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zum Polygon fremd sind. OP’ selbst liegt ausser O auch nicht

darauf. Also gehort OP’ bis auf O zum Teilgebiet G. Man fahrt
nun wie im ersten Falle weiter. _

Damit ist gezeigt: Der Rand von G besteht aus Strecken,
die auf dem wurspriinglichen Polygon liegen. Diese Strecken
bilden selbst ein geschlossenes Teilpolygon, weil sich an jeden
Endpunkt einer Strecke wenigstens eine weitere anschliesst.
Satz 3 ist bewiesen.

SU UN ESEMPIO DI FUNZIONE CONTINUA
SENZA DERIVATAY) |

da Luciano nE Vito, Roma

(Recu le 22 avril 1958)

..... Nel Suo articolo: « Sur un exemple de fonction continue
sans dérivée », apparso su L’enseignement mathématique, tomo 111,
fascicolo 1, gennaio-marzo 1957, Ella dimostra che la funzione:

f (x) :éoz‘h|2hx— [2hx—l— %] l ,

ove [y] é il piu grande intero che non supera y, ¢ continua e mai
derivabile sull’asse z.

Credo sia di qualche interesse notare che la funzione f (x)
dell’elegante esempio da Lei portato non soltanto & continua,
ma ¢ anche uniformemente holderiana con qualsiasi esponente
di Holder «, tale che 0 < « < 1. Si ha precisamente, per ogni
coppla di punti z; e x, dell’asse reale:

1) Da una lettera al Prof. Georges de Rham (29 luglio 1957).
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E’ infatti evidente che ¢ () = lx — [x -+ —12—] i e holderiana; per
determinare il minimo coefficiente di Holder relativo all’espo-
nente « si procede nel modo seguente: si.vede che |cp (o) — @ (2,) ’
¢ maggiorato da % ed inoltre | ¢ (x) — o (2;) | < |z — 2, |; ne

viene:

[0 (@) — o ()| = | (@) — @ (@) %] 0 (@) — o () |* < 2% |2 —
— [a . (1)

Poiché nellé (1) sussiste il segno = per 2y =0 e z, = si ha

che 2! non puo essere sostituita nella (1) con una costante piu

piccola.
Dalla (1) si trae:

| f (@) — f (@) | 2{2 9 (2 ) — 27 o (2P )} <

2(1—1

0
_1 h_
et S gy B

k=0

| 2y — 2, |* .

Naturalmente, con analogo ragionamento, si prova anche
e m TR : a— 1
che & holderiana la funzione f(z) = > a™ l atx — [a,kx + 5] '
=0

con a intero positivo pari e quindi, in particolare, quella cos-
truita da B. L. Van der Waerden.

Analoghe considerazioni possono ripetersi per la funzione
considerata da Weierstrass:

o0
2 cos ( ,

ove a & un intero dispari, b ¢ taleche 0 <b <1eab> 1 + %ﬁ

Tenendo presenté che ogni funzione uniformemente holde-
riana con esponente di Holder o = 1 (cioé lipschitziana) e
assolutamente continua, ’osservazione che mi sono permesso
di sottoporLe pone Vlepplu in luce Pinteresse della funzione da
Lei costruita.....
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N.B. — Rispondendo a questa lettera, il Prof. de Rham mi
ha gentilmente comunicato le seguenti osservazioni. Con lo
stesso metodo seguito per dimostrare la holderianita di f ()
con esponente di Holder a, si puo dimostrare quella della funzione

g(x) = Db, y(a"x), ove y & una funzione holderiana con
r=1 |

esponente di Holder o, nell'ipotesi che le due serie: > l bh|

=1

e > | b || @ ]“h siano convergenti. Se si assume a = 2,
he1 ‘ ,

(z) = }x — |z + ] b, >0 e se la successione { b, 2" }

non ¢ infinitesima per k- oo , la funzione g (x) & sprovvista
di derivata in ogni punto, come mostra il ragionamento dell’ar-
ticolo sopra citato del Prof. de Rham. Se si assume inoltre
b, = 27" si ottiene una funzione g (z) hélderiana, come si prova

. . . . 1
con il ragionamento sopra esposto. Se si assume invece b, = 75

si ottiene una funzione g (x) che & sprovvista di derivata (si ha

: . 2R T
infatti lim "= oo> e che non & holderiana, come segue dalla
R—>w
relazione:
n—1
.8 (2—71) — g (0) 1 no-n ok .
igr:o = _1}13:02 - = ® < a<1).
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