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254 G. VALIRON

L’étude de la division du plan des z en domaines complets
d’univalence pour une fonction méromorphe générale Z = f (2)
a été 'objet de travaux de Shimizu *® et de Marty. Elle demande
de nouveaux efforts.

39. Remarque sur les surfaces du type hyperbolique.

Si 'on considére une fonction Z = f (z) méromorphe pour
’z[ < 1 et admettant la circonférence [z[ = 1 comme coupure,
sa fonction inverse est uniforme sur une surface du type hyper-
bolique dont I’étude des singularités est peu avancée. Les
- valeurs asymptotiques sont ici les valeurs limites sur des che-
- mins tendant vers la circonférence C, | z| = 1. Les considéra-
tions du n° 34 s’étendent, les singularités de la fonction inverse
autres que les singularités algébriques sont fournies par les
valeurs asymptotiques. Le théoreme d’Iversen n’est plus valable
en général non plus que le théoréeme de Gross dont la démons-
tration tombe évidemment en défaut.

La fonction spéciale étudiée au n® 31 rentre dans la classe
générale des fonctions holomorphes et non bornées pour |z | > 1
telles que chaque F (z) est bornée sur un chemin simple L, = L (F),
z=12z(;F), t >0 avec lim|z (¢ F)| =1, tout point de

l= o

| 2| = 1 étant point limite des valeurs z (¢, F). Le théoréme
d’Iversen s’étend a ces fonctions. Lorsqu’on suppose que sur
L (F) P'une des limites d’indétermination de z (f) pour ¢ infini est
infinie, on a

la croissance est trés rapide.

ITI. CARACTERISTIQUE DE NEVANLINNA
ET PROPRIETE DE N (r, Z).

40. Fonction T (r, f) de Nevanlinna.

On a vu (n° 18) que, si f (z) est méromorphe pour | z | <
si f(0) % 0, oo et si n (z) désigne le nombre des zéros et p
le nombre des pdles pour | z| < z, on a

r?
(%)
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r

r _ « 2
!/ﬂnm dz ,/*de — .;_m/’ log | f (r¢®) | d — log | £(0) | -
0 ( o

x x
0 0

Si f (0) est nul ou infini, on peut appliquer la formule a %(? sig

est Pordre du zéro & l’brigine, af (z) 22 si’on a un pdle d’ordre ¢,
de sorte que, en désignant par ¢, la limite pour z = 0 de f (z)/2*
ou de f (z)z% on a | ‘

2 r : 2

/n(x)—n(O) dx__ff;’(r)—p(o) dz + glogr = ;—T—t / loglf("ew)ld@_logICQI'

S :

O~

0
On a ¢ = n (0) et le signe + si l’origine est zéro, ¢ = p (0) et
le signe — si D'origine est pole. Par suite, si I'on désigne d’une
facon générale par n (z,Z) le nombre des zéros de f(z) —Z
pour | z| < z, et si 'on pose | '

r )
N (r, 7) = /”("”" Z) ;,”(0’ Z) 4z + n (0, z)log r
0

on a
2T

N(r,O)—N(r,oo):;;cf log | £ (réi®) | do —log | ¢, | . (1)
0 ' '

Dans D'intégrale, on peut séparer les parties ou log | f (re'®) |

est positif de celles ou cette quantité est négative. Si1'on désigne
par u" le nombre égal & u si u est réel positif et 0 si u < 0, on a

1 2w 1 An 2

3 ¥ . 1 . .
rw | osl1 0 do =2 [ log" | fr¥) [do — o [ tog
0 : _ 0 0

do .

f(re'®)

Si on désigne d’une fagon générale par m (r, a) I'intégrale -

1 2r 1 ' _m
1o, * o ' _1 + L¢
m(r,a) = 2-7: / log F (rét®) — a’d‘P ; <m (r, oo) = ﬂé/ log™ |1 (ré'?) ]d@)

la formule (1) s’écrit

N (r, 0) — N (r, ) = m (r, ©)— m (r, 0) — log ]
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ou
N (r, ©) + m (r, ) = N (r, 0) + m(r, 0) +log|cq| ;

Le premier membre est la caractéristique T (r) ou T (r, f) de

Nevanlinna.

41. Théorémes de H. Cartan. Propriété de T (r).

9 étant réel, appliquons la formule de Jensen (1) a f (z) — ™.
Nous aurons

5171: ,/‘ log | f (re'?) — &' |do —log |f(0) — é¥ = N (r, é% — N (r, 0) .

Multiplions les deux membres par g—g et intégrons de 0 & 2.

Nous aurons, d’apres la formule de Jensen appliquée a la fone-
tion u — f(0), |u| = 1,

2

o | log [ 1(0) — ] a0 = 1og* | £ (0) |

[ %

0
car, si | f(0)| > 1, u — f(0) ne s’annule pas dans le cercle
|u| < 1,etsi|f(0)] < 4,ily aun zéro, qui est f (0), le second

membre est alors log |  (0) | + log I—f—(%)—l = 0.

D’autre part,

a4 2T 1 2 i 2
1 1 ioy o), 1 __( i9) __ 4i0] 40 =
EJ deﬂf log | f (ré'®) — e ]d@_znu‘ do o~ log | f (re!®) — €| d 6
0 0 0 0
2
= 2_17;.,( 10g+'f(reiq’)ld<p = m(r, ®) .
s A

On déduit donc de (2)
1 d i6 +
T(rf) =m(r, o) + N(r, o) = é‘ﬁf N (r, ¢) d0 + log* | (0) ] .
0 - (3)
Ceci suppose | f (0) | # o . Sil’origine est pole, on aura & mettre
log™ | ¢, | au lieu de log™ | f(0) |.
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Comme N (r, ¢°) est une fonction convexe non décroissante
de log r, la formule (3) de Cartan montre qu’il en est de méme
de T (r, f). Mais on peut aussi écrire, en remplacant N (r, e®)
par sa valeur, n (0, ¢*°) n’étant différent de O que pour une valeur
au plus de 6,

| i e
1 [ N, e a0 = | ‘—ZE’J n (@, ¢ 0

. J oz

0 0 0
ce qui donne le théoréme de Cartan 3%,

La fonction T (r, f) a une dérivée, on a

La formule (3) définit T (r, f) comme étant, & une constante
additive pres, la moyenne de N (r, Z) pour les Z de module 1.
Elle se généralise en considérant la moyenne pour les Z de
module ¢ 37, On a & la place de la formule (2)

27
zin- | log|f(re®) —pe®|do—log[f(0) —pe®| = N(r, o) —N{(r, o) .
0 ,

En intégrant les deux membres multipliés par 51; d0 et procédant

comme ci-dessus, on obtient la formule de H. Cartan qui géné-
ralise (3) s
Par :
1 i 0
T<r, i) — ﬁ.,‘ N (r, pei®) 20 + log* L1

. o (%)

Or, si u et ¢ sont positifs, on a, on le voit de suite

log®™ (ue) < log"™ u + log* o |
donc aussi |
log" u <log® uy + log™ % :

Il s’ensuit que

%n
—logt p < L ‘ log™

r
1 , )
do — 5— f log® | £ (r'®) [ dp < log+—:;
-0

f (re*?)
0

27




donc
—logt p < T<r,%) —T(rf) < log+%
—1log" p < log” ”PO) \ log™ |1 (0)| < log" =
et, par suite, d’aprés (4)
" e
Tirf) =g | Niroe® a0+ log"|£(0)] + 6(10g+ o + logT—ip—>, _1<b<t.

T (r

f)—log |f(0)] + 67
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¥

42. Représentation sphérique. Formules de Cartan et Shimizu.

On sait qu’on peut représenter les nombres complexes
z = x + iy, sur une sphére de diameétre 1 tangente au plan Ozy
a Porigine. Si P est le point de la sphére diamétralement opposé
a4 0, on fait correspondre au point M (2, y) du plan Ozy le point m
de la sphére situé sur PM. Le point m sera I'image sphérique
du nombre z. Si le point M décrit un arc de courbe dont I’élément
d’arc est ds = | dz |, le point m décrit un arc do et les formules
de I'inversion montrent que

ds
IR
La longueur de I'image de la circonférence | z| = p est donc

21p
1+ ¢

.. L’aire de la calotte sphérique image du cercle | z| < pest

_‘ “n vdedd /1 ‘_n__gf_"
(==L T ) Tt

La moyenne de N (r, te'®) pour ¢ < p, prise sur la spheére est

p 2w ,
1 + o2 ‘ “ tN (r, ) dtd0

me? (1 -+ 22)?
0 0

2m
et, en remplagant [ N (r, t¢) d6 par sa valeur tirée de (5), on
0

obtient

(5)
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Le coefficient de 6 est borné pour p > p, > 0. On a donc cette
conséquence:

Pour o > oy > 0, la valeur absolue de la différence enire
T (r, f) et la moyenne sphérique de N (r, Z) pour les Z de module
moindre que o est bornée par un nombre fize, ne dépendant que
de | £(0) |:
L ‘jqu(r,Z)dwl<K. (6)

A(p) S
AP

-}T<f,f>—

En prenant p infini, on obtient un résultat de Shimizu 3%:

La différence entre T (v, f) et la moyenne de N (r, Z) sur la
sphére est bornée par un nombre tndépendant de r.

Ces propositions montrent que la fonction T (r, f), ou toute
fonction qui n’en différe que par une constante, ou une quantité
bornée, est celle qui s’impose dans I’étude des propriétés
moyennes de N (r, Z), tandis que sa dérivée peut caractériser
les propriétés moyennes de n (r, Z).

43. Limitation de N(r, a). Valeﬁrs déficientes V.

Si a est fini, on a

T

T(r,f—a) =N (r, o) —!—%CJ 10g+|]‘(rei'*’)—a[dcp.
: S0

vt

On vérifie aisément que

log® (v + ¢) <log® u 4 log* ¢ + log 2

donc |
om 9%
| og* | (re®) — aldcp—— j’ log™ | (ré'%) | do | < log” | a| + log

[ %

0 0

O

et en conséquence
[ T(r,f—a) —T(r, /)| <log"|al| 4+ log2.
Comme, dans le cas général ou f.(O) —a # 0,

T(r,f—a) =N {r,a) + m(r,a) + log | (0) —
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on obtient pour N (r, a) une borne
N(r,a) <T(rf) +log" |a|—1log |[f(0) —a|+log2. (7)

dans laquelle, en dehors de T (r, f) figure une expression qui est
bornée si a s’écarte suffisamment de f (0). Donc, si | f(0) — a|

> o >0, on a
N (r,a) <Ti(rf) + K . (8)

Le rapprochement des inégalités (6) et (8), ou plus précisément
de (8) et du théoréme de Shimizu suggeére évidemment que la
différence entre T (r, f) et N (r, a) doit étre en général relative-
ment, petite si T (r, f) tend vers 'infini.

Supposons que f (z) soit méromorphe dans tout le plan sauf a
Uinfini. Si 'on admet le théoréeme de Picard, on sait que f (2)
prend une infinité de fois toute valeur sauf au plus deux valeurs
exceptionnelles, donc si a n’est pas valeur exceptionnelle,
N (r, a) croit indéfiniment et le rapport de N (r, a) a log r tend
vers I'infini, donc, d’aprés (7)

lim L)

Cr=w logr
D’une fagon plus générale, si T (r, f) était borné lorsque
r— o, N(r, a) serait borné, donc n(r,a) =0, f(z) —a ne
s’annulerait pour aucun a tel que f(0) —a # 0, f(z) serait

constant; les cas ou «
T (r, f) = 0 (log r)

correspondent aux fractions rationnelles.
Si T (r) tend vers l'infini avec r, comme la moyenne super-
ficielle de N (r, Z) sur la sphére difféere de T (r) de moins de K,

si Pon avait

1+s

N(rZ) <T@ —T@FEH2 , >0

’7

, ces aires
+e

dans des aires sphériques dont la somme serait

' . | T (r)
ne fourniraient qu’une contribution au plus égale a

wo| =

T (r) — K”
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et ailleurs, d’aprés (7) et (8), on aurait au plus

<n__ Ki )T(r)+ K,

T (r)g i

ce qui donuerait une contradiction si K’ est assez grand. On a

donc
1
i, + €
N (r,Z) >T()—T(r)? (9)
sauf au plus dans des aires de somme
K//
1
T
Si nous remplagons (9) par
| 1 + e
N(,Z) >T@F)—2T@)* (10)

on voit que si (9) a lieu pour r, (10) a lieu pour

+ €

?

1
r<r<r, T{)=T(@+TrF?
et (10) aura encore lieu entre r, et r, défini par

1

Tir) =T () + T2

1
a condition d’exclure de nouvelles aires. Au bout de T (r)2
opérations on arrivera a atteindre un rp pour lequel T(r,) > 2T (r);

la somme des aires exclues sera moindre que

2K”
T (r)*€ -

et (10) aura lieu dans un intervalle r, 7" avec T (r'y = 2T (r).
En itérant ce procédsé, on voit que (10) aura lieu pour tous les r’
pour les Z représentés a Pextérieur d’aires formant une série
convergente. L’inégalité (10) aura lieu a partir d’une valeur r’
pour tous les Z extérieurs & des aires dont la somme est aussi
petite que 'on veut. Pour tous les Z représentés sur la spheére

L’Enseignement mathém., t. IV, fasc. 4. 18
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3 Textérieur d’un ensemble de mesure superficielle nulle on a,
pour r > r (Z)

..
N Z) >T(@F —2TFH* , e>0.

En rapprochant cette inégalité de (7), on a ce résultat:

Le rapport de N (v, z) a T (r, f) tend vers 1 lorsque r tend vers
Pinfini sauf pour un ensemble exceptionnel de paleurs de 7. Ces
valeurs de Z. sont appelées valeurs déficientes V 39),

D’aprés la démonstration élémentaire qui vient d’étre donnée,
ensemble exceptionnel est au plus de mesure superficielle nulle.
En réalité sa mesure linéaire est nulle et méme davantage et la
propriété est vraie pour les fonctions méromorphes dans un
cercle lorsque T (r, f) n’est pas borné 10 Mais cet ensemble peut
exister et avoir la puissance du continu (voir Valiron, premier
‘mémoire cité ci-dessous). La propriété d’homogénéité de la
distribution des valeurs Z ainsi mise en évidence subsiste aussi
pour les fonctions algébroides méromorphes u (z) définies par
une équation

w A (z) + ut A, (a) + o + Agls) =0,

v

ou les A; (z) sont des fonctions entiéres, la définition de N (r, a)
étant la méme pour u — a que pour f— a.
On remarquera que la propriété de N (r, Z) montre que, pour

les fonctions d’ordre nul de la classe normale
b

T (r, f) ~ log M (r, ).

4h. Formule de Nevanlinna.

I,a formule de Jensen, dans le cas f (0) fini non nul donne la
valeur de | f (0) | au moyen des modules des zeros, des poles
et de la moyenne de | f (z) | pour | z| = r; elle a éte généralisée
par R. Nevanlinna. On peut obtenir sa formule en faisant une
transformation homiographique du cercle de rayon r sur lui-méme.
On a | :

& r

o 1700)1 = 5 [ Tog |70 [do + D log g — S log gy (41

r
] 1 AR




- CARACTERISTIQUE DE NEVANLINNA . 263

les b; étant les poles et les g, les zéros de f (z) intérieurs au cercle
| z | < r. On obtiendra une formule donnant |f(z) |, | 2] <7
en faisant la transformation

g=r 22 F (%) = f(a) (12)
r?—zyz
et en appliquant la formule (11) & F (C). La transformation de
I'intégrale s’effectue en posant pour z = ret®, ¢ = re', ce qui
montre, en prenant les dérivées logarithmiques dans (12), que

r2 — |z |?

. i
7’2+IZolz—erzolcos(q;_.%)d‘p’ g = |z e .

do =

On obtient ainsi la premiére formule de Nevanlinna

2 .
log 1) | = 9= | 108 11 06%) | oo g Tt o g 44
D n
—[—210g|<b(zo,bjl—zldg!d)(zo,ahl, (13)
avec 1 1
® e o) = I (14)

De cette formule, R. Nevanlinna en déduit une autre don-
nant la dérivée logarithmique V.

45. Comparaison de T (v, f) et log M (r, f) lorsque f (z)
est une fonction entiére.

Si f (z) est une fonction entiére, on a

2T

T ) = mir, @) = 5= | log" [ (¢"%) |dp < log M(r, f) .

0

D’autre part, la formule (13) dans laquelle les termes relatifs
aux poéles disparaissent et ou, d’apres (14) et (12), | D(z,, a;,) l > 1,
donne .

9

log | f (%) | - f0g+|fre“" %d@
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puisque
r® 2 [P —2r | 3] cos (b — o) = (r—12])?.

Il s’ensuit qlie, en appliquant cette inégalité au point z, de
module kr, £k << 1, en lequel | f (z,) | = M (kr, f), on a

1+ k

log M (kr, f) <1_/€T(r,f).

De ces deux inégalités, on déduit (Nevanlinna)

1 —k

L g Mk /) < T /) <logMinf), 0<k<t. (19

Il en résulte que

Tm log T(r. /) _ 7 loge M (r, f)
r=c lOgr  r=ow log r

Pordre de T (r, f) est égal a Dordre de f(z) défini a laide de

log M (r, f).

On pourra définir la classe convergente ou divergente de
I’ordre fini positif p au moyen de T (r, f) au lieu de log M (r, f).
On pourra définir un ordre précisé de T (r, f) comme on I'a
défini a partir de log M (r, f). Toutes ces définitions s’étendront
d’elles-mémes au cas ou f (z) est méromorphe.

La relation (15) reste évidemment imprécise dans les cas
généraux, ou si ’on préféere, lorsque f (z) est une fonction entiére,
la connaissance méme trés précise de log M (r, f) fournie par les
coefficients du développement taylorien ne donne pas une
connaissance précise de T (r, f). Par exemple, si f (z) est parfai-
tement réguliére par rapport a un ordre précisé p (r), (15) montre
seulement que |

H {1 —0 (1)) 0 < Tr, f) < (140 (1)) 0,

ou
_A—k
e 1+ k

H k°, k<1
On pourra choisir & pour obtenir le maximum de H..
L’emploi de la relation (15) et des inégalités entre log M (r, f)
et log M (r, /') obtenues au n° 4 fournira des relations entre T (7, f)
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et T (r, )L Dans le cas général des fonctions méromorphes
I’étude de ces relations utilise la considération des propriétés de
la dérivée logarithmique 42).

46. Remarques.

I. Dans quelques cas simples, le calcul approché de T (r, f)
pour une fonction entiére est aussi facile que celui de log M (r, f).
C’est le cas pour les fonctions élémentaires, pour les fonctions
de Mittag-Leffer, pour les fonctions d’ordre non entier dont les
zéros ont tous le méme argument et 7 (r) ~ r*™. C’est aussi le
cas pour les fonctions vérifiant certaines équations fonction-
nelles simples. Ainsi, pour les solutions des équations de Poincaré

fles) =P (z,f(a)) , IsI>1,

ou P (z, y) est un polyndéme dont le degré ¢ en y est supérieur
a 1. On obtient

T(rlsl,f) = ¢T(r,f) + 0 (log r)
et, en itérant,
T (ro|s ™ f) o~ B (rg) g,
ce qui donne en posant r = ro | s "

log ¢
T . 1 e -
rof) o~ Allogr)r®, o = BL

?

A (z) étant une fonction périodique de période log | s|. A (x)
est effectivement non constante dans certains cas, par exemple
lorsque

qui est solution de
flas) = (1 —2)[f (57 .

I1. Soit une fonction méromorphe pour laquelle, pour
r > Tos

T (r, f) < A (log )2 , A fini. (16)
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On aura une inégalité analogue pour N (r, o) et N (r, s). On
pourra donc former des produits infinis g (z) et A (z) admettant
respectivement pour zéros les poles et les zéros de f(z) et on
aura pour ces fonctions

Tim 108 M (r, ¢)

7-=00_W<00, (P:g et CP:h. (17)

Le quotient

n’aura plus ni poles ni zéros et I'on aura, d’aprés I'inégalité

log" (wo) <log® uw + log* ¢,

T, K) <T(rf)+T(r g —{—T(r,%—)

T<r,%> — T(rh) + h

donc
T (r, K) < B (log r)? , r>rg.

Or K (z) est une fonction entiére sans zéros, donc de la forme €@
d’apres la formule (15), sa partie réelle pour | z | < r sera bornée
par B, (logr)?, ce sera une constante d’aprés le théoréme sur la
- partie réelle (n° 18). Toute fonction méromorphe vérifiant (16)
est le quotient de deux fonctions entiéres vérifiant (17).

III. D’une fagon générale, une fonction méromorphe f (z)
peut se mettre sous la forme du quotient de deux fonctions
entiéres g (z) et & (z) sans zéros communs. On a

f=—;3, T(rf) = N(r, o) + m{r, =) ,
L e | A0
+ re
m (r, ) :ﬂb} log g(rei<P)

et, d’aprés le théoreme de Jensen

2m .

N (r, @) + log [e,| = 3= [ log |g (e |a
N 0
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Si|h|<|g|lelog" dans m(r, ) est nul; si |A| > |g]| le
log™ est égal a logl%‘ — log | | — log | g |. Par suite, on a

T
T, f) = log [o| + 5= | log 1l de
0
A (Z) étant le plus grand des deux nombres | % (z) | et | g (2) .

IV. CARACTERISTIQUE DE SHIMIZU-AHLFORS.
Foncrion L (7).

47. Aire couverte par les valeurs de f (z).

Considérons la fonction Z = f (z) méromorphe pour |z | <7
et représentons les points Z sur la sphére de diamétre 1 déja
envisagée au n° 42. Lorsque z parcourt le cercle 2] <r, le
point Z décrit une surface de Riemann transposée sur la spheére,
¢’est en général une surface & plusieurs feuillets. Nous appelle-
rons « S (r) Paire totale de ces feuillets. On a vu que, a I’élément
d’aire dX dY du plan des X, Y (Z = X 4 ¢ Y) correspond sur
la sphére un élément d’aire

dXdyY

=Tz

D’autre part, & ’élément d’aire tdide du point te** du plan z,
la fonction Z = f (z) fait correspondre I’élément d’aire
dXdY = |f () |2tdido .

On a done, sur la sphere,

T
4o = T 7@

5 tdtdo |

et
r 2T

S (r) = f/(tew)lz |
o ofo( G+ e e W

Le second membre peut s’écrire autrement; n (r, Z) est le nombre
des feuillets de la surface de Riemann sphérique qui recouvrent
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