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C | g | le log

log+ est égal à log

Si | h| < | g| le log+ dans m (r, oo) est nul; si | | > | g| le

h
log | A | — log | g |. Par suite, on a

2tt

T (r, f)log | cq|+ ~ j log X (reicp) p

0

X (z) étant le plus grand des deux nombres | (z) | et | g (z) |.

IV. Caractéristique de Shimizu-Ahlfors.
Fonction L (r).

47. Aire couverte par les valeurs de f (z).

Considérons la fonction Z / (z) méromorphe pour | z | < r
et représentons les points Z sur la sphère de diamètre 1 déjà

envisagée au n° 42. Lorsque z parcourt le cercle | z | < r, le

point Z décrit une surface de Riemann transposée sur la sphère,

c'est en général une surface à plusieurs feuillets. Nous appellerons

%S (r) l'aire totale de ces feuillets. On a vu que, à l'élément

d'aire dX dY du plan des X, Y (Z X + Y) correspond sur
la sphère un élément d'aire

dXdY
dcù

(1 + | Z I«)»

D'autre part, à l'élément d'aire tdtdy du point télcp du plan zr

la fonction Z / (z) fait correspondre l'élément d'aire

dXdY | f'(z) |Hdtdc?

On a donc, sur la sphère,

et
r 2tv

7tS (r) f f —Üli^üU
JJ (l + l/(te^)l2)2

(1)

Le second membre peut s'écrire autrement; n (r, Z) est le nombre
des feuillets de la surface de Riemann sphérique qui recouvrent
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l'image de Z. On a donc aussi

S W | jn(r, Z)d,co,'z

dcùz étant l'élément d'aire de la sphère 2 au point image de Z.
En remplaçant r par t < r, divisant par t et intégrant de 0 à r,
on obtient

et d'après le théorème de Shimizu du n° 42, cette quantité est
égale à la fonction T (r, /) à une constante additive près qui est
bornée quel que soit r. Il est donc loisible de prendre comme
fonction caractéristique, à la place de T (r, /) la fonction

dont la dérivée donnée par (1) ou (2) a une interprétation
géométrique simple. C'est ce qui avait été proposé par Bloch et a
été utilisé systématiquement par Shimizu et Ahlfors 43).

48. Fonction L (r).

Lorsque le point z décrit la circonférence | z | r, l'image
sphérique de Z / (z) décrit une courbe T Tr, qui est la
frontière de la surface de Riemann décrite par Z et dont l'aire
est tuS (r). Ahlfors a introduit, à côté de la fonction S (r), la
longueur L (r) de cette courbe Tr. A l'élément d'aro rd<p de la
circonférence Cr, | z\ r, la transformation Z / (z) fait
correspondre l'élément | /' (relcp) | rdcp et l'on a sur la sphère un
élément

r

r

0

| f (rff) | rd<f
1 + | /K*) |2

Par conséquent,

(3)
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49. Inégalité fondamentale.

D'après l'égalité (1), on a

i f IfK*)!2 (4)
^ TU J (l _|_ | / (rcl<P) |2)2

et, en appliquant l'inégalité de Schwarz à l'intégrale (3), et

tenant compte de (4)

L (r)2 < 7u 2 7urw dr

Ainsi

T I t>\2 <-^ 9 tt2
drL fi)2 < 2 ti2 r ^ • (5)

On déduit de cette inégalité que, si le point à l'infini est

point essentiel, L (r) est en général infiniment petit par rapport
à S (r).Car, admettant toujours, comme au n° 43, le théorème

de Picard, T (r, /)/logr n'est pas borné, donc S (r) n'est pas
bornée. Si S (r) n'est pas borné, et si l'on suppose que dans

certains intervalles, pour lesquels r > r0, on a

L fi) >S fi)2 e > 0

on a, dans ces intervalles, d,

dr S

r - Sl+2s '

J'
dr 2 tu2

r " 2s S (r0;

la variation totale de logr dans ces intervalles est finie. Ainsi, à

l'extérieur d'intervalles dans lesquels la variation totale de logr
est finie, on a

i
L (r) < S (r) 2 + £

s > 0

(A suivre).


	IV. Caractéristique de Shimizu-Ahlfors. Fonction L (r).

