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DER JORDANSCHE POLYGONSATZ

IN DER AFFINEN GEOMETRIE

von Klaus Lamotke, Essen

(Reçu le 26 mars 1958)

In seiner Besprechung der 8. Auflage von David Hilberts
Grundlagen der Geometrie (Teubner, 1956) bemerkt H.
Freudenthal, dass zu Hilberts Satz 9, wonach ein einfaches Polygon
die Ebene in zwei Gebiete zerlegt, auch in der 8. Auflage kein
Beweis gegeben wird l). Freudenthal verweist auf den wohl nicht
jedermann zugänglichen Beweis von B. L. van der Waerden:

„De logische grondslagen der euklidische meetkunde" in „Chris-
tiaan Huygens", 13. jaargang Nr. II, Groningen, 1934/35. Es

mag daher erwünscht sein, eine erneute Darstellung dieses

Beweises zu geben, wobei der von van der Waerden im zweiten
Teil angedeutete Beweis in Verbindung mit einer neueren
Arbeit von W. Graeub vollständig ausgeführt wird.

Der Jordansche Polygonsatz lautet: Ein einfaches Polygon

zerlegt die Ebene in zwei Gebiete. Stetigkeit, Parallelenaxiom,
der Satz von Desargues und die Kongruenz werden nicht
vorausgesetzt, sondern nur die folgenden sieben Axiome; in der

Numerierung von Hilbert:

11,2: Durch zwei verschiedene Punkte geht genau eine

Gerade.

I 3 : Auf jeder Geraden liegen mindestens zwei verschiedene

Punkte.

14: Es gibt mindestens drei Punkte, die nicht auf einer

Geraden liegen.

i) Siehe H. Freudentiial, Zur Geschichte der Grundlagen der Geometrie. Nieuw
Archief voor Wiskunde (3), 5, (1957), 105-142.
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Axiome der Anordnung:

A, B und C bezeichnen Punkte.

II 1 : Wenn B zwischen A und C liegt, sind A, B und C drei

verschiedene Punkte einer Geraden.

II 2: Zu zwei verschiedenen Punkten A und B gibt es

mindestens einen Punkt C, so dass B zwischen A
und C liegt.

II 3: Unter irgend drei Punkten einer Geraden gibt es nicht

mehr als einen, der zwischen den beiden andern

liegt.

114; (Axiom von Pasch) : Die drei Eckpunkte eines Dreiecks

A, B und C sollen nicht in einer Geraden liegen.

Die Gerade g möge eine Seite des Dreiecks schneiden,

d.h. durch einen Punkt zwischen zwei

Eckpunkten gehen, aber sie soll durch keinen Eckpunkt
führen. Dann schneidet g mindestens eine weitere

Seite des Dreiecks.

Zu II 2: Mit dem Axiom von Pasch lässt sich zeigen, dass es

dann auch einen Punkt D zwischen A und B gibt.

Zu II 3: Ebenso ergibt sich, dass auch wirklich ein Punkt
zwischen den beiden andern liegt.

Zu II 4: Es kann bewiesen werden, dass g auch höchstens eine

weitere Dreiecksseite schneidet

Im folgenden werden einfache, geometrische Figuren eingeführt
und einige Sätze über sie angegeben, die später benutzt werden.

Eine Strecke AB besteht aus allen Punkten zwischen A und B

einschliesslich der Endpunkte A und B.

Strahl : Ein Punkt 0 auf einer Geraden teilt alle ihre Punkte

ausser 0 in zwei Klassen, Strahlen genannt. Zwischen zwei

Punkten verschiedener Strahlen liegt stets 0. Zwischen zwei

Punkten desselben Strahls liegen nur Punkte dieses Strahls.

i) Siehe C. R. Wylie, Amer. Math. Monthly, 51 (1944), p. 371, wo auch gezeigt
wird, dass B zwischen C und A liegt, wenn B zwischen A und C liegt.
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Jeder der beiden Strahlen kann durch irgend einen seiner Punkte
repräsentiert werden, etwa einer durch A. Man sagt dann:

Strahl OA.

Halbebene : Eine Gerade g teilt alle Punkte der Ebene ausser
denen auf g in zwei Klassen, Halbebenen genannt. Die
Verbindungsstrecke zweier Punkte verschiedener Halbebenen schneidet

g. Die Verbindungsstrecke zweier Punkte derselben
Halbebene enthält auch nur Punkte dieser Halbebene. Man sagt:
Die Halbebene ist konvex. Jede Halbebene kann durch irgend
einen ihrer Punkte repräsentiert werden.

Dreieck: Die Eckpunkte A, B und C liegen nicht in einer
Geraden. Ein Punkt liegt im Innern des Dreiecks, wenn er auf
derselben Seite Halbebene) der Geraden AB wie C, der
Geraden BC wie A und der Geraden CA wie B liegt. Die Strecken

AB, BC und CA bilden den Rand des Dreiecks. Das ganze
Dreieck besteht aus den Punkten des Innern und des Randes.

Es ist konvex.

Winkel: Zwei Strahlen OA und OB mit demselben
Endpunkt 0 aber nicht in einer Geraden bilden den Winkel AOB
(<3 AOB). <) BOA ist dasselbe. Ein Punkt liegt innerhalb

<3 AOB, wenn er auf derselben Seite von OA wie B und von OB
wie A liegt.

Satz 1: Gegeben sei ein Winkel AOB. Jede Gerade OC,
wobei C innerhalb <) AOB liegt, teilt Inneres und Aeusseres

von AOB in das Innere je zweier Teilwinkel, deren Schenkel

die Strahlen OA, OB, OC, bzw. OB, der andere Strahl der Geraden

OC und OA sind.
Ein Streckenzug von Ax nach An besteht aus 'den n

Eckpunkten Ax, A2 An, den Seiten Ax A2, A2, A3, An-1 An, die

je aufeinanderfolgende Ecken verbinden.
Ein Polygon ist ein geschlossener Streckenzug. Er enthält

zusätzlich die Seite An Av Das Polygon ist einfach, wenn
verschiedene Seiten keinen Punkt gemeinsam haben ausser A{

und Ai Ai+1 den Punkt A{.
Satz 2: Jedes Polygon teilt die Ebene in zwei Teile, Inneres

und Aeusseres des Polygons genannt. Dabei gilt:
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a) Jeder Punkt, der nicht auf dem Polygon liegt, gehört ent¬

weder zum einen oder zum anderen Teil;

b) Es ist unmöglich, einen Punkt des Innern mit einem Punkt

des Äussern durch einen Streckenzug zu verbinden, ohne das

Polygon zu schneiden;

c) Die Endpunkte einer Strecke, die eine Seite des Polygons

schneidet und sonst keinen Punkt mit ihm gemeinsam hat,

liegen in verschiedenen Teilen.

Beweis: Es wird definiert, wann ein Strahl A, dessen

Endpunkt 0 nicht auf dem Polygon liegt, dieses schneidet. In
folgenden Situationen liegt jeweils ein Schnitt vor:

1) A geht durch einen inneren Punkt einer Polygonseite und

hat sonst keinen Punkt mit ihr gemeinsam;

2) h geht durch eine Ecke Ai? und die angrenzenden Seiten

A^ Ai und Ai Ai+1 liegen auf verschiedenen Seiten von A ;

3) Eine oder mehrere aufeinanderfolgende Seiten des Polygons

liegen auf A, und die angrenzenden Seiten liegen auf ver-
schiedenen Seiten von A.

In allen anderen Fällen liegt kein Schnitt vor.
In der Abbildung 1 findet in B ein Schnitt mit A2 A3 statt.

Längs A10 At ist kein Schnitt. In A5 ist ein Schnitt. In C sind

zwei Schnitte mit A8 A7 und A8 A9.
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Nun soll gezeigt werden: Bilden die Strahlen OA und OB
einen Winkel, so ist die Summe der Schnittzahlen beider Schenkel
gerade. Man kann die Seiten des Polygons in Stücke teilen, deren
jedes mit höchstens einem Schenkel einen Punkt gemeinsam
hat. Die Endpunkte der Stücke, das sind die alten Eckpunkte
und die neuen Teilpunkte seien Dl7 D2, Dm genannt, in der
Reihenfolge, wie sie auf dem Polygon liegen. Jedem Punkt
wird die Zahl gt mit den Werten 0 oder 1 zugeordnet, je nach
dem ob innerhalb oder ausserhalb des Winkels liegt. Liegt Di
auf einem Schenkel, so wird gi g^ gesetzt. Es ist

(§2 gl) + (#3 £2) + • • • + (gm gm-1) + (gl gm) 0 •

(1)

Die Differenz gi+1 — gi ist ±1, wenn in oben definiertem
Sinne ein Schnitt mit einem Schenkel zwischen D^ und Di+1 oder

in Di oder längs D^ Di vorkommt. In allen anderen Fällen ist

gi+1 — gi =-- 0. Somit entspricht jedem Schnitt eineindeutig eine

Differenz gi+1 — g{ +1. Wegen (1) ist dann die Anzahl der
Schnitte gerade, da gleich viel Differenzen + 1 und — 1

vorkommen müssen.
Es wird nun definiert: 0 liegt im Innern des Polygons, wenn

ein Strahl OA das Polygon in einer ungeraden Anzahl schneidet ;

0 liegt im Aeussern, wenn die Schnittzahl gerade ist. Nach dem

oben Bewiesenen ist diese Definition von der Wahl des Strahls
unabhängig. Damit ist Teil a) von Satz 2 bewiesen.

Die Strecke AB möge zwei Punkte verbinden, die nicht auf
dem Polygon liegen. A und B gehören zum selben Teil des Polygons,

wenn die Schnittzahl von AB mit dem Polygon gerade und

zu verschiedenen Teilen, wenn sie ungerade ist. Das sieht man,
indem man den Strahl ABC und den Strahl BC betrachtet. Die
Differenz der Schnittpunkte beider Strahlen mit dem Polygon

ist die der Strecke AB. Insbesondere gehören A und B zu

demselben Teil, wenn die Strecke AB das Polygon überhaupt nicht
schneidet. Daraus folgt: Sämtliche Punkte eines Streckenzuges,
der das Polygon nicht trifft, liegen in demselben Teil, womit
Satz 2 b) bewiesen ist. Schliesslich gehören A und B zu verschie-
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denen Teilen, wenn die Strecke AB das Polygon in genau einem

Punkte schneidet, was in c) behauptet wurde.
Inneres und Aeusseres eines Polygons können aus mehreren

Teilgebieten bestehen, so in der Abbildung 2: Das schraffierte
Innere und das unschraffierte Aeussere zerfallen je in zwei

Teilgebiete.

Im folgenden wird nur von Teilgebieten des Innern gesprochen,

aber es lässt sich alles wörtlich auf Teilgebiete des Aeusseren

übertragen.

Ein Teilgebiet des Innern besteht aus allen Punkten, die
sich mit einem Punkte des Teilgebietes durch einen Streckenzug
verbinden lassen, ohne dass dabei das Polygon getroffen wird.
Ein Teilgebiet ist also zusammenhängend, was im Worte „Gebiet"
ausgedrückt wird.

Der Rand eines Teilgebietes besteht aus allen Punkten, die
selbst nicht zum Gebiet gehören aber als Endpunkte von
Strecken auftreten können, die sonst ganz im Gebiet liegen. Die
Randpunkte können weder zum Aeussern noch zum Innern des

Polygons gehören. Denn sonst müsste die Verbindungsstrecke
jedes Punktes des Teilgebietes mit einem Randpunkt das Polygon

in einer geraden oder ungeraden Anzahl schneiden. Beides
ist nicht möglich. Also liegt der Rand eines Teilgebietes auf dem
Polygon.

L'Enseignement mathém., t. IV, fasc. 4. 19
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Satz.3:Der Rand eines Teilgebietes ist selbst ein Polygon,
dessen Seiten auf dem ursprünglichen liegen.

Der zweite Teil des Satzes wurde gerade gezeigt. Der-längere
Beweis des ersten Teils wird zunächst zurückgestellt.

Enthält das ursprüngliche Polygon keine mehrfach
durchlaufenen Seiten, so lässt sich jeder Punkt 0 des ursprünglichen
Polygons mit einem Punkt P des Innern verbinden durch eine
Strecke, die sonst keinen Punkt mit dem Polygon gemeinsam hat.
Das folgt aus Satz 2 c). Die Strecke liegt daher bis auf ihren
einen Endpunkt ganz in demselben Teilgebiet des Innern wie P.
0 ist F andpunkt dieses Teilgebietes. Da 0 ein beliebiger Punkt
des ursprünglichen Polygons war, gilt also: Das ursprüngliche
Polygon zerfällt in Teilpolygone, deren jedes ein Teilgebiet des
Innern berandet. Da keine mehrfach durchlaufenen Seiten
auftreten, haben die Teilpolygone nur Ecken gemeinsam.

Ist das ursprüngliche Polygon einfach, dann kann es nicht
aus Teilpolygonen bestehen, die Ecken miteinander gemeinsam
haben. Andererseits dürfen die Teilpolygone auch nicht
vollkommen fremd zueinander sein. So ist das ursprüngliche Polygon
selbst das einzig auftretende Teilpolygon und berandet das
Innere, welches aus einem Teil gebiebesteht. Dasselbe gilt für
das Auessere. Damit ist der Jordansche Polygonsatz bewiesen.
Nun zu Satz 3:

Ein Hilfssatz (entnommen aus W. Graeub: Der Jordansche
Kurvensatz in der affinen Geometrie, Annales Akademiae Scien-
tiarum Fennicae,A I, 181, Helsinki, 1955. Siehe dort auch den

B

Abb. 3
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Beweis.): Gegeben sei eine Strecke AB und ein Strahl h von A
aus, der mit AB nicht in einer Geraden liegt. Abb. 3. Ferner sei

PQ eine zu AB punktfrenide Strecke. Dann gibt es auf h einen
Punkt A', so dass das Dreieck ABA' zu PQ punktfremd ist.

Erweiterungen des Hilfssatzes : PQ darf durch A gehen, falls
die Strecke nicht in das Innere des Winkels BAß fällt. Es darf
sich auch um eine endliche Anzahl solcher "Strecken Pi Q;
handeln. Von allen Punkten A[ auf A bildet dann der, der am
nächsten bei A liegt mit A und B das gewünschte Dreieck.

Beweis des Satzes 3:Es sei 0 ein Randpunkt des Teilgebietes

G. Es gibt zwei oder mehr von 0 ausgehende Strecken,
die auf dem ursprünglichen Polygon liegen. Es soll gezeigt
werden: Es gibt wenigstens zwei von O ausgehende Strecken
sie brauchen nur Teile der vorhin genannten Strecken zu sein
die nur Randpunkte enthalten.

Die von 0 ausgehenden Strecken bestimmen Strahlen, die
miteinander Winkel bilden. P sei ein Punkt von G, der sich mit 0
durch eine Strecke verbinden lässt, die bis auf 0 ganz in G liegt.
P wird das Innere oder Aeussere des Winkels AGB zugeordnet,
in dem P selbst liegt aber keine von 0 ausgehende Strecke. Kurz
gesagt. Es wird P das kleinste Innere oder Aeussere eines
Winkels zugeordnet, in dem P liegt.

Es werden zwei Fälle unterschieden:

I. Der Strahl OP teilt das Innere oder Aeussere des Winkels
AOB, in dem P liegt, in das Innere zweier Winkel AOP und
BOP. (Abb. 4.)

0

A

Abb. 4
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Auf die Strecke OP, Strahl OA und die Polygonseiten

ausser OA als Pt Q( wird der Hilfssatz in seiner erweiterten

Form angewandt: Auf OA und erst recht auf OA gibt es

einen Punkt A', so dass das Dreieck OPA' bis auf die Seite

OA' zum ganzen Polygon fremd ist. Da ein Dreieck konvex

ist, sind auch die Verbindungsstrecken von P zu Punkten

von OA' zum Polygon fremd. Da P im Gebiet G liegt,

gehören dann alle Punkte von OA' zum Rand von G gemäss

dessen Definition. Ebenso findet man auf OB ein B', so dass

OB' zum Rand von G gehört.

II. Fall: Der Strahl OP teilt das Aeussere des Winkels

AOB, in dem P liegt, nicht in das Innere zweier Winkel. Läge
P im Innern von <3 AOB, so läge nach Satz 1 immer, der I. Fall

vor. Es ist nun ein Punkt P' zu finden mit denselben
Eigenschaften wie P und der ausserdem die Voraussetzung des

I. Falles erfüllt. Dazu wird gemäss Satz 1 ein Strahl h von 0
aus in das Aeussere des Winkels <) AOB gelegt, der dieses

in das Innere der- Winkel AO hund BO zerlegt. Auf die

Strecke PO, den Strahl h und alle Seiten des Polygons als

Pj Qi wendet man den Hilfssatz an und findet auf h ein P',

so dass die Verbindungsstrecken von P nach Punkten auf OP'

A.

Abb. 5
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zum Polygon fremd sind. OP' selbst liegt ausser 0 auch nicht

darauf. Also gehört OP' bis auf 0 zum Teilgebiet G. Man fährt

nun wie im ersten Falle weiter.
Damit ist gezeigt: Der Rand von G besteht aus Strecken,

die auf dem ursprünglichen Polygon liegen. Diese Strecken

bilden selbst ein geschlossenes Teilpolygon, weil sich an jeden

Endpunkt einer Strecke wenigstens eine weitere anschliesst.

Satz 3 ist bewiesen.

SU UN ESEMPIO DI FUNZIONE CONTINUA

SENZA DERIVATA1)

da Luciano de Vito, Roma

(Reçu le 22 avril 1958)

Nel Suo articolo: « Sur un exemple de fonction continue
sans dérivée », apparso su Uenseignement mathématique, tomo III,
fascicolo 1, gennaio-marzo 1957, Ella dimostra che la funzione:

00

f (x) 2 %~k x — \%k x ~vl

*,_n L & Ak=0

ove [y] è il più grande intero che non supera y, è continua e mai
derivabile sulPasse x.

Credo sia di qualche interesse notare che la funzione / (x)
dell'elegante esempio da Lei portato non soltanto è continua,
ma è anche uniformemente hölderiana con qualsiasi esponente
di Holder a, taie che 0 < a < 1. Si ha precisamente, per ogni
coppia di punti x± e x2 dell'asse reale:

| / (%) — / (Xl) | < -^T I *2 — XX |a
1 — 2 1

i) Da una lettera al Prof. Georges de Rham (29 luglio 1957).
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