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254 G. VALIRON

L'étude de la division du plan des z en domaines complets
d'univalence pour une fonction méromorphe générale Z f (z)

a été l'objet de travaux de ShimizuC5) et de Marty. Elle demande
de nouveaux efforts.

39. Remarque sur les surfaces du type hyperbolique.

Si l'on considère une fonction Z f (z) méromorphe pour
| z | < 1 et admettant la circonférence | z | 1 comme coupure,
sa fonction inverse est uniforme sur une surface du type
hyperbolique dont l'étude des singularités est peu avancée. Les

valeurs asymptotiques sont ici les valeurs limites sur des
chemins tendant vers la circonférence C, | z | — 1. Les considérations

du n° 34 s'étendent, les singularités de la fonction inverse
autres que les singularités algébriques sont fournies par les

valeurs asymptotiques. Le théorème d'Iversen n'est plus valable
en général non plus que le théorème de Gross dont la démonstration

tombe évidemment en défaut.
La fonction spéciale étudiée au n° 31 rentre dans la classe

générale des fonctions holomorphes et non bornées pour | z | > 1

telles que chaque F (z) est bornée sur un chemin simple L L (F),
z z(t; F), t > 0 avec lim | z (*, F) | 1, tout point de

t= 00

| z | 1 étant point limite des valeurs z (£, F). Le théorème
d'Iversen s'étend à ces fonctions. Lorsqu'on suppose que sur
L (F) l'une des limites d'indétermination de z (t) pour t infini est

infinie, on a

ïîïn log*M ^ r>
> 1

logT=~r

la croissance est très rapide.

III. Caractéristique de Nevanlinna
et propriété de N (r, Z).

40. Fonction T (r, f) de Nevanlinna.

On a vu (n° 18) que, si f (z) est méromorphe pour | z | < r,
si / (0) t2— 0, go et si n (x) désigne le nombre des zéros et p (x)
le nombre des pôles pour | z | < x, on a
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2k

çn{x)_dx_ t'pWdx= J_flog|d9-log|/(0) |

J x ' X 2 7V J
0 Ö 0

Si / (0) est nul ou infini, on peut appliquer la formule à si

est l'ordre du zéro à l'origine, à f (z) zq si l'on a un pôle d'ordre q,

de sorte que, en désignant par cq la limite pour z 0 de f (z)jzq

ou de f {z) zq, on a

r 2k
[x)— n (0) dx _ P p (r)— p(0)dx±lo

1
log

I
(rei<P) I _ i0g

a; ./ # - Z 7U ' 1

On a q n(0)et le signe + si l'origine est zéro, et

le signe — si l'origine est pôle. Par suite, si l'on désigne d'une

façon générale par n x,'Z) le nombre des zéros de f (z) — Z

pour | z | < x,et si l'on pose

N (r, Z) f n (xt Z) — n (0, Z) dx + n (0, Z) log r

on a
2k

N (r, 0) — N (r, °o) — — f log | f (re1?) | d<p — log | cq (1)

Dans l'intégrale, on peut séparer les parties où log | f (relcp) |

est positif de celles où cette quantité est négative. Si l'on désigne

par u+ le nombre égal à u si u est réel positif et 0 si u < 0, on a

2tt 2k
1

f(re^)~ flog I f (reitp) I d<f~2'-flog+1| d<p —0.0 0

Si l'on désigne d'une façon générale par m (r, a) l'intégrale

2tc / 2K

d 9

2tc / 2k

{r' a) k f l0g+ | | dCf'\m (r' log+17 {rei*] ^
la formule (1) s'écrit

N (/*, 0) — N (r, oo) m (r, oc) — m (r, 0) — log I c
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OU

N (r, oo + m (r, oo) N (r, 0) + m(r, 0) + log | cq |

Le premier membre est la caractéristique T (r) ou T (r, /) de
Nevanlinna.

41. Théorèmes de H. Cartan. Propriété de T (r).
0 étant réel, appliquons la formule de Jensen (1) à / (z) — eiQ.

Nous aurons

2~ Jlog I / (reiv) — ei9 \df — log | / (0) — | N (r, — N (r, 0)
Ô

(2)

Multiplions les deux membres par et intégrons de 0 à 2tc.

Nous aurons, d'après la formule de Jensen appliquée à la fonction

u— / (0), | u|1,

2 7T

_1
2

Ö

~ f log I / (0) — eieI delog+ I (0) I

TU J

car, si | / (0) | > 1, u — f(0)ne s'annule pas dans le cercle
| « | < 1, et si | f(0)| < 1, il y a un zéro, qui est / (0), le second

|membre est alors log j / (0) | + log ^ 0.

D'autre part,

2TU 2TT 2tc 2tc

J d6éïf l0gI f(rei9)—eieldç=~|Ç log | / |

0 0 0 0

2tt

2^ f lo^+ I f (^ÎCP) I d<P m <r' 00 *

dd

On déduit donc de (2)
2tt

4

T (r, f) m(r, oo + N (r,co 2- f N (r, et6) d 6 + log+ | / (0) |

"
0 (3)

Ceci suppose J / (0) | ^ oo. Si l'origine est pôle, on aura à mettre
log+ | cq|au lieu de log+ | / (0) j,
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Comme N (r, eie) est une fonction convexe non décroissante

de log r, la formule (3) de Cartan montre qu'il en est de même

de T (r, /). Mais on peut aussi écrire, en remplaçant N (r, elB)

par sa valeur, n (0, eie) n'étant différent de 0 que pour une valeur

au plus de 0,

2k r 2k

| N (r, elQ) d§ j ~~ J n ix> e%%) d®
~

0 0 0

ce qui donne le théorème de Cartan 36).

La fonction T (r, f) a une dérivée, on a

2rc

dT (r, f) 1 r id\ i a

-JW7 t{r'f)2*J n(r'e )dQ-
o

La formule (3) définit T (r, f) comme étant, à une constante
additive près, la moyenne de N (r, Z) pour les Z de module 1.

Elle se généralise en considérant la moyenne pour les Z de

module p 37). On a à la place de la formule (2)

- I log | f(reld) — pelQ | dcp — log | / (0) — pel% | N {r, pelQ) —N (r, oo)
^ i)

2'

_1

2
0

En intégrant les deux membres multipliés par — dd et procédant

comme ci-dessus, on obtient la formule de H. Cartan qui
généralise (3)

2k

t (r, t)JL f N (r, pei0) dQ + log+ LLËli (4)
\ p J 2tz J p

0

Or, si u et v sont positifs, on a, on le voit de suite

log+ (uv) < log+ u + log+ e

donc aussi

log+ u < log+ uv + log+ —

Il s'ensuit que

2k 2K

— log+ P < ^ j log+ d<p — j log+ I / (reicp) | dp < log + 1
P
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donc

— log* p < T (r, l'j — T f) < log+ i
— log p < log

et, par suite, d'après (4)

/ (0)
— log+ | / (0) | < log+ ~

r

2tt

T (r, /) 2^ f N (r, peid) dQ + log+ | / (0) | + 0 (log+ p + log+ ij ; i < e < i
(5)

42. Représentation sphérique. Formules de Cartan et Shimizu.

On sait qu'on peut représenter les nombres complexes

z x + iy, sur une sphère de diamètre 1 tangente au plan 0xy
à l'origine. Si P est le point de la sphère diamétralement opposé

à 0, on fait correspondre au point M (x, y) du plan 0xy le point m

de la sphère situé sur PM. Le point m sera l'image sphérique
du nombre 2. Si le point M décrit un arc de courbe dont l'élément

d'arc est ds | dz |, le point m décrit un arc da et les formules

de l'inversion montrent que
ds

da îTR2 '

La longueur de l'image de la circonférence | z | p est donc

2tcp2. L'aire de la calotte sphérique image du cercle | z| < p est
A ~h p

P 2tt

r r tdtdo (A i \ p2

a(p)=J j jr+w*\ ïT7*) *ï+7'
0 0

La moyenne de N (r, teie) pour t < p, prise sur la sphère est

1 + ps /' f* tN (r, iei9) 0

*pa (1 + «V
0 0

2ît

et, en remplaçant J N (r, teie) dQ par sa valeur tirée de (5), on
0

obtient
p

T (r, /) - log | / (0) | + 6 j' 21_ ^g+ + Jog+ ijdti _ < e <
0
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Le coefficient de 0 est borné pour p > p0 > 0. On a donc cette

conséquence :

Pour p > p0 > 0, la valeur absolue de la différence entre

T (r, f) et la moyenne sphérique de N (r, Z) pour les Z de module

moindre que p est bornée par un nombre fixe, ne dépendant que
de | f (0) | :

< K (6)

A(p)

En prenant p infini, on obtient un résultat de Shimizu 38)
:

La différence entre T (r, f) et la moyenne de N (r, Z) sur la

sphère est bornée par un nombre indépendant de r.
Ces propositions montrent que la fonction T (r, /), ou toute

fonction qui n'en diffère que par une constante, ou une quantité
bornée, est celle qui s'impose dans l'étude des propriétés
moyennes de N (r, Z), tandis que sa dérivée peut caractériser
les propriétés moyennes de n (r, Z).

43. Limitation de N(r, a). Valeurs déficientes V.

Si a est fini, on a
2tc

T (r,f — a)N (r, oo) + Lflog+ I (re^) — I

2 TT J '

0

On vérifie aisément que

log- [u + v) < log- U + log+ P + log 2

donc

2rc 2-Tt

~ | log+ | / {relc?) — a | dcp — j log+ | f (re1*) | de? \ < log~ | a \ + log 2

0 b

et en conséquence

| T (r, f —a) — T (r, f) | < log+ | a | + log 2

Comme, dans le cas général où / (0) — a V1 0,

T (r, / — a) N (r, a) + m (r, a) + log | / (0) — a \
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on obtient pour N (r, a) une borne

N (r, a) < T (r, /) + log+ | a | — log | / (0) — a | + log 2 (7)

dans laquelle, en dehors de T (r, /) figure une expression qui est
bornée si a s'écarte suffisamment de / (0). Donc, si | / (0) — a |

> a > 0, on a

N (r, a) < T (r, /) + K' (8)

Le rapprochement des inégalités (6) et (8), ou plus précisément
de (8) et du théorème de Shimizu suggère évidemment que la
différence entre T (r, /) et N (r, a) doit être en général relativement

petite si T (r, /) tend vers l'infini.
Supposons que f (z) soit méromorphe dans tout le plan sauf à

Vinfini. Si l'on admet le théorème de Picard, on sait que f (z)

prend une infinité de fois toute valeur sauf au plus deux valeurs

exceptionnelles, donc si a n'est pas valeur exceptionnelle,
N (r, a) croît indéfiniment et le rapport de N (r, a) à log r tend
vers l'infini, donc, d'après (7)

lim IM «
r= oo log r

D'une façon plus générale, si T (r, /) était borné lorsque

roo, N (r, a) serait borné, donc n (r, a) 0, f (z) — a ne

s'annulerait pour aucun a tel que / (0) — a =£ 0, / (z) serait

constant; les cas où
T (r, /) 0 (log r)

correspondent aux fractions rationnelles.
Si T (r) tend vers l'infini avec r, comme la moyenne

superficielle de N (r, Z) sur la sphère diffère de T (r) de ipoins de K,
si l'on avait

¥ + *
N (r,Z)< T (r) —T (r)2 s > 0

K"
dans des aires sphériques dont la somme serait —— ces aires

T (r)Y
+ £

ne fourniraient qu'une contribution au plus égale à

NT (r) — K"
1

i

X '
— + S
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et ailleurs, d'après (7) et (8), on aurait au plus

/* j \T(r)+K2*
V T(r)Y

+ 7
ce qui donnerait une contradiction si K" est assez grand. On a
donc

N (r, Z) > T (r) — T (9)

sauf au plus dans des aires de somme

K"

TW2

Si nous remplaçons (9) par

i + S

N (r',Z)> T (r')— 2 T (r')2 (10)

on voit que si (9) a lieu pour r, (10) a lieu pour

i- +r < /" < ri,T (rt) T [r) + T 2
;

et (10) aura encore lieu entre r1 et r2 défini par

TW T(o)+T(r)2 - '

à condition d'exclure de nouvelles aires. Au bout de T (r)2
opérations on arrivera à atteindre un rp pour lequel T(r )> 2T(r) ;
la somme des aires exclues sera moindre que

2K//
T (r)2e

'

et (10) aura lieu dans un intervalle r, r" avec T (r") 2T (r).
En itérant ce procédé, on voit que (10) aura lieu pour tous les r'
pour les Z représentés à l'extérieur d'aires formant une série
convergente. L'inégalité (10) aura lieu à partir d'une valeur r'
pour tous les Z extérieurs à des aires dont la somme est aussi
petite que l'on veut. Pour tous les Z représentés sur la sphère

L'Enseignement mathém., t. IV, fasc. 4. 18
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à l'extérieur d'un ensemble de mesure superficielle nulle on a,

pour r> r(Z)

T + '
N (r,Z)> T (r) — 2 T (r) s > 0

En rapprochant cette inégalité de (7), on a ce résultat:

Lerapport de N (r, z) à T (r, f) tend vers 1 lorsque r tend vers

Vinfini sauf pour un ensemble exceptionnel de valeurs de Z. Ces

valeurs de Z sont appelées valeurs déficientes Y 39).

D'après la démonstration élémentaire qui vient d'être donnée,

l'ensemble exceptionnel est au plus de mesure superficielle nulle.

En réalité sa mesure linéaire est nulle et même davantage et la

propriété est vraie pour les fonctions méromorphes dans un

cercle lorsque T(r,/) n'est pas borné40). Mais cet ensemble peut

exister et avoir la puissance du continu (voir Valiron, premier

mémoire cité ci-dessous). La propriété d'homogénéité de la

distribution des valeurs Z ainsi mise en évidence subsiste aussi

pour les fonctions algébroïdes méromorphes u (z) définies par

une équation

uv Av (z)+ iiv ' (z) + + A0 (z) 0

où les Aj (z) sont des fonctions entières, la définition de N (r, a)

étant la même pour u — a que pour / — a.

On remarquera que la propriété de N (r, Z) montre que, pour
les fonctions d'ordre nul de la classe normale,

T (r, /) ~ log M (r, /).

44. Formule de Nevanlinna.

La formule de Jensen, dans le cas / (0) fini non nul donne la

valeur de | / (0) | au moyen des modules des zéros, des pôles

et de la moyenne de | / (z) | pour | z | r; elle a été généralisée

par R. Nevanlinna. On peut obtenir sa formule en faisant une

transformation homographique du cercle de rayon r sur lui-même.

On a
2tx p n

^

log I / (o) | y- f log | / (ré1'") | d<?+ 2 los r£ri — 2 los nri (11>

* ~ J i | 1 I 1 I R I

A A
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les h,- étant les pôles et les ak les zéros de / (z) intérieurs au cercle

| z | < r.Onobtiendra une formule donnant | (z0) |, | z0 \

en faisant la transformation

ç
* —j> f (Ç) / (z) (12)

r2 — z0 z

et en appliquant la formule (11) à F (Ç). La transformation de

l'intégrale s'effectue en posant pour z Ç ce qui
montre, en prenant les dérivées logarithmiques dans (12), que

dtp z0| z„ | ,^0
9 r2 +I Zo I2 — 2r | z0 I cos (+ — +0)

On obtient ainsi la première formule de Nevanlinna

2tt " Uol2
log 1/(3.) I«2ij l0g I f^Ir. + I ,0 |. _ 2, I

Zo°| COS (+ - +,)
0

p n

+ 2 lQg I ® (z0, bjI— 2 !og I ® («0. ak I (13)

avec

<&(*,*) r'~*' (14)
r [c — z)

De cette formule, R. Nevanlinna en déduit une autre
donnant la dérivée logarithmique 41).

45. Comparaison de T (r, f) et log M (r, f) lorsque f (z)

est une jonction entière.

Si f (z) est une fonction entière, on a

2tt

T (r, f) m(r, oo) J- j log+ | f (rel<p) | dy < log M (r, /)
0

D'autre part, la formule (13) dans laquelle les termes relatifs
aux pôles disparaissent et où, d'après (14) et (12), | ®(z0, ak) | > 1,

donne
2tt

iogi/wi<^j iog+ i/(^)i
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puisque

r2 + I *o I2 — 2r | z0 | cos — tyo) > (r — | z0 |)2

Il s'ensuit que, en appliquant cette inégalité au point z0 de

module kr,k < 1, en lequel | / (z0) | — M (kr, /), on a

log M (kr,f) < T

De ces deux inégalités, on déduit (Nevanlinna)

log M (kr, f)<T (r, f)<logM [r, f) 0 < 1 (15)

Il en résulte que

TET'OS T ir,f) log, M (r,f)
r= oo log r r=oo log r

Vordre de T (r, f) est égal à Vordre de f (z) défini à Vaide de

log M (r, f).
On pourra définir la classe convergente ou divergente de

l'ordre fini positif p au moyen de T (r, /) au lieu de log M (r, /).
On pourra définir un ordre précisé de T (r, /) comme on l'a
défini à partir de log M (r, /). Toutes ces définitions s'étendront
d'elles-mêmes au cas où / (z) est méromorphe.

La relation (15) reste évidemment imprécise dans les cas

généraux, ou si l'on préfère, lorsque / [z) est une fonction entière,
la connaissance même très précise de log M (r, /) fournie par les

Coefficients du développement taylorien ne donne pas une
connaissance précise de T (r, /). Par exemple, si / (z) est
parfaitement régulière par rapport à un ordre précisé p (r), (15) montre
seulement que

Hp (1 — 0 (1)) rp(r) < T (r, /) < (1 + 0 (1)) /'p(r)

OÙ

On pourra choisir k pour obtenir le maximum de Hp.

L'emploi de la relation (15) et des inégalités entre log M (r, /)
et log M (r, f) obtenues au n° 4 fournira des relations entre T (r, /)
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et T (r, /') 1. Dans le cas général des fonctions méromorphes
l'étude de ces relations utilise la considération des propriétés de

la dérivée logarithmique 42).

46. Remarques.

I. Dans quelques cas simples, le calcul approché de T (r, /)
pour une fonction entière est aussi facile que celui de log M (r, /).
C'est le cas pour les fonctions élémentaires, pour les fonctions
de Mittag-Lefïer, pour les fonctions d'ordre non entier dont les
zéros ont tous le même argument et n (r) ~ rp(r). C'est aussi le
cas pour les fonctions vérifiant certaines équations fonctionnelles

simples. Ainsi, pour les solutions des équations de Poincaré

/ M P (z,f (z)) j f I > 1

où P (x, y) est un polynôme dont le degré q en y est supérieur
à 1. On obtient

T (r I 5 I, /) q T (r, /) + 0 (log r)

et, en itérant,

T(r0M*,/) ro'B (r0) qn

ce qui donne en posant r — rQ \ s Jn,

log IT (r, f) A (log r) r9 p M '

A (x) étant une fonction périodique de période log | s |. A (x)
est effectivement non constante dans certains cas, par exemple
lorsque

00 / 7 \ 2n_1

/m n i-4-i M -le,
qui est solution de

II.Soit une fonction méromorphe pour laquelle, pour
r > r0,

T (r, f)<A(log r)2 A fini. (16)
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On aura une inégalité analogue pour N (r, oo et N (r, s). On

pourra donc former des produits infinis g (z) et h (z) admettant
respectivement pour zéros les pôles et les zéros de / (z) et l'on
aura pour ces fonctions

s'°iioTy< - »-« •' »-* <•"

Le quotient

Klz) =f{z)g(z)
h(z)

n'aura plus ni pôles ni zéros et l'on aura, d'après l'inégalité

log+ (uv) < log+ U + log+ P

T [r,K)< T (r, /) + T g) + T (r, i)
T (r, I) - T (r, h) + h

donc
T (r, K) < B (log r)2 r > r0

Or K (2) est une fonction entière sans zéros, donc de la forme el{z) ;

d'après la formule (15), sa partie réelle pour \z \ < r sera bornée

par B]l (logr)2, ce sera une constante d'après le théorème sur la
partie réelle (n° 18). Toute fonction méromorphe vérifiant (16)
est le quotient de deux fonctions entières vérifiant (17).

III. D'une façon générale, une fonction méromorphe / {z)

peut se mettre sous la forme du quotient de deux fonctions
entières g (z) et h (z) sans zéros communs. On a

/ A. T (r,/)N (r,oo)+ m (r, =o)

1
m °°^ Yi

ö

2tt

h)
0

et, d'après le théorème de Jensen

h reitp)

g («<»)
d 9

2k

N (r,00) + log I cqI j log I (reicp) | d<ç
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C | g | le log

log+ est égal à log

Si | h| < | g| le log+ dans m (r, oo) est nul; si | | > | g| le

h
log | A | — log | g |. Par suite, on a

2tt

T (r, f)log | cq|+ ~ j log X (reicp) p

0

X (z) étant le plus grand des deux nombres | (z) | et | g (z) |.

IV. Caractéristique de Shimizu-Ahlfors.
Fonction L (r).

47. Aire couverte par les valeurs de f (z).

Considérons la fonction Z / (z) méromorphe pour | z | < r
et représentons les points Z sur la sphère de diamètre 1 déjà

envisagée au n° 42. Lorsque z parcourt le cercle | z | < r, le

point Z décrit une surface de Riemann transposée sur la sphère,

c'est en général une surface à plusieurs feuillets. Nous appellerons

%S (r) l'aire totale de ces feuillets. On a vu que, à l'élément

d'aire dX dY du plan des X, Y (Z X + Y) correspond sur
la sphère un élément d'aire

dXdY
dcù

(1 + | Z I«)»

D'autre part, à l'élément d'aire tdtdy du point télcp du plan zr

la fonction Z / (z) fait correspondre l'élément d'aire

dXdY | f'(z) |Hdtdc?

On a donc, sur la sphère,

et
r 2tv

7tS (r) f f —Üli^üU
JJ (l + l/(te^)l2)2

(1)

Le second membre peut s'écrire autrement; n (r, Z) est le nombre
des feuillets de la surface de Riemann sphérique qui recouvrent
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