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RECHERCHES RECENTES SUR L’UNICITE
DU DEVELOPPEMENT TRIGONOMETRIQUE *)

par Raphaél SarLem, Paris

(Regu le 8 octobre 1958.)

1. NOTIONS PRELIMINAIRES.

a) La notion d’ensemble parfait linéaire non dense est fami-
liere. Il se construit sur la droite, en enlevant d’un intervalle, dit
intervalle fondamental, une infinité dénombrable d’intervalles
ouverts, non empiétants et sans extrémités communes, de telle
fagon que I’ensemble qui en résulte ne contienne aucun inter-
valle. Il sera souvent commode de construire un tel ensemble
sur le tore & une dimension a la place de l'intervalle fondamental
rectiligne. '

Un ensemble symétrique du type de Cantor s’obtient en divi-

sant 'intervalle fondamental en trois parties proportionnelles a

1

&, 1 — 2&,, £, respectivement (O < &< §> et en enlevant

I'intervalle du milieu (intervalle « noir »). Les deux intervalles
« blancs » restant sont tous deux divisés en trois parties propor-

tionnelles a &, 1 — 2§, £, respectivement (O < &< —;—), et
chaque intervalle médian est encore un intervalle «noir»
enlevé. Etant donné une suite de nombres £, (O < g < —;—)

on procéde ainsi indéfiniment; & la p*™® étape on obtient un
ensemble E, de 2P intervalles «blancs» chacun de longueur
& ... &y, 81 l'intervalle fondamental est l'intervalle unité. L’in-
tersection de tous les E, fournit 'ensemble E cherché. Les points
de 'ensemble, toujours dans l'intervalle fondamental (0, 1) ont
leurs abscisses données par la formule

z=e(1—8)teb(l—8) + eyl (1—E)+ (1)

ou les ¢, sont égaux a4 0 ou & 1.

*) Conférence faite & Rome et Genéve, en mai et juin 1958.
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Un cas particulier intéressant est celui ou tous les &, sont
égaux & un nombre constant £; on obtient alors un ensemble du
type de Cantor & rapport constant. Le cas classique de Cantor
est celui ou & = 1/3.

b) Etant donné une fonction monotone — non décroissante
pour fixer les idées — soit f (z) définie dans I'intervalle (0, 1),
nous appellerons coefficient de Fourier-Stieltjes de f I'intégrale
de Riemann-Stieltjes:

2T

ey = (2m)Y [ emimaf .

0
Si f est absolument continue, cette intégrale se réduit a une inté-
grale de Lebesgue et donc ¢, ~ 0 pour n— . Si f est continue

et singuliére (g—i = 0 p.p.>, ¢, peut ne pas tendre vers zéro pour
n = o, mais il existe des f singuliéres pour lesquelles ¢, — 0

pour n — o ainsi que I’a montré Menchoff en 1916.

¢) Etant donné un ensemble parfait E, symétrique du type

de Cantor, nous appellerons fonction de Lebesgue construite sur
cet ensemble la fonction continue y = f (z) telle que quand =z
appartient & E et est donné par (1), y soit égal a

€ €

5 tmt ot 2—1; + -
et que y soit constant dans chacun des intervalles contigus & E-
S1 E est de mesure nulle (ce qui est toujours le cas des ensembles
& rapport constant) f (z) est purement singuliére. On démontre
facilement en procédant par approximations successives, que le
coefficient de Fourier-Stieltjes de la fonction de Lebesgue est
donné par

Ixa, = e"mH CoSTn&y &y (1 — &) .
k=1 ;

Ainsi par exemple, pour la fonction de Lebesgue construite
sur 'ensemble classique de Cantor & rapport constant £ = 1/3
on trouve

2

oo
_ ,7nt Tn
2me, = ™ ] cos -
R=1 3
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et on voit, dans ce cas, en prenant pour n des puissances succes-
sives de 3, que ¢, ne tend pas vers zéro pour n— oo . Nous revien-
drons plus loin sur le cas d’un rapport constant & quelconque,
qui est plus complexe.

2. LE PROBLEME DE L'UNICITE.

On peut le poser de la maniére suivante. Existe-t-il sur
(0, 27t) des ensembles E tels qu’'une série trigonométrique

@
2 (@, cOs nx + by, sin nx)
0

converge vers zéro partout hors de E, sans étre identiquement
nulle ? Et, s1 oui, caractériser ces ensembles, qui sont dits «en-
sembles de multiplicité ». Un ensemble E tel que toute série
trigonométrique convergeant vers zéro dans le complémentaire
de E soit identiquement nulle est dit « ensemble d’unicité ».

Cantor a démontré par des méthodes célebres que si E est
vide, ou composé d’un nombre fini de points, E est un ensemble
d’unicité. C’est aussi le cas si le dérivé de E est fini. Plus géné-
ralement, Cantor a démontré que tout ensemble réductible
(¢c’est-a-dire admettant un dérivé vide de n’'importe quel ordre,
fini ou transfini) est un ensemble d’unicité.

Beaucoup plus tard, Young a démontré que tout ensemble
dénombrable est un ensemble d’unicité.

Par contre, il est tres facile de voir que tout ensemble E de
mesure positive est un ensemble de multiplicité ( il suffit de
considérer la série de Fourier de la fonction caractéristique
d’un ensemble parfait P de mesure positive contenu dans E).

La question de savoir §’il existait des ensembles de multi-
plicité de mesure nulle a été résolu par Menchoff en 1916; Men-
choff a construit un ensemble parfait P de mesure nulle (du type
de Cantor, & rapport variable) et une série trigonométrique non
identiquement nulle convergeant vers zéro dans tout intervalle
contigu a P. .

Ceci a posé la question de la classification des ensembles
parfaits de mesure nulle en ensembles d’unicité (ensembles U)
et ensembles de multiplicité (ensembles M).
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Avant de poursuivre, indiquons que si on considére le pro-
bléeme du point de vue de la convergence simple (et non du
point de vue d’une méthode de sommabilité), ce n’est pas parce
que la convergence simple est plus importante, mais c’est parce
que c’est le probléme de la convergence simple qui souléve les
questions les plus intéressantes dans la classification des
ensembles entre ensembles U et ensembles M.

3. LES ENSEMBLES DU TYPE H ET LES RESULTATS
DE RAJCHMAN.

Quelques années aprés le résultat de Menchoff, Rajchman a
découvert toute une catégorie d’ensembles parfaits de mesure
nulle qui sont des ensembles U.

Soit E un ensemble porté par le tore de longueur 1. S’il
existe une suite d’entiers { n, };-, tels que pour tout z € E et
pour tout % le point n, x (réduit modulo 1) n’appartienne jamais
a un certain intervalle J, ensemble est dit du type H. Ainsi
I’ensemble classique de Cantor a rapport constant & = 1/3 est
du type H. Il suffit de prendre n, = 3",

Rajchman a démontré que tout ensemble du type H (ces
ensembles sont nécessairement de mesure nulle) est un
ensemble U.

Nina Bary a démontré que I'union d’une infinité dénombrable
d’ensembles U fermés est encore un ensemble U.

4. LES METHODES.

D’aprés la théorie classique de Riemann, pour démontrer
qu’un ensemble parfait P est un ensemble M, il suffit de construire
une fonction F (z) non constante, mais constante dans chaque
intervalle contigu & P et ayant des coefficients de Fourier qui

solent o (;) L.a série obtenue par dérivation formelle de la série

de Fourier de f converge alors vers zéro dans tout intervalle
contigu & P. On démontre aussi que I'existence d’une telle fonec-
tion f est nécessaire, si P est un ensemble M.

En particulier f peut étre & variation bornée; dans ce cas
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la série qui converge vers zéro hors de P est une série de Fourier-
Stieltjes.

Donc, en particulier, pour montrer que P est un ensemble M,
il suffit de construire une fonction continue non décroissante,
constante dans chaque intervalle contigu & P (mais non partout)
et dont les coefficients de Fourier-Stieltjes tendent vers zero —
¢’est la méthode employée par Menchofi.

11 est plus compliqué de démontrer, en se servant des mémes
idées, qu'un ensemble parfait P est un ensemble U. Il faut
évidemment montrer qu’il n’existe pas de fonction & variation
bornée constante dans les intervalles contigus & P et a coefficients
de Fourier-Stieltjes tendant vers zéro. Mais cela ne suffit pas: il
faut encore montrer qu'il n’existe aucune fonction (a variation
bornée ou non) constante dans chaque intervalle contigu a P

et dont les coefficients de Fourier soient 0(%—) -

En fait, on ne s’est jamais, & notre connaissance, servi de
cette méthode pour montrer qu'un ensemble E est un ensemble U.
On ’a toujours fait en montrant que E appartient & une caté-
gorie d’ensembles (par exemple H) qui sont connus pour étre des
ensembles d’unicité.

5  LES RESULTATS DE NINA BARY SUR LES ENSEMBLES
CANTORIENS A RAPPORT CONSTANT RATIONNEL.

Les ensembles de Cantor a rapport constant £ sont, quand
£ est linverse d’un entier (comme pour I'ensemble ternaire
classique de Cantor) du type H et donc, d’apres le théoreme de
Rajchman, des ensembles U. Il était naturel de se demander si
ces ensembles peuvent étre des ensembles M pour certaines
valeurs de £ et dans P’affirmative de déterminer les valeurs de £
pour lesquelles l’ensemble est un ensemble d’unicité ou de
multiplicité.

Nina Bary a résolu ce probléme pour le cas de & rationnel,
en obtenant le résultat remarquable suivant. Soit § = %, fraction

irréductible; la condition nécessaire et suffisante pour que l'en-
semble soit U est que p = 1; dans tous les autres cas, 'ensemble
est M.
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Ainsi a été mis en évidence le rdle essentiel de la nature
arithmétique de E.

6. LE CAS DE & IRRATIONNEL.
LES NOMBRES DE LA CLASSE C.

Soit 0 un entier algébrique dont tous les conjugués (autres
que 6 lui-méme) ont des modules strictement inférieurs a I'unité.
On peut évidemment supposer 6 > 0. It I’'on a nécessairement
0 > 1. Nous désignerons par C la classe de tous les nombres 0.
Soit £ = 1/6. Si 6 > 2, ce que nous supposerons, il existe un
ensemble cantorien E & rapport constant £. Le premier résultat
obtenu dans la classification des ensembles cantoriens & rapport
constant £ irrationnel est le suivant. Pour que E soit un ensemble
U, il est nécessaire que I'on ait £ = 1/0, o 0 est un nombre de
la classe C. En d’autres termes, si 1/& n’appartient pas a G
(par exemple si  est transcendant), ensemble est un ensemble M.

La démonstration se fait en considérant la fonction de
Lebesgue construite sur 'ensemble E & rapport constant g et
en démontrant que son coefficient de Fourier-Stieltjes

cn = 2m) ] cos mn &t (1 —§) (2)
h=1 '

tend vers zéro pour n— oo dés que 1/€ n’appartient pas-a la
classe C. J

Cette démonstration s’appuie & son tour sur un théoreme de
Pisot d’apreés lequel les nombres 6 de la classe G sont caractérisés
par Pexistence d’un nombre réel A tel que la série

[0o]
2 sin? w2 "
0

soit convergente. Cette propriété est, en soi, un résultat impor-
tant de la théorie des approximations diophantiennes. Elle
caractérise les nombres 0 de C par Pexistence d’un A tel que A0,
réduit modulo 1, tende vers zéro assez vite pour que la somme
des carrés de {A6"} converge, ({z} désignant la différence en
valeur absolue entre z et I’entier le plus voisin).
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7. LE cAs DE & IRRATIONNEL (suite).
LEs EnsEMBLES H™ DE PIATECKI-SHAPIRO.

Le résultat ci-dessus ne résoud pas entiérement le probléme
de la classification des ensembles cantoriens E (&) & rapport
constant £ suivant les valeurs de £. Il laisse en effet intact le
probléme de savoir si la condition & = 1/6, 6 € G est non seu-
lement nécessaire, mais aussi suffisante pour que E (&) soit un
ensemble U. Ainsi que nous 'avons vu plus haut, il ne suffit pas
de montrer — ce qui est facile — que le coefficient de Fourier-

Stieltjes ¢, de (2) ne tend pas vers zéro quand & = 10, 6cC

pour en conclure que E () est un ensemble U.

La solution du probléme a été rendue possible par la décou-
verte, par Piatecki-Shapiro, d’un nouveau type d’ensemble
d’unicité, les ensembles du type H™ qui ne se réduisent pas aux
ensembles H ou a leur union. Considérons le cas de n = 2, qui
est typique.

Nous dirons qu'une suite de vecteurs V de coordonnées
entiéres p,, ¢, dans I'espace euclidien R? est normale si quels que
soient les entiers fixes a, b 1'expression | ap, + bqh[ croit indé-
finiment avec k.

Ceci dit, considérons un ensemble E contenu pour fixer les
idées dans (0, 1). Soit z € E et considérons le point P de coor-
données p, z, g,  réduites modulo 1, c’est-a-dire prises sur le
tore unité dans R2 Si quel que soit z € E, et quel que soit k&
le point P, n’appartient jamais & un certain ensemble G ouvert
du tore, on dit que E est du type H®. L’analogie avec les
ensembles du type H est évidente, et la généralisation a 'espace
euclidien R™ est immédiate, fournissant des ensembles du
type H™. |

Grace au théoréme de Piatecki-Shapiro, d’apres lequel tout
ensemble du type H™ est un ensemble U, on peut démontrer
que ’ensemble cantorien E (£) & rapport constant & ou & = 1/9,
0 € C est un ensemble U. On démontre, en effet, que s1 6 est
de degré n, E (£) est de type H™ précisément. Le vecteur « nor-
mal » V, qu'on considére ici a pour coordonnées les entiers

Apig > Opig s "7 Qg
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ou a, = 0° + ¢ et e, — 0 et le fait qu’il est normal se démontre
en remarquant que quels que solent les entiers ¢; ... ¢, on a

toujours ‘
P R N LA |

puisque 6 est de degré n. C’est ainsi que s’établit la relation
entre le type de I'ensemble et le degré de Ientier algérbique 6.
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