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SUR LES COURBES LIMITES DE POLYGONES
OBTENUS PAR TRISECTION

par Georges de Rham (Lausanne)

(Reçu le 25 octobre 1958)

§ 1. Definition. Enoncé de théorèmes.

Soit P une ligne polygonale à n côtés, de sommets S0, Sl5

Sn. Sur le côté Si+1, considérons les points S2i et S2i+1 qui le

divisent en trois segments Si S2i, S2i S2i+1, S2i+1 Si+1 proportionnels

à trois nombres positifs donnés ßl7 oc, ß2 de somme 1,

ßl + a + ß2 — t

Les points So, S2n_! sont les sommets d'une nouvelle ligne
polygonale P' à 2n — 1 côtés.

Nous appelons trisection l'opération faisant passer de P

à P'. Cette opération est complètement déterminée par la
donnée des nombres

que nous appellerons les rapports de la trisection. Ce sont deux
nombres positifs qui peuvent être choisis arbitrairement.

Il est clair que le point M qui divise le côté Si Si+1 de P en

deux segments S^ M et MSi+1 proportionnels à ßx et ß2 divise
aussi le côté S2i S2i+1 de Pr en deux segments proportionnels à

ßi et ß2 (fig. 1). Autre remarque évidente qui sera utile: si la
longueur des côtés de P ne dépasse pas Z, la longueur des côtés
de P' ne dépasse pas le plus grand des nombres al et (ßx + ß2) I-

Partons d'une ligne polygonale P0 à deux côtés et répétons
cette opération. On obtient une suite de lignes polygonales Pn
à 2n + 1 côtés (n 0, 1, 2, Pn+1 se déduisant de Pn par
une trisection de rapports donnés indépendants de n. Toutes ces

lignes polygonales sont convexes et elles tendent vers une courbe
limite C que nous nous proposons d'étudier.
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Soient S (i — 0, 1, 2n + 1) les sommets de Pn. D'après
la première remarque ci-dessus, le point M qui divise le côté

S£+1 de Pn dans le rapport ßx: ß2, divise dans le même rapport
le côté S^t1 S2^+! de Pn+1 et aussi d'une manière générale le

côté Sc^h S2kh+i de Pn+k. Appartenant à tous les polygones
Pn+k ^ 2, ce point appartient aussi à la courbe C

et comme il est bien déterminé par la fraction binaire A2~n, nous
le désignerons par M (k2~n).

D'après la seconde remarque ci-dessus, si l est le plus grand
côté de P0, la longueur des côtés de Pn ne dépasse pas Zpn, où

p sup { ßi + ß2, oc} < 1, et il en est de même pour la distance
des points M (h2~n) et M (h2~n + 2~n). Cela entraîne que
l'ensemble des points M (A2~n) associés aux fractions binaires h2~n

est dense sur la courbe C et que l'application h2~n -> M (h2~n) est
uniformément continue et se prolonge par suite en une application

continue £ -* M (t) de l'intervalle 0 < t < 1 sur la courbe C,

qui se trouve ainsi paramétrisée d'une manière naturelle.
Introduisons un système de coordonnées cartésiennes 0xy,

tel que M (0) (0, 0), M (1) (1, 1) et Sj (1, 0). Le pre-
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mier côté de P0 est alors sur Ox et le second côté de P„ sur la

droite d'équation x1 (fig. 2). On désignera par (t) et y
les coordonnées de M (t). Ce sont des fonctions continues de f,

qui croissent de 0 à 1 lorsque t croît de 0 à 1.

Les polygones Pn étant tous convexes, la courbe C est aussi

convexe. Par suite, elle a en chaque point M (t) une tangente à

i I
j
\ Fig. 2.
J

3

droite et une tangente à gauche, et sauf éventuellement aux
points d'un ensemble au plus dénombrable, ces deux tangentes
coïncident en une tangente unique. Nous désignerons le coefficient

angulaire de cette tangente par m (t). C'est une fonction
croissante de £, parce que C est convexe. Aux points anguleux
correspondent des discontinuités de première espèce de m (t), les

coefficients angulaires des tangentes à droite et à gauche étant
j m (t + 0) et m (t — 0). Si t — h2~n est une fraction binaire, le
s côté de Pn qui contient M (A2"n), ne traversant pas C, a un

coefficient angulaire égal à m (fi2~n) si M (h2~n) n'est pas un
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point anguleux et compris entre m (h2~n — 0) et m (h2~n + 0)
si M (h2~n) est un point anguleux; dans ce dernier cas, nous
conviendrons de définir m (h2~n) en le posant égal au coefficient
angulaire du côté de Pn qui contient M (h2~n). Le point M (t)
n'étant jamais un point anguleux si t n'est pas une fraction
binaire, comme on verra, il en résultera que m (t) est univoque-
ment définie dans tout l'intervalle 0 < t < 1. On a m (0) 0,

m (1) oo et pour 0 < t < 1, m (t) est fini > 0.

Dans cet article, je me propose d'établir quelques propriétés
des fonctions m (t), m (x), x (t) et y (£), qui sont énoncées dans
les théorèmes suivants.

I. La fonction m (t) est continue pour toute valeur de t qui
n'est pas une fraction binaire. Pour toute fraction binaire t,
0 < t < 1 (resp. 0 < t < 1),la fonction m (t) est continue

ou discontinue à droite (resp. à gauche) selon que y1 < 1

ou Yi > 1 (resp. y2 < 1 ou y2 > ï).
La première assertion entraîne que m (t) est univoquement

défini dans tout l'intervalle 0 < t < 1, comme il a été dit. La
seconde assertion montre que, si yx < 1 et y2 < 1, la courbe C

n'a pas de points anguleux, tandis que si yx > 1 ou y2 > 1,

elle a une infinité de points anguleux: tous les points M (t) pour
lesquels t est une fraction binaire, 0 < t < 1.

II. Sauf dans le cas où y1 y2 y, la fonction m (t) n'a pour
aucune valeur de t une dérivée non nulle.

La dérivée de m (t) est donc nulle partout où elle existe, et

comme elle existe presque partout, d'après un théorème bien

connu de Lebesgue, m (t) est une fonction singulière. En
considérant m comme fonction de x9 on a une fonction m (x) qui jouit
aussi de cette propriété.

III. Sauf dans le cas ou yx y2 -~1 la fonction m (x) n'a

pour aucune valeur de x une dérivée non nulle.

La fonction m (x) est donc aussi une fonction singulière, ce

qui signifie que la courbure de C est presque partout nulle.
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IV. Si Yi + y2 ^ 1, ia jonction ax (t) + by (t), où a ^ b 50^
des constantes, 77'a aucune valeur de t une dérivée non

nulle.

Cela s'applique en particulier aux fonctions # (t) et y (0 qui
sont par suite des fonctions singulières. Mais il n'en est plus
ainsi lorsque yx + y2 1.

V. Si Yi + y2 1, les fonctions x (t) et y (t) sont liées par la
relation

y2 ^ Ù) + Ti y [A *

elles ont des dérivées premières continues

/ / \
1 / / \

171 (A
X (t) ; 7— y (A j 777 •

y2 '+ Yi ra (A y2 + Yi m {A

/[
En vertu de II, si yx 1 — y2 # ces dérivées (i) et

y' (t) sont des fonctions singulières.
lLe cas où yx y2 est effectivement exceptionnel; alors

x — 2\t — t2, y t2, m — Y~Z~t courbe C est une parabole.

Dans un article antérieur *), j'ai établi I pour le cas où

Ti ~ T2 II? m et IV pour le cas où yx y2 1, en utilisant

des équations fonctionnelles vérifiées par M (t). Je traiterai
ici le cas général par une méthode directe et plus simple. Ensuite,
revenant sur les équations fonctionnelles, je montrerai que, dans

le cas où y-L 1 — y2 7^ — les dérivées x' (t) et y' (t) se réduisent

essentiellement à une fonction singulière très simple et connue.

§ 2. Démonstration des théorèmes.

Désignons par Qn /l la projection du côté S£ S£+1 de Pn, faite
parallèlement à une droite donnée quelconque sur une autre

*) « Sur une courbe plane », Journal de Mathématiques pures et appliquées, 39 (1956),
pp. 25-42. Voir aussi sur le même sujet: « Un peu de mathématiques à propos d'une
courbe plane », Elemente der Mathematik, 2 (1947), pp. 73-76 et 89-97 ; ainsi que: « Sur
quelques courbes définies par des équations fonctionnelles », Rendiconti del Seminario
Matematicà delV Univer>ità e del Polüecnico di Torino, 16 (1957), pp. 101-113.

L'Enseignement mathém., t. V, fasc. 1. 3
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droite donnée. De la définition même de la trisection, on déduit

Qn+l,2h a Qn,h ' ^nA,2hA ** ß2 Qn,h + ßi ^n,hA

(h 0, 1, 2n) • (1)

Ces relations déterminent par récurrence les Q h à partir de

Qo,o Qo,i-
Considérons le développement de t dans le système binaire

°o

ty ai2_i o ou î)
i=l

et la suite correspondante d'intervalles in (£n, + 2~n) avec

«n S «i 2_i

2 1

On sait que si t n'est pas une fraction binaire, ce développement

est unique, tandis que si t est une fraction binaire, il en
existe tdeux; pour l'un, qu'on appellera le développement à

droite, dès que n est assez grand an 0 et t tn, de sorte que
in est à droite de t; pour l'autre, qu'on appellera le développement
à gauche, dès que n est assez grand, an 1 et t tn + 2~n, de

sorte que in est à gauche de t.

Soient (An, Bn) et (Cn, Dn) les projections sur les axes des

côtés de Pn qui contiennent respectivement les points M (tn) et
M (tn + 2~n). Si l'on désigne par An h la projection sur Ox de

S£+1, pour h 2n tn on a An AUjh et Cn AnMi. Ensuite,
SI ttyi+i aura A-n+1 -^n+i,2h"> ^n*+l J^n+i,2h+l tandis

que si an+^ 0 on a A^i 2/1+17 Qa+i -^n+i,2/1+2*

Comme les An h satisfont aux mêmes relations (1) que les h,

cela entraîne

^n+l a ef ^n+1 ß2 An -j- ßi Cn si anr\ 0 1

An+i ß2 An + ßi Cn et Gn+1 a Cn si an+\ ^
• j

On a des relations tout à fait analogues entre les Bn et les Dn,

^n+l a ^ ^n+1 ß2 "^21 ß* an-t-l ^
>

1

®n+l ß2 "t" ßi Bn Bn+1 a an+l ^ * J
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Posons
Cn

Y — —-n a

Il résulte de (2) que

x»+i

Yi Xn + Ï2 Si an+l0

Xn
„

(4)
1

YiXn+ Y, n+1

Pour établir nos théorèmes, nous aurons besoin de quelques
propriétés de ces suites Xn.

Comme A0 — et C0 0, on a X0 0. Par suite, si
Y2

a1 ap_{ 1 et ap 0, on a Xx Xp_t 0 et

Xp.= y2. Le premier terme non nul de la suite Xn vaut y2 et
correspond au premier terme nul de la suite an \ les suivants sont
tous > 0. Pour t 1, et seulement dans ce cas, tous les Xn
sont nuls.

Si an 0 pour n > p, en résolvant l'équation de récurrence
fournie par la première relation (4), on obtient (pour n > p)

Xn
11 1- Yl

11 ^ ' (5)

où K et K' sont indépendants de n.
Si an — 1 pour n > p, en considérant la seconde relation (4)

qui peut s'écrire X;1^ '= y2 X;1 + y2, on obtient (pour n > p)

(6)

Lemme. — Si t n'est pas une fraction binaire et si la suite
Xn converge, sa limite est 1 et l'on a Yl + y2 1.

Pour la suite correspondant au développement à droite d'une
fraction binaire, on a

lirn Xn
a ^

si y1 < 1 et lim Xn oo si yx > 1
n= co
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Pour la suite correspondant au développement à gauche d'une
fraction binaire < 1, on a

Si les deux suites Xn correspondant aux développements à droite
et à gauche dune fraction binaire convergent vers la même limite,
on a y1 +* y2 1 et cette limite est 1.

Pour établir la première assertion, il suffit de remarquer que
si t n'est pas une fraction binaire, chacune des deux relations (4)
est vérifiée pour une infinité de valeurs de ti, de sorte que si

lim Xn X, on a X Yj X + T2 1 Yi X + y2, d'où X 1

et Ti + Ï2 1-

La seconde et la troisième assertions résultent des formules
(5) et (6) et la dernière en découle immédiatement.

Pour établir la première partie de I, il suffit de montrer que
l'accroissement Anm m (tn + 2~n) —m (tn) de m (t) dans

l'intervalle in tend vers zéro, pour n -> oo lorsque t n'est pas une
fraction binaire.

En vertu de la définition même de m (t), on a

lim Xn si y2 < 1 et lim Xn 0 si y2 ^ t

De (2) et (3) on tire alors

ïi xfe

Tl Xfe + Ï2

d'où encore, en vertu de (4),

si ak+l 1
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Choisissons p tel que tp + 2~p < 1. Alors Ap m est fini (ce ne

serait pas le cas si tv + 2~p 1 car m (1) oo) et l'on peut
écrire, pour n > p,

TL~\. ^ yw

AnmA • "(9)
n P XX ^ mh=p

Les facteurs de ce produit sont tous < 1, en vertu de (7). Si

ak 0, on a, d'après (4), Xfe y! XM -f y2 > y2 et si de plus

ah+l 1, en vertu de (7),

Àft+i l
1 + Ti

On majore donc le produit figurant au second membre de (9) en

remplaçant
Aft+im 1
—r par ;Akm

F 1 + Ïi
si ak 0 et ak+i 1, et par 1 dans tous les autres cas. Par
suite, si N est le nombre d'entiers h tels que p < k < n et

ah 0 et ak+i 1, on a

/ 1 \N
A m < m -—n p U H- Yi/

Comme t n'est pas une fraction binaire, Noo et par suite
An m -> 0 pour n -> oo

Pour établir la seconde partie de I, supposons que £ soit une
fraction binaire < 1 et considérons son développement à droite.
Soit p tel que ak 0 pour & > p. On tire de (9) et (8) :

Km Apm rrp Ve

Il résulte alors de (5) que, pour n-> oo, Anm tend vers zéro
si Yi < 1 et vers une limite > 0 si > 1. Comme

m (t + 0) — m (t) lim An m
n=oo

la seconde assertion de I est établie. La dernière assertion,

concernant la continuité à gauche, s'obtient de la même
manière.
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Pour démontrer les théorèmes suivants, nous ferons constamment

usage de la remarque que si une fonction a une dérivée en

un point, sa pente moyenne dans un intervalle contenant ce point
tend vers la dérivée lorsque la longueur de cet intervalle tend vers

zéro.

Ainsi la pente moyenne de m (t) dans ik étant 2k àk m, si

m' (t) existe, on a

m' (t) lim 2k Ak m
k=oo

Si, de plus, m' (t) ^ 0, on aura

\+l m ilim
Ak m 2

Ï2Mais, en vertu de (7), cela est équivalent à lim Xk — et le
k=O0 Yl

1
lemme montre qu'alors y2 ce qui établit II.

De la même manière, on voit que si la fonction m (x) a une
dérivée non nulle au point x — m (£), on aura

Ab,A m Ah, m x
lim Afe+1 : 1 (10)
k=oo Akm AkX

Or Ak x est la projection sur Ox du vecteur joignant M (tk) à

M (tk + 2~k) et vaut

Ï.A. + ï.C»
V Tl + Ï2

En tenant compte de (2), on obtient

Aft+i x

Akx

T, Xft + Ti Ta + Ta
a — ^—— si ah 0Ti+ Ta A+1

Ti (1 + Ta) + T2
;• y i

S1 1 •

Ti + y2

(12)

/ti"!

Remarquons en passant que la somme des deux expressions

aux seconds membres de (12) est identique à 1, en vertu de

a (1 -j- Yi + y2) 1 ; en accord avec le fait que la somme des

valeurs correspondantes de Afe+1 x est égale à àk x.
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En utilisant (7) et (12), il vient

Ti Xk

Afe+1 Aft+1

A km
' \x

a (t* V -j- Yi Ï2 + Ta)

T2

« [ïi l1 + Ta) ï*]

uk+i 0

— si 1
1

d'où l'on déduit que (10) est équivalent à

lim Xft
Ya j*± Tl|

Ä=oo
ft Ti (1 + Ta)

1
et le lemme montre qu'alors yx y2 ce fi11* établit III.

Enfin, si x (t) a une dérivée x' (t) ^ 0, on a

r \+ix 1
lim —t—— —

k co X

ce qui d'après (12) est équivalent à

y2 (i + Yi — y2)
lim Xk

k=oo
k yi (1 + y2 — Yi)

et le lemme montre qu'alors yi + y2 ce fi11* établit IV
pour ce qui concerne x (t).

La même méthode s'applique à la fonction

z (t) a x (t) + by (t)

On peut supposer que les constantes a et b ne sont pas toutes
deux nulles. L'accroissement de z ax + by sur le côté S^+1

n'est pas autre chose que la projection Qn?l de ce côté, faite
parallèlement à la droite ax + by — 0, sur une autre droite.

Les relations (1) montrent que le rapport Zn J^h+1 (où
^n,h

h 2n tn) des projections des côtés de Pn contenant respectivement

M (tn + 2~n) et M (tn) satisfait aux mêmes relations (4) que
Xn. Par suite, le lemme s'applique à Zn comme à Xn et le rapport
A,i z

A z
des accroissements de z dans ik+i et dans ik est donné

par la formule obtenue en remplaçant Xn par Zn dans (12).
Exactement comme ci-dessus pour x (£), on en déduit que si z (£)
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a une dérivée non nulle, on a yx + y2 1, ce qui achève la
démonstration de IV.

Supposons maintenant que y1 + y2 1. Alors

ßi + ß2 a" — j
et les relations (1) montrent que si Qn h

2~n pour tout A,

Qn+i,h — 2_n_1 pour tout h. Pour % y2 x + yl y, on a

Qo,0 Qo.i 1 ; on aura par suite Qn /l 2~n pour tout h et
tout n. L'accroissement de z y2 x + yx y sur tout côté de Pn
étant ainsi égal à 2~n, l'accroissement An 2 de

z (t) y2x (t) + yxy (t)

dans in est toujours égal à 2~n et l'on en déduit 2 (t) t.

Cette relation y2 x (t) + Ti y (t) t montre que si l'une des

dérivées x' (t) ou y' (t) existe, l'autre existe aussi et

y2 (t) + Yx y' M 1 •

Mais on a aussi y' (t) m (t) x' (t), d'où

1
/ \ • mit)

x M ; TT 5 y W 7 TT 'w Ï2 + Yl m W ' 3 W
Y2 + Ï1 m (t)

Pour achever la démonstration de V, il suffira dès lors de

prouver que x' (t) existe partout.
En raisonnant par récurrence, on déduit de' (4) que Xn < 1,

c'est-à-dire An h > An ?l+1. L'accroissement de x (t) dans
l'intervalle (A2~n, h2~n + 2~n), étant égal à y2 An^h + Arl>h+1, diminue

donc lorsque h augmente. Par suite, n étant fixé, il est
maximum pour h 0. Autrement dit, k étant fixé, Aft x est
maximum pour t 0. Pour calculer sa valeur, remarquons que
la première formule (12) peut s'écrire, en tenant compte de (4)

2
^ ^n+2

^

An x Xn+\

On en déduit, pour t 0,
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D'autre part, pour t0, en vertu de (5),

Xn l-YÎS
d'où

h
1 — ^+1

2hAkx — •

ft 1 — Yi

Cette expression est le maximum de la pente moyenne de

x (t)dans les intervalles (h2~h, h2~k + pour 0,1,2k — 1.

Sa limite r-1— - pour k-* oo est alors la borne supérieurel — Yi Ya r
de la pente moyenne de x (t) dans tous les intervalles contenus
dans (0, 1). Cette borne étant finie, la fonction a; (t) est absolument

continue, et d'après un théorème bien connu, x (t) est alors

égale à l'intégrale de sa dérivée x' (t) dont on sait qu'elle existe

presque partout et qu'elle est égale (partout où elle existe) à la

fonction : 77 qui, d'après I, est continue dans tout l'm-
Ï2 + Yim (0

tervalle (0, 1). Il en résulte que x' (t) existe partout, ce qui achève

la démonstration de V.

Si y2 1 — Yj —, la fonction m (t) n'ayant pour aucune

valeur de t une dérivée non nulle, les fonctions xf (t) et y' (t)

jouissent de la même propriété.

Supposons maintenant que y3 y2 Considérons la

parabole tangente aux côtés Sq Sj et Sj S2 de P0 en leurs points
milieux M (0) et M (1). En vertu d'une propriété bien connue,
S} et S2 étant les points milieux des segments M (0) Sj et Sj M (1),
cette parabole est tangente au côté Sî> de Px en son point
milieu M Elle est ainsi tangente à chacun des côtés de P1

en son point milieu. En raisonnant par récurrence, on voit pour
la même raison qu'elle est tangente à chaque côté de Pn en son

point milieu. Par suite, la courbe C est l'arc de cette parabole
limité aux points M (0) et M (1). Son équation étant (x + y)2
— 4y 0, comme x + y — 2t, on a

y t2 x 2 t — t2 et m -—-— •l — t
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§ 3. Equations fonctionnelles.

Considérons la transformation linéaire F0 du plan en lui-même
qui change S® en S- (i 0,1, 2). Elle change S£ en S£+1

(h 0, 1, 2n), comme on le vérifie immédiatement par
récurrence. Par suite, elle change M (h2~n) en M(A2~n-1) et l'on
en déduit, par continuité, pour 0 < £ '< 1,

F0M (t) M
2

D'une manière analogue, si F1 est la transformation linéaire
du plan en lui-même qui change S? en S?+1 (i 0, 1, 2), on voit
que

FxM(t)

Il est facile de calculer les coordonnées (xa, ya) de l'image du

point (x, y) par la transformation Fa (a 0, 1), ainsi que le

coefficient angulaire ma de l'image d'une droite de coefficient

angulaire m; on trouve:

x0 ccx + ßx 2/

2/o ßi y i

_ Yi m
m0 i + Yi m

xx ß2 x -f 1 — ß2

2/i ß2 s + « y + ßi

Y* -f- m
m-, —=

Y2

On a, par suite, les équations fonctionnelles

x(^j (X.X (t) -F ßx y (t) x ß2 ® M + 1 — ß2

2/(y) ßi2/W 182 + a2/W'+'ßi

ainsi que

(13)

Yi m (*).

1 + Yi m(t) '

1 + t Y2 + m (0

Y2

J'ai établi et utilisé ces équations fonctionnelles, pour le cas

où yx y2, dans l'article de 1956 cité plus haut. Considérons
ici le cas particulier où

Yi + Y2 — 1 et a — — ßi — ß2 —
2
Y 2
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Comme
y2 x' (t) + Yi y' (t) l

on peut poser

Yi y' (0 / W > y2 ^ (0 i — / M •

Par substitution dans les relations dérivées de (13), il vient

/ (y) Yi / M > / (^j~) Ti + f1 — ïi) / (0 •

J'ai montré que / (£) est la seule fonction bornée satisfaisant
à ces équations, ce qui en fournit une définition très simple,

et pour y1 ^ ~ c'est une fonction singulière déjà étudiée par
plusieurs auteurs (voir mon article de 1957 cité plus haut, où
l'on trouvera aussi quelques indications bibliographiques).
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