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RECHERCHES RÉCENTES SUR L'UNICITÉ
DU DÉVELOPPEMENT TRIGONOMËTRIQUE *)

par Raphaël Salem, Paris

(Reçu le 8 octobre 1958.)

1. Notions préliminaires.

a) La notion d'ensemble parfait linéaire non dense est familière.

Il se construit sur la droite, en enlevant d'un intervalle, dit
intervalle fondamental, une infinité dénombrable d'intervalles
ouverts, non empiétants et sans extrémités communes, de telle
façon que l'ensemble qui en résulte ne contienne aucun intervalle.

Il sera souvent commode de construire un tel ensemble
sur le tore à une dimension à la place de l'intervalle fondamental
rectiligne.

Un ensemble symétrique du type de Cantor s'obtient en divisant

l'intervalle fondamental en trois parties proportionnelles à

?i, 1 — 2?x, ?x respectivement ^0 < ?i < jJ et en enlevant

l'intervalle du milieu (intervalle « noir »). Les deux intervalles
« blancs » restant sont tous deux divisés en trois parties
proportionnelles à ?2, 1 — 2?2, ?2 respectivement (0 < ?2 < y)»

chaque intervalle médian est encore un intervalle « noir »

enlevé. Etant donné une suite de nombres a» (o < çfc < i),
on procède ainsi indéfiniment; à la pème étape on obtient un
ensemble Ep de 2P intervalles « blancs » chacun de longueur

?p, si l'intervalle fondamental est l'intervalle unité.
L'intersection de tous les Ep fournit l'ensemble E cherché. Les points
de l'ensemble, toujours dans l'intervalle fondamental (0, 1) ont
leurs abscisses données par la formule

« - Ml-?,) +eaç1(i-ça) + ••• (1)

où les sp sont égaux à 0 ou à 1.

*) Conférence faite à Rome et Genève, en mai et juin 1958.
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Un cas particulier intéressant est celui où tous les sont

égaux à un nombre constant 2, ; on obtient alors un ensemble du

type de Cantor à rapport constant. Le cas classique de Cantor
est celui où Ç 1/3.

b) Etant donné une fonction monotone — non décroissante

pour fixer les idées — soit / (x) définie dans l'intervalle (0, 1),

nous appellerons coefficient de Fourier-Stieltjes de / l'intégrale
de Riemann-Stieltjes:

2tt

cn (2 tc)_1 J emx df
0

Si / est absolument continue, cette intégrale se réduit à une
intégrale de Lebesgue et donc cn -> 0 pour n-+ oo. Si / est continue

et singulière 0 p.p.^, cn peut ne pas tendre vers zéro pour
n — oo, mais il existe des / singulières pour lesquelles cn 0

pour n-+ oo ainsi que l'a montré Menchofï en 1916.

c) Etant donné un ensemble parfait E, symétrique du type
de Cantor, nous appellerons fonction de Lebesgue construite sur
cet ensemble la fonction continue y — f {x) telle que quand x
appartient à E et est donné par (1), y soit égal à

Ü + + f£ +2 22 2P

et que y soit constant dans chacun des intervalles contigus à E*
Si E est de mesure nulle (ce qui est toujours le cas des ensembles
à rapport constant) / {x) est purement singulière. On démontre
facilement en procédant par approximations successives, que le
coefficient de Fourier-Stieltjes de la fonction de Lebesgue est
donné par

oo

2 7t cn enm JJ cos TT nÇj• • • (1 —
ft=l.

Ainsi par exemple, pour la fonction de Lebesgue construite
sur l'ensemble classique de Cantor à rapport constant 1/3
on trouve

2 7T Cn 6nni JJ COS

k=i 3
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et on voit, dans ce cas, en prenant pour n des puissances successives

de 3, que cn ne tend pas vers zéro pour n-+ oo • Nous reviendrons

plus loin sur le cas d'un rapport constant E, quelconque,
qui est plus complexe.

2. Le problème de l'unicité.

On peut le poser de la manière suivante. Existe-t-il sur
(0, 2n) des ensembles E tels qu'une série trigonométrique

00

2 (an cos nx + bn sin nx)
0

converge vers zéro partout hors de E, sans être identiquement
nulle Et, si oui, caractériser ces ensembles, qui sont dits «

ensembles de multiplicité ». Un ensemble E tel que toute série

trigonométrique convergeant vers zéro dans le complémentaire
de E soit identiquement nulle est dit « ensemble d'unicité ».

Cantor a démontré par des méthodes célèbres que si E est

vide, ou composé d'un nombre fini de points, E est un ensemble

d'unicité. C'est aussi le cas si le dérivé de E est fini. Plus
généralement, Cantor a démontré que tout ensemble réductible
(c'est-à-dire admettant un dérivé vide de n'importe quel ordre,
fini ou transfini) est un ensemble d'unicité.

Beaucoup plus tard, Young a démontré que tout ensemble

dénombrable est un ensemble d'unicité.
Par contre, il est très facile de voir que tout ensemble E de

mesure positive est un ensemble de multiplicité il suffit de

considérer la série de Fourier de la fonction caractéristique
d'un ensemble parfait P de mesure positive contenu dans E).

La question de savoir s'il existait des ensembles de

multiplicité de mesure nulle a été résolu par Menchoff en 1916; Men-

chofï a construit un ensemble parfait P de mesure nulle (du type
de Cantor, à rapport variable) et une série trigonométrique non

identiquement nulle* convergeant vers zéro dans tout intervalle
contigu à P.

Ceci a posé la question de la classification des ensembles

parfaits de mesure nulle en ensembles d'unicité (ensembles U)

et ensembles de multiplicité (ensembles M).
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Avant de poursuivre, indiquons que si on considère le

problème du point de vue de la convergence simple (et non du

point de vue d'une méthode de sommabilité), ce n'est pas parce

que la convergence simple est plus importante, mais c'est parce
que c'est le problème de la convergence simple qui soulève les

questions les plus intéressantes dans la classification des

ensembles entre ensembles U et ensembles M.

3. Les ensembles du type H et les résultats
de Rajchman.

Quelques années après le résultat de Menchofï, Rajchman a

découvert toute une catégorie d'ensembles parfaits de mesure
nulle qui sont des ensembles U.

Soit E un ensemble porté par le tore de longueur 1. S'il
existe une suite d'entiers { nk tels que pour tout x G E et

pour tout k le point nk x (réduit modulo 1) n'appartienne jamais
à un certain intervalle J, l'ensemble est dit du type H. Ainsi
l'ensemble classique de Cantor à rapport constant \ — 1/3 est
du type H. Il suffit de prendre nk 3k.

Rajchman a démontré que tout ensemble du type H (ces
ensembles sont nécessairement de mesure nulle) est un
ensemble U.

Nina Bary a démontré que l'union d'une infinité dénombrable
d'ensembles U fermés est encore un ensemble U.

4. Les méthodes.

D'après la théorie classique de Riemann, pour démontrer
qu'un ensemble parfait P est un ensemble M, il suffit de construire
une fonction F (x) non constante, mais constante dans chaque
intervalle contigu à P et ayant des coefficients de Fourier qui
soient o La série obtenue par dérivation formelle de la série

de Fourier de / converge alors vers zéro dans tout intervalle
contigu à P. On démontre aussi que l'existence d'une telle fonction

/ est nécessaire, si P est un ensemble M.
En particulier / peut être à variation bornée; dans ce cas



288 R. SALEM

la série qui converge vers zéro hors de P est une série de Fourier-

Stieltjes.
Donc, en particulier, pour montrer que P est un ensemble M,

il suffit de construire une fonction continue non décroissante,

constante dans chaque intervalle contigu à P (mais non partout)
et dont les coefficients de Fourier-Stieltjes tendent vers zéro

c'est la méthode employée par Menchofî.

Il est plus compliqué de démontrer, en se servant des mêmes

idées, qu'un ensemble parfait P est un ensemble U. Il faut

évidemment montrer qu'il n'existe pas de fonction à variation
bornée constante dans les intervalles contigus à P et à coefficients

de Fourier-Stieltjes tendant vers zéro. Mais cela ne suffit pas: il
faut encore montrer qu'il n'existe aucune fonction (à variation
bornée ou non) constante dans chaque intervalle contigu à P

et dont les coefficients de Fourier soient o ^ •

En fait, on ne s'est jamais, à notre connaissance, servi de

cette méthode pour montrer qu'un ensemble E est un ensemble U.

On l'a toujours fait en montrant que E appartient à une

catégorie d'ensembles (par exemple H) qui sont connus pour être des

ensembles d'unicité.

5. Les résultats de Nina Bary sur les ensemrles
CANTORIENS A RAPPORT CONSTANT RATIONNEL.

Les ensembles de Cantor à rapport constant E, sont, quand
2, est l'inverse d'un entier (comme pour l'ensemble ternaire

classique de Cantor) du type H et donc, d'après le théorème de

Rajchman, des ensembles U. Il était naturel de se demander si

ces ensembles peuvent être des ensembles M pour certaines

valeurs de 2, et dans l'affirmative de déterminer les valeurs de \
pour lesquelles l'ensemble est un ensemble d'unicité ou de

multiplicité.
Nina Bary a résolu ce problème pour le cas de 2, rationnel,

en obtenant le résultat remarquable suivant. Soit E, fraction

irréductible; la condition nécessaire et suffisante pour que
l'ensemble soit U est que p 1 ; dans tous les autres cas, l'ensemble

est M.



développement t
Ainsi a été mis en évidence le rôle essentiel de la nature

arithmétique de E.

6. Le cas de 2 irrationnel.
Les nombres de la classe C.

Soit 0 un entier algébrique dont tous les conjugués (autres

que 0 lui-même) ont des modules strictement inférieurs à l'unité.

On peut évidemment supposer 0 > 0. Et l'on a nécessairement

0 > 1. Nous désignerons par C la classe de tous les nombres 0.

Soit 2 1/0. Si 0 > 2, ce que nous supposerons, il existe un

ensemble cantorien E à rapport constant 2- Le premier résultat

obtenu dans la classification des ensembles cantoriens à rapport
constant 2 irrationnel est le suivant. Pour que E soit un ensemble

U, il est nécessaire que l'on ait 2 1/0, où 0 est un nombre de

la classe C. En d'autres termes, si 1/2 n'appartient pas à C

(par exemple si 2, est transcendant), l'ensemble est un ensemble M.

La démonstration se fait en considérant la fonction de

Lebesgue construite sur l'ensemble E à rapport constant 2 et

en démontrant que son coefficient de Fourier-Stieltjes

cn (2 tc)"1 C03 7t n lk~l (1 — 5) (2)

fe=I

tend vers zéro pour n ^ oo dès que 1/2 n'appartient pas à la

classe C.

Cette démonstration s'appuie à son tour sur un théorème de

Pisot d'après lequel les nombres 0 de la classe C sont caractérisés

par l'existence d'un nombre réel X tel que la série

oo

2 sin* 7T X ôn
o

soit convergente. Cette propriété est, en soi, un résultat important

de la théorie des approximations diophantiennes. Elle
caractérise les nombres 0 de C par l'existence d'un X tel que X0n,

réduit modulo 1, tende vers zéro assez vite pour que la somme
des carrés de {X0n} converge, ({z} désignant la différence en

valeur absolue entre z et l'entier le plus voisin).
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7. Le cas de H, irrationnel (suite).
Les ensemrles H(n) de Piatecki-Shapiro.

Le résultat ci-dessus ne résoud pas entièrement le problème
de la classification des ensembles cantoriens E (£) à rapport
constant E, suivant les valeurs de Il laisse en effet intact le

problème de savoir si la condition E, 1/0, 0 G C est non
seulement nécessaire, mais aussi suffisante pour que E (£) soit un
ensemble Ü. Ainsi que nous l'avons vu plus haut, il ne suffit pas
de montrer — ce qui est facile — que le coefficient de Fourier-

Stieltjes cnde(2) ne tend pas vers zéro quand £=-§•, 6 e G

pour en conclure que E (£) est un ensemble U.

La solution du problème a été rendue possible par la découverte,

par Piatecki-Shapiro, d'un nouveau type d'ensemble

d'unicité, les ensembles du type H(n) qui ne se réduisent pas aux
ensembles H ou à leur union. Considérons le cas de 2, qui
est typique.

Nous dirons qu'une suite dé vecteurs Y de coordonnées

entières ph,qkdans l'espace euclidien R2 est normale si quels que

soient les entiers fixes a, b l'expression | aph + bqh | croît
indéfiniment avec k.

Ceci dit, considérons un ensemble E contenu pour fixer les

idées dans (0, 1). Soit a: 6 E et considérons le point P de

coordonnées ph x, qhxréduites modulo 1, c'est-à-dire prises sur le

tore unité dans R2. Si quel que soit £ E, et quel que soit k

le point Pft n'appartient jamais à un certain ensemble G ouvert
du tore, on dit que E est du type H(2). L'analogie avec les

ensembles du type H est évidente, et la généralisation à l'espace

euclidien Rn est immédiate, fournissant des ensembles du

type tPnk
Grâce au théorème de Piatecki-Shapiro, d'après lequel tout

ensemble du type H(n) est un ensemble U, on peut démontrer

que l'ensemble cantorien E (£) à rapport constant \ où l 1/6,

0 £ C est un ensemble U. On démontre, en effet, que si 0 est

de degré n, E (£) est de type H(n) précisément. Le vecteur « normal

» Vft qu'on considère ici a pour coordonnées les entiers

ak+l ' ak+2 ' ak+n
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où as 0S + £s et ss -> 0 et le fait qu'il est normal se démontre

en remarquant que quels que soient les entiers cx cn on a

toujours
Cl + C2 0 + • • • + cn

1 ^ ^

puisque 0 est de degré n. C'est ainsi que s'établit la relation

entre le type de l'ensemble et le degré de l'entier algérbique 0.
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