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288 . R. SALEM

la série qui converge vers zéro hors de P est une série de Fourier-
Stieltjes.

Donc, en particulier, pour montrer que P est un ensemble M,
il suffit de construire une fonction continue non décroissante,
constante dans chaque intervalle contigu & P (mais non partout)
et dont les coefficients de Fourier-Stieltjes tendent vers zero —
¢’est la méthode employée par Menchofi.

11 est plus compliqué de démontrer, en se servant des mémes
idées, qu'un ensemble parfait P est un ensemble U. Il faut
évidemment montrer qu’il n’existe pas de fonction & variation
bornée constante dans les intervalles contigus & P et a coefficients
de Fourier-Stieltjes tendant vers zéro. Mais cela ne suffit pas: il
faut encore montrer qu'il n’existe aucune fonction (a variation
bornée ou non) constante dans chaque intervalle contigu a P

et dont les coefficients de Fourier soient 0(%—) -

En fait, on ne s’est jamais, & notre connaissance, servi de
cette méthode pour montrer qu'un ensemble E est un ensemble U.
On ’a toujours fait en montrant que E appartient & une caté-
gorie d’ensembles (par exemple H) qui sont connus pour étre des
ensembles d’unicité.

5  LES RESULTATS DE NINA BARY SUR LES ENSEMBLES
CANTORIENS A RAPPORT CONSTANT RATIONNEL.

Les ensembles de Cantor a rapport constant £ sont, quand
£ est linverse d’un entier (comme pour I'ensemble ternaire
classique de Cantor) du type H et donc, d’apres le théoreme de
Rajchman, des ensembles U. Il était naturel de se demander si
ces ensembles peuvent étre des ensembles M pour certaines
valeurs de £ et dans P’affirmative de déterminer les valeurs de £
pour lesquelles l’ensemble est un ensemble d’unicité ou de
multiplicité.

Nina Bary a résolu ce probléme pour le cas de & rationnel,
en obtenant le résultat remarquable suivant. Soit § = %, fraction

irréductible; la condition nécessaire et suffisante pour que l'en-
semble soit U est que p = 1; dans tous les autres cas, 'ensemble
est M.
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Ainsi a été mis en évidence le rdle essentiel de la nature
arithmétique de E.

6. LE CAS DE & IRRATIONNEL.
LES NOMBRES DE LA CLASSE C.

Soit 0 un entier algébrique dont tous les conjugués (autres
que 6 lui-méme) ont des modules strictement inférieurs a I'unité.
On peut évidemment supposer 6 > 0. It I’'on a nécessairement
0 > 1. Nous désignerons par C la classe de tous les nombres 0.
Soit £ = 1/6. Si 6 > 2, ce que nous supposerons, il existe un
ensemble cantorien E & rapport constant £. Le premier résultat
obtenu dans la classification des ensembles cantoriens & rapport
constant £ irrationnel est le suivant. Pour que E soit un ensemble
U, il est nécessaire que I'on ait £ = 1/0, o 0 est un nombre de
la classe C. En d’autres termes, si 1/& n’appartient pas a G
(par exemple si  est transcendant), ensemble est un ensemble M.

La démonstration se fait en considérant la fonction de
Lebesgue construite sur 'ensemble E & rapport constant g et
en démontrant que son coefficient de Fourier-Stieltjes

cn = 2m) ] cos mn &t (1 —§) (2)
h=1 '

tend vers zéro pour n— oo dés que 1/€ n’appartient pas-a la
classe C. J

Cette démonstration s’appuie & son tour sur un théoreme de
Pisot d’apreés lequel les nombres 6 de la classe G sont caractérisés
par Pexistence d’un nombre réel A tel que la série

[0o]
2 sin? w2 "
0

soit convergente. Cette propriété est, en soi, un résultat impor-
tant de la théorie des approximations diophantiennes. Elle
caractérise les nombres 0 de C par Pexistence d’un A tel que A0,
réduit modulo 1, tende vers zéro assez vite pour que la somme
des carrés de {A6"} converge, ({z} désignant la différence en
valeur absolue entre z et I’entier le plus voisin).
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