane », Journal de Mathématiques pures et appliquées, 39 (1956),
pp. 25-42. Voir aussi sur le méme sujet: « Un peu de mathématiques & propos d’une
courbe plane », Elemente der Mathematik, 2 (1947), pp. 73-76 et 89-97; ainsi que: « Sur
quelques courbes définies par des &quations fonctionnelles », Rendiconti del Seminario
Matemalica dell’ Universila e del Polilzcnico di Torino, 16 (1957), pp. 101-113.
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