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288 R. SALEM

la série qui converge vers zéro hors de P est une série de Fourier-

Stieltjes.
Donc, en particulier, pour montrer que P est un ensemble M,

il suffit de construire une fonction continue non décroissante,

constante dans chaque intervalle contigu à P (mais non partout)
et dont les coefficients de Fourier-Stieltjes tendent vers zéro

c'est la méthode employée par Menchofî.

Il est plus compliqué de démontrer, en se servant des mêmes

idées, qu'un ensemble parfait P est un ensemble U. Il faut

évidemment montrer qu'il n'existe pas de fonction à variation
bornée constante dans les intervalles contigus à P et à coefficients

de Fourier-Stieltjes tendant vers zéro. Mais cela ne suffit pas: il
faut encore montrer qu'il n'existe aucune fonction (à variation
bornée ou non) constante dans chaque intervalle contigu à P

et dont les coefficients de Fourier soient o ^ •

En fait, on ne s'est jamais, à notre connaissance, servi de

cette méthode pour montrer qu'un ensemble E est un ensemble U.

On l'a toujours fait en montrant que E appartient à une

catégorie d'ensembles (par exemple H) qui sont connus pour être des

ensembles d'unicité.

5. Les résultats de Nina Bary sur les ensemrles
CANTORIENS A RAPPORT CONSTANT RATIONNEL.

Les ensembles de Cantor à rapport constant E, sont, quand
2, est l'inverse d'un entier (comme pour l'ensemble ternaire

classique de Cantor) du type H et donc, d'après le théorème de

Rajchman, des ensembles U. Il était naturel de se demander si

ces ensembles peuvent être des ensembles M pour certaines

valeurs de 2, et dans l'affirmative de déterminer les valeurs de \
pour lesquelles l'ensemble est un ensemble d'unicité ou de

multiplicité.
Nina Bary a résolu ce problème pour le cas de 2, rationnel,

en obtenant le résultat remarquable suivant. Soit E, fraction

irréductible; la condition nécessaire et suffisante pour que
l'ensemble soit U est que p 1 ; dans tous les autres cas, l'ensemble

est M.



développement t
Ainsi a été mis en évidence le rôle essentiel de la nature

arithmétique de E.

6. Le cas de 2 irrationnel.
Les nombres de la classe C.

Soit 0 un entier algébrique dont tous les conjugués (autres

que 0 lui-même) ont des modules strictement inférieurs à l'unité.

On peut évidemment supposer 0 > 0. Et l'on a nécessairement

0 > 1. Nous désignerons par C la classe de tous les nombres 0.

Soit 2 1/0. Si 0 > 2, ce que nous supposerons, il existe un

ensemble cantorien E à rapport constant 2- Le premier résultat

obtenu dans la classification des ensembles cantoriens à rapport
constant 2 irrationnel est le suivant. Pour que E soit un ensemble

U, il est nécessaire que l'on ait 2 1/0, où 0 est un nombre de

la classe C. En d'autres termes, si 1/2 n'appartient pas à C

(par exemple si 2, est transcendant), l'ensemble est un ensemble M.

La démonstration se fait en considérant la fonction de

Lebesgue construite sur l'ensemble E à rapport constant 2 et

en démontrant que son coefficient de Fourier-Stieltjes

cn (2 tc)"1 C03 7t n lk~l (1 — 5) (2)

fe=I

tend vers zéro pour n ^ oo dès que 1/2 n'appartient pas à la

classe C.

Cette démonstration s'appuie à son tour sur un théorème de

Pisot d'après lequel les nombres 0 de la classe C sont caractérisés

par l'existence d'un nombre réel X tel que la série

oo

2 sin* 7T X ôn
o

soit convergente. Cette propriété est, en soi, un résultat important

de la théorie des approximations diophantiennes. Elle
caractérise les nombres 0 de C par l'existence d'un X tel que X0n,

réduit modulo 1, tende vers zéro assez vite pour que la somme
des carrés de {X0n} converge, ({z} désignant la différence en

valeur absolue entre z et l'entier le plus voisin).
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