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238 G. VALIRON

II. Singularités des fonctions inverses
DES FONCTIONS MEROMORPHES.

33. Fonctions méromorphes en tout point à distance finie.
Valeurs asymptotiques.

Si Z / (z) est une fonction méromorphe en tout point à

distance finie, mais qui ne se réduit pas à une fraction rationnelle,

on peut construire un polynôme ou une fonction entière

g (z) admettant pour zéros les pôles de f(z) avec les mêmes ordres
de multiplicité. Le produit / (z) g (z) est alors une fonction

entière, soit h {z) de sorte que / (z) — |-||| ; l'une au moins des

deux fonctions h (z), g (z) qui sont sans zéros communs ne se

réduit pas à un polynôme.
Considérons une courbe simple continue T dans le plan

des z qui s'éloigne indéfiniment: une telle courbe est définie par
une fonction z (t) de la variable réelle f, définie pour t > 0 par
exemple, telle que z (t) ^ z (t') si t ^ t' et telle que, si grand
que soit A, il existe un nombre tA pour lequel 12 (t) | > A si t > tA.
L'ensemble des valeurs Z f (z (t)) pour t > B est un ensemble

continu, si nous ajoutons à cet ensemble ses points limites nous
obtenons un ensemble E (T, B) et lorsque B tend vers l'infini,
l'ensemble limite de E (T, B) est un ensemble, qui est l'ensemble
commun aux E (T, B); c'est un ensemble fermé E (T) qui peut
être une courbe, un point, tout le plan. Nous l'appellerons
l'ensemble d'indétermination de f (z) au point à Vinfini de T. Si cet
ensemble se réduit à un point to, nous dirons que to est une
valeur asymptotique de / (z) et que la courbe F est un chemin de

détermination ou chemin de détermination to. Par exemple pour
ez, z x + iy, la courbe y — 0, x > 0 est chemin de
détermination infinie; y — 0, x < 0 est chemin de détermination 0;
0 et 00 sont des valeurs asymptotiques. Mais pour x 0, y > 0

l'ensemble d'indétermination à l'infini est la circonférence
1 Z I 1 ; pour x sin ky, y > 0, k irrationnel, on obtient lalicouronne — < Z I < e: et on voit comment on aura- des

e 1 1 '

chemins F d'indétermination complète pour lesquelles l'ensemble
E (F) sera le plan complet.
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Si où est valeur asymptotique pour Z / (2), il existe non
seulement un chemin T de détermination co, mais, à cause de la
continuité, tout un ensemble de chemins de même détermination

où qui sont contigus à T. Deux chemins T, Tr de même
détermination où sont contigus dans les deux cas suivants:
1° T et F ont des points d'intersection aussi éloignés que l'on
veut; 2° T et T' sont sans points communs à partir d'un point P

qu'on peut considérer comme leur origine commune, ils
déterminent alors deux domaines A et A' ; dans l'un de ces domaines,
soit A, existe une suite de courbes yn qui s'éloignent indéfiniment
lorsque n croît indéfiniment, telles que chaque yn joint un point
de T à un point de V et que les valeurs de f (z) sur yn tendent
uniformément vers où lorsque n -> 00.

Une fonction méromorphe peut n'avoir aucune valeur
asymptotique, c'est évidemment le cas pour les fonctions
elliptiques. Mais toute fonction entière admet 00 comme valeur asymptotique.

C'est un cas particulier du théorème d'Iversen qui sera
donné au n° 35.

Pour toute fonction entière de la classe W, il n'y a qu'une valeur
asymptotique et tous les chemins de détermination sont contigus.

Sire a montré {Bull. Soc. math., 1913) qu'une fonction entière
d'ordre infini peut avoir une infinité non dénombrable de valeurs
asymptotiques, Gross a construit un exemple de fonction entière
dans lequel tout nombre complexe est valeur asymptotique
{Math. Ann., t. 79, 1918). Mais après avoir étudié certains cas
particuliers, Denjoy a énoncé en 1907 la proposition suivante
comme étant probable: une fonction entière d'ordre fini p a
au plus 2p valeurs asymptotiques finies correspondant à des
chemins non contigus. Carleman démontra en 1921 un résultat
un peu moins précis; en 1930, Ahlfors démontra complètement
le théorème de Denjoy; une démonstration différente fut donnée
par Carleman en 1933 {Comptes rendus, t. 196).

Nous nous bornerons ici à démontrer la proposition élémentaire

suivante:
Toute fonction méromorphe qui est le quotient de deux fonctions

entières dont le module maximum vérifie la condition

lim lpg M (r>
< oQ

r= » (log r)2
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possède au plus une valeur asymptotique et n'en a pas en

général 26).

On a, en effet,
h (z)Hz]-

avec

h(z) yibnzn ,(5)0 0

et si cn désigne le plus grand des deux nombres | bn | et | an |, la

fonction

9W 2c»sn
0

vérifie aussi la condition (5), par suite

iEL~l0gc" - o
n=oo n2

On est dans le cas des fonctions à croissance lente du n° 16, on

a pour les rapports rectifiés Rn la condition

05 >in= oo tin

Si l'on prend m tel que Rw+1 > Rm&2, k > 1, kRm < r < &2Rm,

on obtient 1

Ifen?®'
On considère la fonction / (z) dans les couronnes

k Rm < Iz I < Rm '

en posant z RmÇ, on a à étudier la suite de fonctions (Rm

dans la couronne, k < \ Ç j <Pour chaque m l'un des

nombres | bm|,| am|est égal à cmonpeut extraire de la suite

des m une suite S pour laquelle on a constamment, par exemple
| am| cm. On a dans la couronne envisagée

h(Rm Ç) cmV RJHfU), g (Rm q cm r R£ G K, m)
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et les fonctions H (Ç, m) et G (Ç, m) sont bornées dans leur

ensemble dans la couronne k < | Ç | < A2; on peut extraire de

la suite S une autre suite pour laquelle H |Ç, m) et G (Ç, m)

tendront respectivement, uniformément vers des fonctions

limites holomorphes H (Ç) et G (Ç) (théorème de Montel). En

outre, comme pour I z I r, on a M (r, g) > cm rm, la fonction
H (£)

G (Q n'est pas identiquement nulle. La fonction est une

fonction méromorphe ou une constante finie. Ainsi, pour une

suite S' de valeurs de m, / (Rm Q converge uniformément dans

la couronne vers une fonction méromorphe (qui peut être une

constante finie). Supposons que / (z) admette une valeur asymp-

totique co. Pour chaque m de la suite Sr existera une courbe Tm

traversant la couronne k< | Ç | < k2etsur rm, / (Ç Rm) tendra

vers co. Il s'ensuit que ^
Ü co et que co est fini. Dans les

couronnes
kRm<\z\< k» R.m

de la suite Sr, la fonction / (z) tend vers co uniformément, co est

la seule valeur asymptotique possible et tous les chemins de

détermination co sont contigus.
Cette proposition, qui s'étend aux fonctions algébroïdes,

fonctions u (z) définies par

A0 (z) uv + Ax (z) uv~[ + • • • + Av (z) 0

où les A3- (z) sont des fonctions entières 27), a été étendue par
Y. Tumura 28). Mais il existe des fonctions méromorphes,
quotients de fonctions entières pour lesquelles

log M (r) < ^ (r) (log r)2

où 4* (0 est indéfiniment croissante, mais croissant moins vite
qu'une fonction croissante donnée arbitrairement, qui ont autant
de valeurs asymptotiques que l'on veut29).

34. Singularités des fonctions inverses des fonctions
méromorphes.

Hurwitz et Denjoy, en 1907, dans le cas des fonctions entières
et Iversen (thèse, Helsingfors, 1914) dans le cas général des
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fonctions méromorphes sauf à l'infini, ont montré que les

singularités de la fonction inverse qui ne sont pas des points
critiques algébriques sont les valeurs asymptotiques de la
fonction. Si Z / (z) est la fonction méromorphe donnée, sa
fonction inverse z — ® (Z) est définie par l'ensemble de ses

éléments. Si z0 est un point en lequel f (z0) 0, la fonction / (z)
est holomorphe et univalente pour | % — z01 < r si Z0 / (z0) ^ qo

ce qui définit autour de Z0 un élément de la fonction inverse
holomorphe dans un cercle \Z — Z01 < R. Si Z0 oo, on
définit un élément holomorphe au point à l'infini du plan Z.
On peut passer de l'un de ces éléments de ® (Z) à un autre par
prolongement analytique: il suffit de joindre le point z0 fournissant

l'élément <D (Z, Z0, z0) au point z1 du plan % fournissant
® (Z, Zl5 zx), par une ligne polygonale ne passant par aucun
des zéros de /' (z) pour obtenir ce prolongement. On définit en
même temps des éléments circulaires de la surface de Riemann
sur laquelle ® (Z) sera uniforme. Si au point z0, Z0 est fini, mais

/' (2o) 0, on a pour \ z — z0 | < r,

Z «= f (z) Z0 + cp (z — z0)p + • • • p > 1

ce qu'on peut écrire, en posant Z — Z0 up,

p 1
U VCp (Z — zo)[l + T (z—zo)]P 1

la série entière (z — z0) définissant une fonction holomorphe
et nulle pour z — z0. La racine d'ordre p définit p fonctions
holomorphes qui se déduisent de l'une d'elles par multiplication
par les racines de l'unité. On peut faire l'inversion dans (6), on
obtient

s — *0 + 0 M)
V~P

et, en remplaçant u par la racine d'ordre p de Z — Z0 on obtient
une fonction à p branches, régulières en chaque point dans un
domaine 0 < | Z — Z01 < r, qui se permutent entre elles par
rotation autour de Z0. Le point Z0 est un point critique algé-
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brique de <ï> (Z), la fonction est bien définie en ce point et autour
de ce point par

î

Z 2o + (z Zo)p
^ + @ ((z _ Zo)p

On a un élément algébrique de 0 (Z) autour de Z0, défini dans

un certain cercle de centre Z0. On incorpore le point Z0 à la
surface de Riemann décrite par Z (z). Si Z0 co, on opère

sur 7^ et l'on obtient un élément algébrique lorsque la racine est
Z

multiple

z Zq + Y
[l + ® (z p

(sz) v

Autour d'un point critique algébrique, l'élément de la surface
de Riemann est composé de p feuillets circulaires ayant pour
centre ce point et qui se raccordent le long de rayons superposés.
Le passage d'un élément holomorphe ou algébrique à un autre
se fait encore en considérant dans le plan des z une ligne joignant
les deux points correspondant aux deux centres, donc au moyen
d'un nombre fini d'éléments intermédiaires tels que chacun d'eux
est un prolongement du précédent. Nous appellerons <D (Z, Z0, zQ)

un élément holomorphe ou algébrique, la notation désignant à

la fois la série qui définit l'élément et le cercle de convergence
de cette série.

Supposons que le point Z décrive la surface de Riemann, ce

qui revient à dire que l'on fait le prolongement analytique à

partir d'un élément ® (Z, Z0, z0). Utilisons uniquement les
éléments holomorphes. Si l'on fait décrire à Z' une ligne y tracée
sur la surface et si l'on considère les éléments ® (Z, Z', z!),
lorsque y aboutit à un point non critique Zx, le rayon de
® (Z, Z', z') tend vers le rayon ® (Z, Zl5 zx) de l'un des éléments
de centre Zv Si Z1 est point critique algébrique, dès que Z' sera
assez voisin de Zx% le point Zx sera un point singulier de l'élément
0 (Z, Z', z'), le rayon de cet élément tendra vers zéro 30). Les
autres points singuliers de la surface sont des points qui ne lui
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appartiennent pas mais dont on peut approcher d'aussi près que

Von veut en restant sur la surface, donc par prolongement analytique.

Lorsqu'on fait le prolongement, on doit pouvoir trouver
une courbe y de la surface qui s'approche autant que l'on veut
du point en question c'est-à-dire qui reste dans un cercle

de centre Q et de rayon aussi petit que l'on veut à partir d'un de

ses points, et telle que le prolongement est possible le long de y,
le rayon des éléments O (Z, Z', z') dont les centres Z' sont sur y
tendant vers zéro lorsque | Z' — Cl | tend vers zéro 31). Lorsqu'il
existera un élément algébrique ® (Z, Cl, zk), Cl f (zk), tel que
O (Z, Z', z') coïncide à partir d'une valeur de Z' avec ® (Z, Cl, zk)

dans la partie commune des cercles de convergence, le point H

sera simplement un point critique algébrique, sinon ce sera

vraiment un point singulier sur un feuillet ou plusieurs feuillets
de la surface de Riemann et de la fonction inverse <P (Z).

Nous allons préciser un peu la façon dont se comportent les

éléments ® (Z, Z', z'). Il est possible que certains de ces

éléments contiennent le point Cl, c'est-à-dire que, pour certains Z',

avec Z! — Cl tendant vers zéro, ® (Z, Z', z') prenne la valeur Cl ;

donc que cet élément et un ® (Z, Cl, zk) coïncident dans la portion

commune de leurs cercles de convergence, mais il n'est pas

possible que cela ait lieu pour tous les Z' de y suffisamment proches

de Cl. Car si 0 (Z, Z', z') contenait Cl pour tous les Z' de y à

partir de l'un d'eux, Z' variant continûment, ® (Z, Z', z') aurait

une portion commune avec un même élément ® (Z, Cl, zk), de

rayon R (zk)et dès que | Z' — Q | serait inférieur à ^ R (zk), le

rayon de l'élément O (Z, Z', z') serait au moins - R (zj, il ne

tendrait pas vers zéro.

Inversement, s'ilexiste une courbe y tendant vers Q le long
de laquelle le prolongement est possible et s'il existe des Z' sur cette

courbe aussi proches que Von veut pour lesquels O (Z, Z', z') ne

contient pas Q, Q estpoint singulier. Car les rayons des éléments

ne contenant pas O tendent vers zéro. Si un élément <ï> (Z, Z", z")
contient Q et si à partir de ce point Z" de y, | Z' — £1 [ < e,

le rayon de cet élément est au plus 3s, sinon tous les points de y
à partir de Z" appartiendraient à O (Z, Z", z"), et puisque
| i' — z" | < 2s, tous les <D (Z, Z', z') contiendraient Q.
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On a utilisé seulement les éléments holomorphes, donc on a

supposé que la courbe y ne passe pas par les points critiques

algébriques. Si l'on prend une courbe passant par ces points, on peut

la déformer d'aussi peu que l'on veut au voisinage de chacun de

ces points sans qu'elle cesse d'être sur la surface. Il s'ensuit

qu'on peut utiliser tous les éléments aussi bien algébriques

qu'holomorphes dans la définition des points singuliers.

Ces explications données, on va montrer que lorsque le point Z

tend vers un point singulier (non algébrique) de la surface de

Riemann, z <t> (Z) tend vers V inque les singularités

de la surface correspondent nécessairement aux valeurs

asymptotiques deZ f (z).

Dans un cercle | zj < M, l'équation / (z) Q a un nombre

fini de racines (si Q est infini, il s'agit des pôles), on peut isoler

ces racines zhpar des petits cercles de centres extérieurs les

uns aux autres et de rayons assez petits pour que, lorsque z est

dans le cercle de centre zh, Z f (z) appartienne à l'élément

$ (Z, Q, zk).Onpeut d'ailleurs supposer que M a été choisi de

façon qu'il n'y ait pas de points zk sur la circonférence | z | M

et enfin que les petits cercles ne coupent pas cette circonférence.

La fonction 77-^—pr est holomorphe dans | z | < M à l'extérieur
/ (^)

des petits cercles et sur leurs circonférences, son module a un

maximum —. Dans ces conditions, si | Z Q | <c e, le point

Z O (Z) est ou bien extérieur au cercle \ z \ < M ou bien

intérieur à l'un des petits cercles. Or lorsque Z tend vers

le point singulier Q, il ne peut pas appartenir à un même

élément <D (Z, 0, zh),donc| z | > M, ce qui démontre la proposition.

Inversement, si w est valeur asymptotique de Z f (z),

c'est une singularité (non algébrique évidemment) de la fonction

inverse. Car lorsque z! décrit le chemin T de détermination co,

Z' / (z') décrit une courbe y qui se rapproche indéfiniment

du point w et le rayon de l'élément O (Z, Z', z') tend vers zéro.

Sinon on aurait pour un élément <I> (Z, Z", z") un rayon supérieur

à 3s, et à partir de cette valeur Z", on aurait | Z' w | < s,

les Z' appartiendraient à l'élément <ï> (Z, Z", z"), ce qui est

impossible puisque z' <D (Z', Z", z") serait alors borné.

L'Enseignement mathém., t. IV, fasc. 4. 17
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En définitive:

Les singularités (autres que les singularités algébriques) de la

surface de Riemann décrite par les valeurs d'une fonction méro-

morphe f (z) dans tout le plan à distance finie correspondent aux
valeurs asymptotiques de cette fonction. A deux chemins T, V de

détermination co qui sont contigus correspondent des courbes y et y'
aboutissant à cù et telles que Von peut les joindre par des courbes

de la surface de Riemann qui sont aussi voisines que Von veut de g),

ces chemins y, y' 'doivent être considérés comme aboutissant à une

seule singularité cù.

Les surfaces de Riemann correspondant aux fonctions entières

de la classe W ont donc une seule singularité qui est à l'infini.

35. Théorèmes de Lindelöf et diversen.

Lindelöf a étendu le théorème de Cauchy sur le maximum du

module. Nous nous bornerons à l'énoncé suivant:

Théorème de Lindelöf. — Soit un domaine borné D de fron¬

tière F et une fonction f (z) holomorphe dans D et continue sur
D + F sauf en un point 0 de F. Si \ î (z) \ < M sur F sauf

en 0 et si | f (z) | < K dans D au voisinage de 0, on a dans

tout D
I / M 1 < M

Gomme D est borné, on peut par transformation homogra-

phique se ramener au cas où 0 est l'origine et où D est dans le

cercle | z | < 1. Dans ces conditions, si s > 0, la fonction zz f (2)

n'est pas sûrement holomorphe dans D, mais seulement analytique,

mais le théorème de Cauchy s'applique encore à son

module qui est uniforme. Sur F, 0 excepté, on a | zz f (z) | < M.

Soit z0 un point de D ; prenons r assez petit pour que, pour \ z \ <r
on ait I f (z) | < K et par suite | zz f (z) | < Kre; on pourra
prendre r assez petit pour que Kr£ < M et r < | z0 |. Appliquons

le théorème, de Cauchy à zz f (z) dans le domaine formé

par la portion de D contenant z0 et extérieure à | z | < r. Comme

sur la frontière constituée par des points de F et de | z | r, le

module est au plus M, on aura aussi au point z0

k/w|<M.
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Donc | f (z0) | < Me"£loglZo1 et puisque s > 0 est arbitraire

I / (z0) I < M •

Il est clair que le théorème s'applique à un domaine D

quelconque mais tel qu'il y ait des points extérieurs permettant
de se ramener au cas de l'énoncé.

De ce théorème, on déduit le suivant qui servira de lemme

pour la démonstration du théorème d'Iversen 32) :

Théorème II. — Si let fonction f (z) est holomorphe dans un

domaine borné D et continue sur D et sur la frontière F sauf

en un point 0 de F ; si sur F, 0 excepté, | f (z) | M tandis

que \ î{z)\ < M dans D, on a deux alternatives: 1° f (z)

s'annule en un point au moins de D; 2° il existe dans D une

courbe continue aboutissant à 0 sur laquelle f (z) tend vers zéro

lorsque z tend vers 0.
1

Supposons que f {z) ne s'annule pas dans D. Alors j^ est

holomorphe dans D ; et sur F, 0 excepté

n'est pas bornée au voisinage de 0, sinon, c

Lindelöf, on aurait dans D,

1

/ (Z) M ; d0nC
/ (z)

.'après le théorème de

en contradiction avec
/ (z) M

l'hypothèse I / (z) | < M. Il existe donc un domaine Dx intérieur
1 2

à D et admettant 0 comme point frontière dans lequel
I / (*) I > M

'

Dans D-l on a | / (z) | < y ; sur sa frontière, 0 excepté, | f (z) \

M

et f (z) ne s'annule pas dans Dx. On peut recommencer le

raisonnement indéfiniment. On peut joindre un point de F à un point
Zj_ de la frontière de B1 (autre que 0) par un chemin intérieur à

D, puis z1 à un point z2 en lequel | / (z2) | ^ par un chemin

appartenant à D2, et ainsi de suite, ce qui définit une courbe y
de D sur laquelle \ f (z) \ tend vers zéro, y est composée d'arcs
successifs y0, yx, y2, yn, l'arc yn appartenant à Dn. Les

arcs yn n'ont pas de points limites intérieurs à D puisqu'en un
tel point on aurait / (z) 0, leur seul point d'accumulation est 0.

Théorème d'Iversen. — Soit S la surface de Riemann décrite

par les valeurs d'une fonction méromorphe, c'est-à-dire une



248 G. VALIRON

surface simplement connexe du type parabolique. Soit Z0 un

point du plan et Z-^ un point de la surface 2, | Zq Z-^ | p.

Il est possible de joindre Zx à Z0 par une courbe intérieure au

cercle j Z — Z01 < p qui appartient à la surface sauf peut-être

son extrémité Z0.

Considérons, en effet, dans le plan z le domaine D défini par
| / (z) — Z0 | < p qui contient le point % O (Zx) sur sa fron-

I tière F. Si le domaine D contient un point z0 en lequel / {z0) Z0

| la proposition est établie. Dans le cas contraire, D n'est pas

1 borné (sinon dans D borné jtv~—w holomorphe n'atteindrait
j t \z)

^

j pas son maximum sur le contour). Mais on peut le ramener à un
I domaine borné par transformation homographique et appliquer

le théorème II ; il s'ensuit que dans D on a un chemin joignant zl
au point à l'infini sur lequel / (z) tend vers Z0. Le cas où le

chemin considéré dans l'énoncé n'a pas son extrémité dans 2
| est celui où Z0 est valeur asymptotique.

Du théorème d'Iversen on déduit que si est un point de 2
| et L une courbe simple issue de Zx, on peut tracer un chemin qui
| joint Zx au voisinage d'un point de L en restant dans le voisinage

de L. Il suffit d'appliquer le théorème de proche en proche à des

j petits cercles centrés sur L et suffisamment rapprochés.
Comme corollaire, on voit que si valeur Q n'est pas prise

par une fonction méromorphe, cette valeur est valeur asymptotique.

En particulier, pour toute fonction l'infini est valeur

asymptotique.

36. Théorème de Gross.

Si l'on considère un élément O (Z, Z0, z0), Z0 ^ oo holomorphe de

la fonction inverse z O (Z) d'une fonction on

peut prolonger cet élément jusqu'à l'infini sur les rayons

arg (Z — Z0) <p const, sauf au plus pour des <p apparte-

nant à un ensemble de mesure nulle.

Pour l'établir, on peut se borner à considérer les rayons
| arg çz — Z0) <p dans un cercle | Z — Z01 < R. Car si l'on

peut atteindre la circonférence de ce cercle sauf pour un ensemble

de mesure nulle de valeurs 9, il suffira de donner à R les valeurs
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1, 2, n, et comme une suite d'ensembles de mesures nulles

est de mesure nulle, le théorème sera démontré.

D'autre part, l'ensemble E1 des valeurs de 9 pour lesquelles

le rayon passe par un point critique algébrique Zk — f (zk),

f (zk) 0 est dénombrable, ce sont les rayons passant par un

point critique transcendant qui sont seuls à considérer.

Nous faisons donc le prolongement radial de l'élément
® (Z, Z0, Zq) dans le cercle | Z — Z0 | < R, R étant supérieur au

rayon R0 du cercle d'holomorphie de cet élément, et nous

supposons que dans ce prolongement nous rencontrons des

points critiques transcendants. Nous définissons un domaine O

qui contient le cercle | Z — Z01 < R0 et dans lequel 2 ® (Z)
est holomorphe. A ce domaine correspond dans le plan des 2

un domaine co contenant le cercle \ z — z0 | < r0 dans lequel
Z f (z) est univalente et holomorphe et qui n'est pas borné

puisqu'il contient des chemins de détermination. Si l'on coupe
ce domaine par une circonférence \ z — z0 \ r, on obtient sur
cette circonférence des arcs Ar de longueur totale s (r). A ces

arcs correspondent des arcs de courbes du plan des Z qui
coupent les rayons | Z — Z01 9 passant par les points
critiques transcendants puisque, à ces rayons correspondent des

chemins de détermination finie allant à l'infini et intérieurs à 00.

Si l'on considère les valeurs de 9 correspondant à ces arcs, elles

forment des intervalles dont la longueur est au moins égale au
1 •

produit de s (r) par d étant la plus courte distance de ces

arcs à l'origine Z0. Cette plus courte distance d est supérieure à

la plus courte distance de la courbe transformée de | z — z0\ r0,
donc à un nombre fixe d0. Les intervalles contenant l'ensemble
E — Ex des 9 pour lesquels le prolongement est impossible ont

S (t*)
donc une longueur au plus égale à Or on a

CLq

s M J 1 Y M I dt — J t f (z) I rd 9 * rélv

donc d'après la formule de Schwarz

s (r)2 < J I f (z) |2 rd 9 • 2 7x r
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et comme A (r) étant l'aire de Q correspondant à la portion de co

limitée par | z — z0\ r, on a

r 2ru

A (r) t= J J | f (z) |2 rdrd 9
0 0

l'inégalité s'écrit

On a donc
00

J sJ/Çdr^2 n[A (r) — A. (r0)] < 2 7r2 R2

r0

Ceci montre que s (r) a pour limite inférieure pour r infini la
valeur 0 puisque, dans le cas contraire le premier membre de

cette inégalité serait infini. On a donc des r pour lesquels s (r) < z

ce qui montre que les points de E — Ex appartiennent à des

intervalles dont la somme des longueurs est aussi petite que l'on
veut. E — Ex est de mesure nulle et le théorèmees t démontré.

37. Classification iïlversen.

Si oo est une singularité transcendante de la fonction inverse

z <D (Z), c' est-à-dire aussi de la surface de Riemann, il existe

un chemin yw le long duquel un élément <ï> (Z, Z', z') prolongé
le long de yw tend vers oo, ce chemin yw tendant vers oj. Suppo-

sons « fini, sinon on considérerait $ comme fonction de
^

•

A partir d'un point Z" de yM, ce chemin reste dans le cercle

CR, | Z - co | < R; si Z' est un point de cette portion on peut
prolonger O (Z, Z', z') à partir de cet élément en restant dans

CR. Si, en opérant ainsi à partir de yM, on peut choisir R assez

petit pour qu'on ne rencontre pas d'autres singularités transcendantes

que co, on dit que co estune singularité transcendante isolée.

Le prolongement effectué dans CR définit un morceau 2® de la

surface de Riemann auquel la fonction z <E> (Z) fait
correspondre un domaine D® du plan des z; c'est un domaine illimité
qui contient des chemins de détermination co et qui ne contient

pas d'autres chemins de détermination; en faisant décroître R,

on voit que tous ces chemins de détermination co sont contigus.
Iversen a donné dans sa Thèse (1914) une classification des
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singularités transcendantes isolées qui complète et précise un

essai antérieur de Boutroux.
Si l'on peut choisir R assez petit pour que Z ne prenne pas

la valeur co dans CR, c'est-à-dire si co n'appartient pas à ou

encore si / (z) ne prend pas la valeur co dans D*, le point co est

appelé point transcendant directement critique. En outre, si l'on

peut choisir R assez petit pour que > (Z) n'admette pas de

singularités algébriques dans CR, co est dit de première espèce; dans

le cas contraire, co est point limite de points critiques algébriques,

il est dit de seconde espèce.

Si co n'est pas directement critique, il existe des éléments

3> (Z, Z', z'), avec | Z' — co | < s, qui contiennent co, autrement

dit D* contient des racines de f (z) — co si petit que soit R. Si

sur tout rayon arg (Z' — co) const., O (Z, Z', z') où O (Z, Z', z')

peut être un élément algébrique, tend vers une valeur finie, ou

si l'on préfère si la valeur de ® (Z) finit par coïncider avec un
élément O (Z, 0, zk) lorsque Z tend vers co sur un rayon de CR,

le point co est dit point transcendant indirectement critique.

Un point critique transcendant (qui est isolé) n'appartenant
pas à l'une ou l'autre de ces deux catégories est dit point directement

et indirectement critique.
Ahlfors a montré que le nombre des chemins d'indétermination

finie non contigus des fonctions entières d'ordre p est au

plus égal à 2p, il s'ensuit que le nombre de singularités à l'infini,

pour p > — est aussi au plus égal à 2p, ainsi que le nombre des

singularités transcendantes à distance finie. Nous admettrons ces

résultats qui rentrent dans un énoncé plus général dû à Ahlfors33).

Si Z / (z) est une fonction entière d'ordre fini, toutes les

singularités transcendantes de la fonction inverse sont isolées;
la classification d'Iversen s'applique. Si co est singularité
transcendante à distance finie, le domaine D* qui est illimité est borné

par un nombre fini de courbes. Car si D* est ce domaine et si sa

frontière sur laquelle | / (z) — co | — R comporte une courbe
illimitée F, cette courbe T est aussi frontière d'un domaine non
borné dans lequel | / (z) — co | < R. D'après le théorème du
n° 35, ce domaine contient un chemin de détermination infinie.
A chaque frontière T correspond un chemin de détermination
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infinie et les chemins ainsi obtenus pour deux frontières ne sont
pas contigus; il n'y en a qu'un nombre fini. Alors, en diminuant
R on voit que l'on aura une seule courbe frontière. Par suite

Si f (z) est jonction entière d'ordre fini et si co est une valeur
asymptotique finie, le domaine | f (z) — co | > z contenant les

chemins de détermination co est limité par une seule courbe dès

que z est assez petit.
On voit de même que si co est fini et directement critique et

si co' est une singularité algébrique appartenant à CR, les courbes
| j (z) — co | | co' — co | décomposent D* en au moins deux
domaines d'indétermination finie; on pourra, d'après ce qui
précède, prendre R assez petit pour que cette circonstance soit
impossible. Donc

Pour une jonction entière d'ordre fini, les points directement
critiques à distance finie de la jonction inverse sont tous de première
espèce.

Mais les singularités transcendantes à l'infini, qui sont
directement critiques puisque f (z) ne prend pas la valeur infinie,
peuvent être de seconde espèce. On a vu (n° 29) que la singularité
à l'infini des fonctions inverses des fonctions de la classe W est
de seconde espèce.

38. Remarques sur la décomposition en feuillets de la surface
de Riemann. Feuillets singuliers et division impropre.

L'idée la plus simple pour décomposer en feuillets la surface
de Riemann décrite par les valeurs Z d'une fonction / {z) que
nous supposerons entière et d'ordre fini est d'utiliser les étoiles
d'holomorphie de la fonction inverse z Q (Z). On considère
les éléments O (Z, 0, zk), j (zk) 0 et on les prolonge radiale-
ment après avoir coupé le long d'une demi-droite arg Z const.,
si l'élément est algébrique. On obtient ainsi des feuillets (qui
pour toute fonction inverse de fonction méromorphe sont
illimités d'après le théorème de Gross) qui dans le cas actuel sont
des domaines dont les frontières sont des demi-droites,
arg Z const., formant sur chaque feuillet un ensemble
dénombrable. A ceÉ feuillets correspondent dans le plan des z

des domaines limités par des courbes d'argument constant. Si

ces domaines, leurs frontières et les points limites de ces fron-
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tières couvrent le plan des 2 en entier à distance finie, on a fait
à la fois la division du plan des z en domaines d'univalence et la

division de la surface de Riemann en feuillets dont le raccordement

est donné par la considération du plan des z. Dans le cas

contraire, l'origine est point critique transcendant; s'il y a à

l'origine un point directement critique, il est de première espèce

et l'on a une infinité de feuillets aboutissant à l'origine; s'il y a

un point directement et indirectement critique il peut exister
des feuillets incomplets aboutissant à l'origine, dont l'angle
d'ouverture est moindre que 2tu.

On peut éviter les feuillets de cette dernière espèce en changeant

Z en Z -f k de façon à n'avoir plus de singularité
transcendante à l'origine. Toute la surface de Riemann est alors

fournie par les feuillets obtenus en prolongeant les éléments
<D (Z, 0, zh). Mais il pourra arriver que sur certains feuillets la
frontière ne soit pas entièrement accessible par suite de la
présence d'un point critique transcendant qui, d'après les propositions

du n° 37, ne peut pas être directement critique puisqu'il
serait isolé des singularités algébriques, et qui n'est pas
indirectement critique puisqu'on ne pourrait pas l'atteindre par
prolongement radial, c'est donc un point directement et
indirectement critique. Le domaine correspondant du plan des z

sera un domaine complet singulier d'univalence; dans ce domaine
et sur sa frontière à distance finie, f (z) prend des valeurs dont
l'ensemble complémentaire contient une ligne.

La jonction des feuillets, c'est-à-dire des domaines d'uni-
valence, peut aussi présenter des anomalies. Il peut se faire que
pour passer d'un feuillet à un autre il soit nécessaire de passer
sur une infinité d'autres feuillets. On aura une division impropre
du plan z en domaines d'univalence.

La fonction

où h est une constante présente des circonstances de ce genre.
Dans le cas h 0, déjà étudié par Iversen, la division en feuillets
par les lignes arg Z const., fournit un feuillet incomplet; pour
h — 1, il existe un feuillet singulier34); pour h 1, on obtient
une division impropre.
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L'étude de la division du plan des z en domaines complets
d'univalence pour une fonction méromorphe générale Z f (z)

a été l'objet de travaux de ShimizuC5) et de Marty. Elle demande
de nouveaux efforts.

39. Remarque sur les surfaces du type hyperbolique.

Si l'on considère une fonction Z f (z) méromorphe pour
| z | < 1 et admettant la circonférence | z | 1 comme coupure,
sa fonction inverse est uniforme sur une surface du type
hyperbolique dont l'étude des singularités est peu avancée. Les

valeurs asymptotiques sont ici les valeurs limites sur des
chemins tendant vers la circonférence C, | z | — 1. Les considérations

du n° 34 s'étendent, les singularités de la fonction inverse
autres que les singularités algébriques sont fournies par les

valeurs asymptotiques. Le théorème d'Iversen n'est plus valable
en général non plus que le théorème de Gross dont la démonstration

tombe évidemment en défaut.
La fonction spéciale étudiée au n° 31 rentre dans la classe

générale des fonctions holomorphes et non bornées pour | z | > 1

telles que chaque F (z) est bornée sur un chemin simple L L (F),
z z(t; F), t > 0 avec lim | z (*, F) | 1, tout point de

t= 00

| z | 1 étant point limite des valeurs z (£, F). Le théorème
d'Iversen s'étend à ces fonctions. Lorsqu'on suppose que sur
L (F) l'une des limites d'indétermination de z (t) pour t infini est

infinie, on a

ïîïn log*M ^ r>
> 1

logT=~r

la croissance est très rapide.

III. Caractéristique de Nevanlinna
et propriété de N (r, Z).

40. Fonction T (r, f) de Nevanlinna.

On a vu (n° 18) que, si f (z) est méromorphe pour | z | < r,
si / (0) t2— 0, go et si n (x) désigne le nombre des zéros et p (x)
le nombre des pôles pour | z | < x, on a
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