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Si|h|<|g|lelog" dans m(r, ) est nul; si |A| > |g]| le
log™ est égal a logl%‘ — log | | — log | g |. Par suite, on a

T
T, f) = log [o| + 5= | log 1l de
0
A (Z) étant le plus grand des deux nombres | % (z) | et | g (2) .

IV. CARACTERISTIQUE DE SHIMIZU-AHLFORS.
Foncrion L (7).

47. Aire couverte par les valeurs de f (z).

Considérons la fonction Z = f (z) méromorphe pour |z | <7
et représentons les points Z sur la sphére de diamétre 1 déja
envisagée au n° 42. Lorsque z parcourt le cercle 2] <r, le
point Z décrit une surface de Riemann transposée sur la spheére,
¢’est en général une surface & plusieurs feuillets. Nous appelle-
rons « S (r) Paire totale de ces feuillets. On a vu que, a I’élément
d’aire dX dY du plan des X, Y (Z = X 4 ¢ Y) correspond sur
la sphére un élément d’aire

dXdyY

=Tz

D’autre part, & ’élément d’aire tdide du point te** du plan z,
la fonction Z = f (z) fait correspondre I’élément d’aire
dXdY = |f () |2tdido .

On a done, sur la sphere,

T
4o = T 7@

5 tdtdo |

et
r 2T

S (r) = f/(tew)lz |
o ofo( G+ e e W

Le second membre peut s’écrire autrement; n (r, Z) est le nombre
des feuillets de la surface de Riemann sphérique qui recouvrent
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I'image de Z. On a donc aussi

e ] »

nS(r) = ’ J n(r, Z) do, @)
Z .

v

dw, étant 'élément d’aire de la sphére ¥ au point image de Z.
En remplacant r par ¢ < r, divisant par ¢ et intégrant de 0 & 7,

on obtient
.J SL = ——J fN (r,Z)d

et d’aprés le théoreme de Shimizu du n° 42, cette quantité est
égale a la fonction T (r, f) & une constante additive prés qui est
bornée quel que soit r. Il est donc loisible de prendre comme
fonction caractéristique, a la place de T (r, f) la fonction
A
0
dont la dérivée donnée par (1) ou (2) a une interprétation géo-
métrique simple. C’est ce qui avait été proposé par Bloch et a
été utilisé systématiquement par Shimizu et Ahlfors 43,

48. Fonction L (r).

Lorsque le point z décrit la circonférence | z| = r, I'image
sphérique de Z = f(z) décrit une courbe I' = T',, qui est la
frontiére de la surface de Riemann décrite par Z et dont I’aire
est ©S (r). Ahlfors a introduit, & c6té de la fonction S (r), la
longueur L (r) de cette courbe I'.. A 1'élément d’arc rdo de la
circonférence C,, |z| = r, la transformation Z = f(z) fait
correspondre I'élément | f' (re*®) | rd¢ et I’on a sur la sphére un
élément,

|/ (re*®) | rdo
1+ ] (re) [
Par conséquent,
2
N — ’ ,f’(rei¢)‘rdcp.
Lo = | 1+ [ (re®) 2 (3)

0
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49. Inégalité fondamentale.

D’apres ’égalité (1), on a

=~

2 .
as _ 1 _ |yl S
r ’”bj U+ T e PR W
et, en appliquant l'inégalité de Schwarz a Dintégrale (3), et
tenant compte de (4)
as

Lr)<m—-2nr.

dr
Ainsi
L(r)2<2n2r‘fl—§- (5)

On déduit de cette inégalité que, si le point a I'infini est
point essentiel, L (r) est en général infiniment petit par rapport
a S (r). Car, admettant toujours, comme au n° 43, le théoréme
de Picard, T (r, f)/logr n’est pas borné, donc S (r) n’est pas
bornée. Si S (r) n’est pas borné, et si 'on suppose que dans
certains intervalles, pour lesquels r > ry, on a

1
5 T ¢
Lin>8@H* , >0,

on a, dans ces intervalles, d,

la variation totale de logr dans ces intervalles est finie. Ainsi, &
I’extérieur d’intervalles dans lesquels la variation totale de logr
est finie, on a

1
34—3
Lr) <8(r) , €>0.

(A suiore).
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