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238 ' G. VALIRON

II. SINGULARITES DES FONCTIONS INVERSES
"DES FONCTIONS MEROMORPHES.

33. Fonctions méromorphes en tout point @ distance finie.
Valeurs asymptotiques.

S1 Z = f(z) est une fonction méromorphe en tout point a
distance finie, mais qui ne se réduit pas a une fraction ration-
nelle, on peut construire un polyndéme ou une fonction entiére
g (z) admettant pour zéros les pdles de f(z) avec les mémes ordres
de multiplicité. Le produit f(z) . g (z) est alors une fonction

entiére, soit & (z) de sorte que f (z) = %; I’'une au moins des

deux fonctions £ (z), g (z) qui sont sans zéros communs ne se
réduit pas a un polyndéme.

Considérons une courbe simple continue I' dans le plan
des z qui s’éloigne indéfiniment: une telle courbe est définie par
une fonction z (¢) de la variable réelle ¢, définie pour ¢ > 0 par
exemple, telle que z (t) 7= z (') si ¢t %= 1’ et telle que, si grand
que soit A, il existe un nombre ¢, pour lequel |z(t)| > Asit >,
I’ensemble des valeurs Z = f (z (t)) pourt > B est un ensemble
continu, si nous ajoutons & cet ensemble ses points limites nous
obtenons un ensemble E (I', B) et lorsque B tend vers l'infini,
I’ensemble limite de E (I', B) est un ensemble, qui est ’ensemble
commun aux E (I', B); c¢’est un ensemble fermé E (I') qui peut
étre une courbe, un point, tout le plan. Nous I’appellerons ’er-
semble d’indétermination de f (z) au point a Uinfint de I'. Si cet
ensemble se réduit & un point ®, nous dirons que o est une
valeur asymptotique de f (z) et que la courbe T' est un chemin de
détermination ou chemin de détermination . Par exemple pour
e’, 2 = x + 1y, la courbe y = 0, x > 0 est chemin de déter-
mination infinie; y = 0, x << 0 est chemin de détermination 0;
0 et oo sont des valeurs asymptotiques. Mais pour x = 0,y > 0
I’ensemble d’indétermination & !'infini est la circonférence
| Z| = 1; pour z = sin ky, y > 0, k irrationnel, on obtient la

1 .
couronne — < |Z| <'e; et on voit comment on aura- des

chemins I' d'indétermination compléte pour lesquelles ’ensemble
E (') sera le plan complet. |
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Si w est valeur asymptotique pour Z = f (z), il existe non
seulement un chemin I' de détermination «, mais, & cause de la
continuité, tout un ensemble de chemins de méme détermina-
tion o qui sont contigus & I'. Deux chemins I', IV de méme
détermination o sont contigus dans les deux cas suivants:
10 T" et T ont des points d’intersection aussi éloignés que l’on
veut; 20 I" et I sont sans points communs & partir d’un point P
qu’on peut considérer comme leur origine commune, ils déter-
minent alors deux domaines A et A’; dans I'un de ces domaines,
soit A, existe une suite de courbes v, qui s’éloignent indéfiniment
lorsque n croit indéfiniment, telles que chaque v, joint un point
de I' & un point de I et que les valeurs de f (z) sur v, tendent
uniformément vers  lorsque n— .

Une fonction méromorphe peut n’avoir aucune valeur
asymptotique, c¢’est évidemment le cas pour les fonctions ellip-
tiques. Mais toute fonction entiére admet o comme valeur asympto-
tigue. C’est un cas particulier du théoréme d’Iversen qui sera
donné au n° 35.

Pour toute fonction entiére dela classe W,il n’y a qu’une valeur
asymptotique et tous les chemins de détermination sont contigus.

Sire a montré (Bull. Soc. math., 1913) qu’une fonction entiére
d’ordre infini peut avoir une infinité non dénombrable de valeurs
asymptotiques, Gross a construit un exemple de fonction entiére
dans lequel tout nombre complexe est valeur asymptotique
(Math. Ann., t. 79, 1918). Mais aprés avoir étudié certains cas
particuliers, Denjoy a énoncé en 1907 la proposition suivante
comme etant probable: une fonction entiére d’ordre fini ¢ a
au plus 2o valeurs asymptotiques finies correspondant a des
chemins non contigus. Carleman démontra en 1921 un résultat
un peu moins précis; en 1930, Ahlfors démontra complétement
le théoreme de Denjoy; une démonstration différente fut donnée
par Carleman en 1933 (Comptes rendus, t. 196).

Nous nous bornerons ici & démontrer la proposition élémen-
taire suivante: _ .

Toute fonction méromorphe qui est le quotient de deux fonctions
entiéres dont le module maximum vérifie la condition

. logM(r)
lim =2 & \/
T'1=oo (log r)2 % (9)
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posséde au plus une valeur asymptotique et n'en a pas en
général 28,
On a, en effet,

__ h(z)
flz) = T
avec
h(z) = Ebnzn, g(z)zzanzn, - (5)
0 0

et si ¢, désigne le plus grand des deux nombres | b
fonction

nletla’nl713

[eo]
\
9 la) = D,
0
vérifie aussi la condition (b), par suite

lim
n=oc n?

— log ¢ ‘
__g__n>0.

On est dans le cas des fonctions a croissance lente du n° 16, on
a pour les rapports rectifiés R, la condition
— R

llm n+1
nN=oox R

>1.

n

Silon prend m tel que R, > R k% k> 1, kR < r < KR,
on obtient a

<1 S SO <o)

m+1

On considére la fonction f (z) dans les couronnes
kR, <|z|< kR, ;

en posant z = R, {, on a & étudier la suite de fonctions f (R,, &)
dans la couronne  k < | {| < k% Pour chaque m l'un des
nombres | b, |, | a,, | est égal a ¢, ; on peut extraire de la suite
des m une suite S pour laquelle on a constamment, par exemple
| a,, | = ¢,- On a dans la couronne envisagée

h(Rpl) = e C"REH (G m), g (RpC) = 6, ("RIG (L, m)
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et les fonctions H (¢, m) et G (¢, m) sont bornées- dans leur
ensemble dans la couronne k < | {| < k?; on peut extraire de
la suite S une autre suite pour laquelle H |{, m) et G (¢, m)
tendront respectivement, uniformément vers des fonctions
limites holomorphes H ({) et G (¢) (théoréme de Montel). En

outre, comme pour | z| = r, on a M(r, g) > ¢, ™, la fonction
G () n’est pas identiquement nulle. La fonction g—% est une

fonction méromorphe ou une constante finie. Ainsi, pour une
suite S’ de valeurs de m, f (R, ) converge uniformément dans
la couronne vers une fonction méromorphe (qui peut étre une
constante finie). Supposons que f (z) admette une valeur asymp-
totique w. Pour chaque m de la suite S’ existera une courbe I',

traversant la couronne k < | {| < k%etsur I, f (C R,,) tendra

vers . Il s'ensuit que B _ o et que o est fini. Dans les

_ G (9)
couronnes | ‘7
kR, < |z| < k®R,,

de la suite S, la fonction f (z) tend vers o uniformément. o est
la seule valeur asymptotique possible et tous les chemins de
détermination o sont contigus. -

Cette proposition, qui s’étend aux fonctions algébroides,
fonctions u (z) définies par |

Ag(B)w + A B uwt + .- +A(5) =0,

ot les A, (z) sont des fonctions entieres 27 a été étendue par
Y. Tumura 28. Mais il existe des fonctions méromorphes, quo-
tients de fonctions entiéres pour lesquelles

log M (r) < & (r) (log 7)? ,

ot ¢ (r) est indéfiniment croissante, mais croissant moins vite
qu’'une fonction croissante donnée arbitrairement, qui ont autant
de valeurs asymptotiques que ’on veut 29,

34. Singularités des fonctions inverses des fonctions
méeromorphes.

Hurwitz et Denjoy, en 1907, dans le cas des fonctions entieres
et Iversen (theése, Helsingfors, 1914) dans le cas général des
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fonctions méromorphes sauf a Iinfini, ont montré que les
singularités de la fonction inverse qui ne sont pas des points
critiques algébriques sont les valeurs asymptotiques de la
fonction. Si Z = f (z) est la fonction méromorphe donnée, sa
fonction inverse z = @ (Z) est définie par I’ensemble de ses
éléments. Si z, est un point en lequel f' (z,) s 0, la fonction f (z)
est holomorphe et univalente pour |z— zy| < r si Zy = f (zy) # oo,
ce qui définit autour de Z, un élément de la fonction inverse
holomorphe dans un cercle |Z —7Z,| < R. Si Z;, = o, on
définit un élément holomorphe au point a linfini du plan Z.
On peut passer de I'un de ces éléments de @ (Z) a un autre par
prolongement analytique: il suffit de joindre le point z, fournis-
sant 1'élément ® (Z, Z,, z,) au point z, du plan z fournissant
® (Z, Z,, z;), par une ligne polygonale ne passant par aucun
des zéros de f' (z) pour obtenir ce prolongement. On définit en
méme temps des éléments circulaires de la surface de Riemaunn
sur laquelle ® (Z) sera uniforme. Si au point z,, Z, est fini, mais
f' (20) = 0, on a pour |z —z,| < r,

Z:f(z):ZO—}_cp(z‘__ZO)p_l_"': p>1

ce qu'on peut écrire, en posant Z — Z, = u?,

P 1
= A/c, (s — s [1 + F (s — 2,)17 , (6)

la série entiére V' (z — z,) définissant une fonction holomorphe
et nulle pour z = z,. La racine d’ordre p définit p fonctions
holomorphes qui se déduisent de 'une d’elles par multiplication
par les racines de I'unité. On peut faire 'inversion dans (6), on
obtient

et, en remplacant u par la racine d’ordre p de Z — Z, on obtient
une fonction a p branches, réguliéres en chaque point dans un
domaine 0 < |Z — Z,| < r, qui se permutent entre elles par
rotation autour de Z,. Le point Z, est un point critique algé-
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brique de ® (Z), la fonction est bien définie en ce point et autour
de ce point par

1
(Z —7,)" [1 10 ((z — Zo)%ﬂ :

3 = 2o + T
cpp

On a un élément algébrique de @ (Z) autour de Z,, défini dans
un certain cercle de centre Z, On incorpore le point Z, a la

surface de Riemann décrite par Z = f (z). St Z, = oo, on opere

sur % et ’on obtient un élément algébrique lorsque la racine est

multiple

1
3 = 23 + ! 1[1.+®(Z p)]

(cp 2)"

Autour d’un point critique algébrique, I’élément de la surface
de Riemann est composé de p feuillets circulaires ayant pour
centre ce point et qui se raccordent le long de rayons superposés.
Le passage d’'un élément holomorphe ou algébrique a un autre
se fait encore en considérant dans le plan des z une ligne joignant
les deux points correspondant aux deux centres, donc au moyen
d’un nombre fini d’éléments intermédiaires tels que chacun d’eux
est un prolongement du précédent. Nous appellerons @ (Z, Z,, z,)
un élément holomorphe ou algébrique, la notation désignant -a
la fois la série qui définit I’élément et le cercle de convergence
de cette série.

Supposons que le point Z décrive la surface de Riemann, ce
qui revient & dire que l'on fait le prolongement analytique a
partir d’'un élément @ (Z, Z,, z,). Utilisons uniquement les
éléments holomorphes. Sil’on fait décrire & Z’ une ligne vy tracée
sur la surface et si I'on considere les éléments @ (Z, Z’, z'),
lorsque vy aboutit a un point non critique Z;, le rayon de
O (Z, 7', 7') tend vers le rayon @ (Z, Z,, z,) de I'un des éléments
de centre Z,. Si Z, est point critique algébrique, dés que Z’ sera
assez voisin de Z,, le point Z; sera un point singulier de I’élément
® (Z, 7, 7), le rayon de cet élément tendra vers zéro 39, Les
autres points singuliers de la surface sont des points qui ne lui
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appartiennent pas mais dont on peut approcher d’aussi prés que
Ion veut en restant sur la surface, donc par prolongement analy-
tigue. Lorsqu’on fait le prolongement, on doit pouvoir trouver
une courbe y de la surface qui s’approche autant que I'on veut
du point en question Q, c’est-a-dire qui reste dans un cercle
de centre Q et de rayon aussi petit que ’on veut a partir d’'un de
ses points, et telle que le prolongement est possible le long de v,
le rayon des éléments ® (Z,Z', z') dont les centres 7" sont sur v
tendant vers zéro lorsque | Z' — Q | tend vers zéro 3V, Lorsqu’il
existera un élément algébrique @ (Z, Q, z,), Q = [ (z,), tel que
® (Z, 7', z') coincide & partir d’une valeur de Z’ avec @ (Z, Q, z,)
dans la partie commune des cercles de convergence, le point €
sera simplement un point critique algébrique, sinon ce sera
vraiment un point singulier sur un feuillet ou plusieurs feuillets
de la surface de Riemann et de la fonction inverse @ (Z).

Nous allons préciser un peu la fagon dont se comportent les
éléments ® (Z, Z', z'). 11 est possible que certains de ces éle-
ments contiennent le point Q, c¢’est-a-dire que, pour certains 7,
avee Z' — Q tendant vers zéro, ® (Z, 7', z') prenne la valeur Q;
donc que cet élément et un ® (Z, Q, z,) coincident dans la por-
tion commune de leurs cercles de convergence, mais il n’est pas
possible que cela ait liew pour tous les 7" de v suffisamment proches
de Q. Car si @ (Z,Z’, z') contenait Q pour tous les Z’ de y &
partir de l'un d’eux, Z’ variant contintiment, @ (Z, Z', z') aurait
une portion commune avec un méme élement ® (Z, Q, z,), de

rayon R (z,) et des que | Z' — Q [ serait inférieur é% R (z,), le

rayon de I'élément @ (Z, Z', z) serait au moins—;— R (z,), 1l ne

tendrait pas vers zéro.

Inversement, s'il existe une courbe vy tendant vers C le long
de laquelle le prolongement est possible et s’il existe des L' sur cetle
courbe aussi proches que Uon veut pour lesquels ® (Z, 7', z") ne
contient pas Q, Q est point singulier. Car les rayons des éléments
ne contenant pas € tendent vers zéro. Si un élément ® (Z,Z", z"')
contient Q) et si & partir de ce point Z” de v, | Z' — Q| < ¢,
le rayon de cet élément est au plus 3¢, sinon tous les points de vy
4 partir de Z” appartiendraient & @ (Z, Z"”, z"'), et puisque
| Z/ — Z" | < 2, tous les @ (Z, Z', z') contiendraient Q.
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On a utilisé seulement les éléments holomorphes, donc on a
supposé que la courbe y ne passe pas par les points critiques algé-
briques. Sil'on prend une courbe passant par ces points, on peut
la déformer d’aussi peu que I'on veut au voisinage de chacun de
ces points sans qu’elle cesse d’6tre sur la surface. Il s’ensuit
quon peut utiliser tous les éléments aussi bien algébriques
qu'holomorphes dans la définition des points singuliers.

Ces explications données, on va montrer que lorsque le point Z
tend vers un point singulier (non algébrique) de la surface de
Riemann, z = © (Z) tend vers Pinfini, c'est-a-dire que les singu-
larités de la surface correspondent nécessairement au valeurs
asymptotiques de Z = 1 (z).

Dans un cercle | z | < M, I'équation f(z) = Q a un nombre
fini de racines (si Q est infini, il s’agit des poles), on peut isoler
ces racines z, par des petits cercles de centres z, extérieurs les
uns-aux autres et de rayons assez petits pour que, lorsque z est
dans le cercle de centre z,, Z = f (z) appartienne a I’élément
® (Z, Q, z,). On peut d’ailleurs supposer que M a été choisi de
facon qu’il n’y ait pas de points z, sur la circonférence | z| = M
et enfin que les petits cercles ne coupent pas cette circonférence.

. 1 :
La fonction g —a est holomorphe dans | z| < M & lexterieur
des petits cercles et sur leurs circonférences, son module a un

. 1 - : :
maximum —. Dans ces conditions, si | Z — Q| < e, le point

z = ® (Z) est ou bien extérieur au cercle | z | < M ou bien .
intérieur & Pun des petits cercles. Or lorsque Z tend vers
le point singulier €, il ne peut pas appartenir & un méme
slement @ (Z, Q, z,), done | z| > M, ce qui démontre la propo-
sition.

Inversement, si o est valeur asymptotique de Z = f (2),
¢’est une singularité (non algébrique évidemment) de la fonction
inverse. Car lorsque z' décrit le chemin I' de détermination o,
7' = f (z') décrit une courbe y qui se rapproche indéfiniment
du point et le rayon de I’élément ® (Z, 7', 7') tend vers zéro.
Sinon on aurait pour un élément @ (Z, Z", z") un rayon supé-
rieur & 3¢, et & partir de cette valeur Z", on aurait | 27— o | <k,
les Z' appartiendraient & 1'élément @ (Z, Z"”, z"), ce qui est
impossible puisque z' = © (Z', 2", z'') serait alors borné.

L’Enseignement mathém., t. IV, fasc. 4. 17
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En définitive:

Les singularités (autres que les singularités algébriques) de la
surface de Riemann décrite par les valeurs d’une fonction méro-
morphe f (z) dans tout le plan & distance finie correspondent aux
valeurs asymptotiques de cette fonction. A deux chemins I', 1" de
détermination o qui sont contigus correspondent des courbes y et y'
aboutissant & o et telles que on peut les joindre par des courbes
de la surface de Riemann qui sont aussi voisines que 'on veut de e,
ces chemins v, v’ “dotvent étre considérés comme aboutissant a une
seule singularité . '

Les surfaces de Riemann correspondant aux fonctions entiéres
de la classe W ont donc une seule singularité qui est a I'infini.

35. Théorémes de Lindelof et d’Iversen.

Lindelof a étendu le théoréme de Cauchy sur le maximum du
module. Nous nous bornerons & I’énoncé suivant:

THEOREME DE LINDELOF. — Soit un domaine borné D de fron-
tiere F et une fonction f (z) holomorphe dans D et continue sur
D + F sauf en un point O de F. Si | f(z)| < M sur F sauf
en O et st [ f (z) ‘ < K dans D au voisinage de O, on a dans

tout D
[flz) ] <M

Comme D est borné, on peut par transformation homogra-
phique se ramener au cas ou O est l'origine et ou D est dans le
cercle | z| < 1. Dans ces conditions, si e > 0, la fonction 2* f (z)
n’est pas surement holomorphe dans D, mais seulement analy-
tique, mais le théoréeme de Cauchy s’applique encore a son
module qui est uniforme. Sur F, O excepté, on a | z° f (z) | < M.
Soit z, un point de D ; prenons r assez petit pour que, pour | z | < r
on ait | f(z)| < K et par suite |z°f(z)| < Kr®; on pourra
prendre r assez petit pour que Kr® <M et r < | zo |- Appli-
quons le théoréme de Cauchy & z* f (z) dans le domaine formé
par la portion de D contenant z, et extérieure a | z| < r. Comme
sur la frontiére constituée par des points de F et de |z| = r, le
module est au plus M, on aura aussi au point z, '

|25 f (el | < M.
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Done | f (z,) | < Me='€!%l et puisque ¢ > 0 est arbitraire
[f(z0) | <M.

Il est clair que le théoréme s’applique a un domaine D
quelconque mais tel qu’il y ait des points extérieurs permettant
de se ramener au cas de I’énoncé.

De ce théoréme, on déduit le suivant qui servira de lemme
pour la démonstration du théoréme d’Iversen B2l ;

Tugorime 1I. — Si la fonction f(z) est holomorphe dans un
domaine borné D et continue sur D et sur la frontiére F sauf
en un point O de F; st sur F, O excepté, | f (z) | = M tandis
que |f(z)| <M dans D, on a deux alternatives: 10 f (z)
s'annule en un point au moins de D; 20 il existe dans D une
courbe continue aboutissant a O sur laquelle f (z) tend vers zéro
lorsque z tend vers 0.

Supposons que f(z) ne s’annule pas dans D. Alors L est

f(2)

; % PR (. O 1
holomorphe dans D; et sur F, O excepté »ﬂzﬂ)‘ =3’ done "

n’est pas bornée au voisinage de O, sinon, d’aprés le théoreme de

M
Phypothése | f (z)] < M. Il existe donc un domaine D, intérieur

Lindel6f, on aurait dans D, ,]‘_z?)‘ < 1 en contradiction avec

3 D et admettant O comme point frontiére dans lequel { I(l_z) ' o % :

Dans D ona|f(z)]| < —1;—([; sur sa frontiére, O excepté, | f(z) | = %[—
et f (z) ne s’annule pas dans D;. On peut recommencer le raison-

nement indéfiniment. On peut joindre un point de /' & un point
z; de la frontiére de D, (autre que O) par un chemin intérieur &

D, puis z; & un point z, en lequel | f(z,) | = % par un chemin
appartenant & D,, et ainsi de suite, ce qui définit une courbe vy

de D sur laquelle | f (z) | tend vers zéro. vy est composée d’arcs

successifs Y, Y1, Yoy +-s Ymy oy LATC 7y, appartenant & D,. Les
arcs v, n'ont pas de points limites intérieurs & D puisqu’en un
tel point on aurait f (z) = 0, leur seul point d’accumulation est O.

TuEOREME D’ IVERSEN. — Soit X la surface de Riemann décrite
par les valeurs d’une fonction méromorphe, c’est-a-dire une
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surface simplement connexe du type parabolique. Soit Z, un
point du plan et Z, un point de la surface X, | Zy — Z;| = p.
Il est possible de joindre Z, & Z, par une courbe intérieure au
cercle | 7. — Zo| < ¢ qui appartient a la surface sauf peut-éire
son extrémité L.

Considérons, en effet, dans le plan z le domaine D défini par
| f(z) — Zy| < p qui contient le point z;, = ® (Z,) sur sa fron-
tiere /. Si le domaine D contient un point z, en lequel f (z)) = Z,
la proposition est établie. Dans le cas contraire, D n’est pas

borné (sinon dans D borne }—(2)1—2— holomorphe n’atteindrait
— 4o

pas son maximum sur le contour). Mais on peut le ramener a un
domaine borné par transformation homographique et appliquer
le théoréme I1; il s’ensuit que dans D on a un chemin joignant z,
au point & linfini sur lequel f(z) tend vers Z,. Le cas ou le
chemin considéré dans 1’énoncé n’a pas son extrémité dans X
est celui ou Z, est valeur asymptotique.

Du théoréme d’Iversen on déduit que si Z, est un point de %
et L une courbe simple issue de Z,, on peut tracer un chemin qui
joint Z, au voisinage d’un point de L en restant dans le voisinage
de L. 11 suffit d’appliquer le théoréme de proche en proche & des
petits cercles centrés sur L et suffisamment rapprochés.

Comme corollaire, on voit que st une valeur Q n’est pas prise
par une fonction méromorphe, cette valeur est valeur asymptotique.
En particulier, pour toute fonction entiére, Pinfini est valeur
asymptotique. ‘

36. Théoréme de Gross.

Si Uon considére un élément ® (Z, Z,, z,), Z, # oo holomorphe de
la fonction inverse z = @ (Z) d’une fonction méromorphe, on
peut prolonger cet élément jusquw'a Uinfini sur les rayons
arg (Z — Z,) = ¢ = const. sauf au plus pour des ¢ apparte-

nant a un ensemble de mesure nulle.

Pour D'établir, on peut se borner a considérer les rayons
arg (Z — Z,) = ¢ dans un cercle | Z —Z, | < R. Car si 'on
peut atteindre la circonférence de ce cercle sauf pour un ensemble
de mesure nulle de valeurs o, il suffira de donner a R les valeurs
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1,2, ..., 7, ... et comme une suite d’ensembles de mesures nulles
est de mesure nulle, le théoréme sera démontre.

D’autre part, I'ensemble E; des valeurs de ¢ pour lesquelles
le rayon passe par un point critique algébrique Z, = f(z,),
f (z,) = 0 est dénombrable, ce sont les rayons passant par un
point critique transcendant qui sont seuls & considérer.

Nous faisons donc le prolongement radial de P’élément
® (Z, Z,, 2,) dans le cercle | Z — Z, | < R, R étant supérieur au
rayon R, du cercle d’holomorphie de cet élément, et nous
supposons que dans ce prolongement nous rencontrons des
points critiques transcendants. Nous définissons un domaine €
qui contient le cercle | Z — Z, | < R, et dans lequel z = @ (Z)
est holomorphe. A ce domaine correspond dans le plan des z
un domaine o contenant le cercle | z —z,| < r, dans lequel
Z = f (z) est univalente et holomorphe et qui n’est pas borné
puisqu’il contient des chemins de détermination. Si I'on coupe
ce domaine par une circonférence | z — z, | = r, on obtient sur
cette circonférence des arcs A, de longueur totale s (r). A ces
arcs correspondent des ares de courbes du plan des Z qui
coupent les rayons |Z —Z,| = ¢ passant par les points
critiques transcendants puisque, a ces rayons correspondent des
chemins de détermination finie allant & I'infini et intérieurs & w.
Si I'on considére les valeurs de ¢ correspondant a ces arcs, elles
forment des mtervalles dont la longueur est au moins egale au

produit de s (r) par , d étant la plus courte distance de ces

arcs a l'origine Z,,. Cette plus courte distance d est supérieure a
la plus courte distance de la courbe transformée de | z— z, | = r,,
donc a un nombre fixe d,. Les intervalles contenant 1’ensemble
E — E; des ¢ pour lesquels le prolongement est impossible ont

s(r)

donc une longueur au plus égale & =—. Or on a
0

sy =[17@d=[If(a|rde, z=rd?,

B Ag
donc d’aprés la formule de Schwarz

s (r)2 <Jlf'(z) lzrdcp'--ﬁnr

Ap
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et comme A (r) étant I'aire de Q correspondant a la portion de w
limitée par |z —z,| = r, on a

r2n
Alr) = [[1F () 1rdrde,
00
Iinégalité s’écrit
dA (r)
dr

s(r2<2=wr

On a donc

fs—(r)r—zglr-<2ﬂ:[A(r)—~A(ro)]< 22 R%.

To

Ceci montre que s (r) a pour limite inférieure pour r infini la
valeur 0 puisque, dans le cas contraire le premier membre de
cette inégalité serait infini. On a donc des r pour lesquels s (r) < ¢
ce qui montre que les points de E — E; appartiennent a des
intervalles dont la somme des longueurs est aussi petite que I'on
veut. E — E, est de mesure nulle et le théorémees t démontré.

37. Classtfication d’ Iversen.

Si @ est une singularité transcendante de la fonction inverse
z = @ (Z), c’est-a-dire aussi de la surface de Riemann, il existe
un chemin v, le long duquel un élément ® (Z, Z', z') prolongé
le long de vy, tend vers oo, ce chemin v, tendant vers w. Suppo-

. _—y x . 1
sons « fini, sinon on considérerait ® comme fonction de 7

A partir d'un point Z'* de v, ce chemin reste dans le cercle
Cyy | Z — | < Rj si Z’ est un point de cette portion on peut
prolonger @ (Z, Z', z') & partir de cet élément en restant dans
C,. Si, en opérant ainsi a partir de vy, on peul chotsir R assez
pelit pour qu'on ne rencontre pas d’aulres singulariiés iranscen-
dantes que , on dit que » est une singularité transcendante isolée.
Le prolongement effectué dans C, définit un morceau X de la
surface de Riemann auquel la fonction z = @ (Z) fait corres-
pondre un domaine DY du plan des z; c¢’est un domaine illimité
qui contient des chemins de détermination o et qui ne contient
pas d’autres chemins de détermination; en faisant décroitre R,
on voit que tous ces chemins de détermination w sont contigus.

Iversen a donné dans sa Thése (1914) une classification des
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singularités transcendantes isolées qui compléte et précise un
essal antérieur de Boutroux. ,

Si I’'on peut choisir R assez petit pour que Z ne prenne pas
la valeur o dans C,, ¢’est-a-dire si » n’appartient pas a 2%, ou
encore si f (z) ne prend pas la valeur » dans Dg, le point  est
appelé point transcendant directement critique. En outre, si 'on
peut choisir R assez petit pour que @ (%) n’admette pas de sin-
gularités algébriques dans Cy, « est dit de premiére espéce; dans
Je cas contraire, w est point limite de points critiques algébriques,
il est dit de seconde espéce.

Si « n'est pas directement critique, il existe des éléments
®(Z,7',7), avec | Z/ — w | < &, qui contiennent «, autrement
dit D® contient des racines de f (z) — o si petit que soit R. Si
sur tout rayon arg (Z' — w) = const., ® (Z, Z’, z") ou ® (2,7, z')
peut &tre un élément algébrique, tend vers une valeur finie, ou
si Ion préfére si la valeur de @ (Z) finit par coincider avec un
élément @ (Z, Q, z,) lorsque Z tend vers o sur un rayon de G,
le point w est dit point transcendant indirectement critique.

Un point critique transcendant (qui est isolé) n’appartenant
pas & I'une ou Pautre de ces deux catégories est dit point directe-
ment et indirectement critique.

Ahlfors a montré que le nombre des chemins d’indétermina-
tion finie non contigus des fonctions entiéres d’ordre p est au
plus égal & 2p, il s’ensuit que le nombre de singularités a l'infini,

1 v y p s s Ty
pour p > - est aussi au plus égal a 2p, ainsi que le nombre des

singularités transcendantes & distance finie. Nous admettrons ces
résultats qui rentrent dans un énoncé plus général dii & Ahlfors 33,

Si Z = f (z) est une fonction entiére d’ordre fini, toutes les
singularités transcendantes de la fonction inverse sont isolées;
la classification d’Iversen s’applique. Si w est singularité trans-
cendante a distance finie, le domaine D} qui est illimité est borné
par un nombre fin1 de courbes. Car si D}, est ce domaine et si sa
frontiére sur laquelle | f(z) — o | = R comporte une courbe
illimitée I', cette courbe I' est aussi frontiére d’un domaine non
borné dans lequel | f(z) — | < R. D’aprés le théoréme du
n® 35, ce domaine contient un chemin de détermination infinie.
A chaque frontiére I' correspond un chemin de détermination




252 G. VALIRON

infinie et les chemins ainsi obtenus pour deux frontiéres ne sont
pas contigus; il n’y en a qu’un nombre fini. Alors, en diminuant
R on voit que ’on aura une seule courbe frontiére. Par suite

St £ (z) est fonction entiére d’ordre fini et si  est une valeur
asymptotique finie, le domaine |f(z) — w| > ¢ contenant les
chemins de détermination o est limité par une seule courbe dés
que € est assez petil.

On voit de méme que si o est fini et directement critique et
sl ’ est une singularité algébrique appartenant a C, les courbes
| f(3) —w] =] o — | décomposent D} en au moins deux
domaines d’indétermination finie; on pourra, d’aprés ce qui
précéde, prendre R assez petit pour que cette circonstance soit
impossible. Donc

Pour une fonction entiére d’ordre fini, les poinis directement
critiques a distance finie de la fonction inverse sont tous de premicre
espéce. "

Mais les singularités transcendantes a Dinfini, qui sont
directement critiques puisque f (z) ne prend pas la valeur infinie,
peuvent étre de seconde espece. On a vu (n° 29) que la singularité
a I'infini des fonctions inverses des fonctions de la classe W est
de seconde espéce.

38. Remarques sur la décomposition en feuillets de la surface
de Riemann. Feuillets singuliers et division tmpropre.

L’idée la plus simple pour décomposer en feuillets la surface
de Riemann décrite par les valeurs Z d’une fonction f (z) que
nous supposerons entiére et d’ordre fini est d’utiliser les étoiles
d’holomorphie de la fonction inverse z = ® (Z). On considére
les éléments @ (Z, 0, z,), f(z,) = 0 et on les prolonge radiale-
ment apres avoir coupé le long d’'une demi-droite arg Z = const.,
si I’élément est algébrique. On obtient ainsi des feuillets (qui
pour toute fonction inverse de fonction méromorphe sont illi-
mités d’apres le théoréme de Gross) qui dans le cas actuel sount
des domaines dont les frontiéres sont des demi-droites,
arg Z = const., formant sur chaque feuillet un ensemble
dénombrable. A ces feuillets correspondent dans le plan des z
des domaines limités par des courbes d’argument constant. Si
ces domaines, leurs frontieres et les points limites de ces fron-
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tieres couvrent le plan des z en entier & distance finie, on a fait
4 la fois la division du plan des z en domaines d’univalence et la
division de la surface de Riemann en feuillets dont le raccorde-
ment est donné par la considération du plan des z. Dans le cas
contraire, P'origine est point critique transcendant; s’il y a a
I'origine un point directement critique, il est de premiére espece
et I'on a une infinité de feuillets aboutissant a I'origine; s’il y a
un point directement et indirectement critique il peut exister
des feuillets incomplets aboutissant & l’origine, dont l'angle
d’ouverture est moindre que 2.

On peut éviter les feuillets de cette derniére espéce en chan-
geant Z en Z + k de fagon & n’avoir plus de singularité trans-
cendante & l'origine. Toute la surface de Riemann est alors
fournie par les feuillets obtenus en prolongeant les éléments
® (Z, 0, z,). Mais il pourra arriver que sur certains feuillets la
frontiére ne soit pas entiérement accessible par suite de la pré-
sence d’un point critique transcendant qui, d’apres les propo-
sitions du n® 37, ne peut pas étre directement critique puisqu’il
serait isolé des singularités algébriques, et qui n’est pas indi-
rectement critique puisqu’on ne pourrait pas 'atteindre par
prolongement radial, c’est donc un point directement et indi-
rectement critique. Le domaine correspondant du plan des z
sera un domaine complet singulier d’univalence; dans ce domaine
et sur sa frontiere & distance finie, f (z) prend des valeurs dont.
I’ensemble complémentaire contient une ligne.

La jonction des feuillets, c’est-a-dire des domaines d’uni-
valence, peut aussi présenter des anomalies. Il peut se faire que
pour passer d’un feuillet & un autre il soit nécessaire de passer
sur une infinité d’autres feuillets. On aura une division impropre
du plan z en domaines d’univalence.

La fonction

ou & est une constante présente des circonstances de ce genre.
Dans le cas b = 0, déja étudié par Iversen, la division en feuillets
par les lignes arg Z = const., fournit un feuillet incomplet; pour
h = —1, 1l existe un feuillet singulier 3; pour A = 1, on obtient
une division impropre.
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L’étude de la division du plan des z en domaines complets
d’univalence pour une fonction méromorphe générale Z = f (2)
a été 'objet de travaux de Shimizu *® et de Marty. Elle demande
de nouveaux efforts.

39. Remarque sur les surfaces du type hyperbolique.

Si 'on considére une fonction Z = f (z) méromorphe pour
’z[ < 1 et admettant la circonférence [z[ = 1 comme coupure,
sa fonction inverse est uniforme sur une surface du type hyper-
bolique dont I’étude des singularités est peu avancée. Les
- valeurs asymptotiques sont ici les valeurs limites sur des che-
- mins tendant vers la circonférence C, | z| = 1. Les considéra-
tions du n° 34 s’étendent, les singularités de la fonction inverse
autres que les singularités algébriques sont fournies par les
valeurs asymptotiques. Le théoreme d’Iversen n’est plus valable
en général non plus que le théoréeme de Gross dont la démons-
tration tombe évidemment en défaut.

La fonction spéciale étudiée au n® 31 rentre dans la classe
générale des fonctions holomorphes et non bornées pour |z | > 1
telles que chaque F (z) est bornée sur un chemin simple L, = L (F),
z=12z(;F), t >0 avec lim|z (¢ F)| =1, tout point de

l= o

| 2| = 1 étant point limite des valeurs z (¢, F). Le théoréme
d’Iversen s’étend a ces fonctions. Lorsqu’on suppose que sur
L (F) P'une des limites d’indétermination de z (f) pour ¢ infini est
infinie, on a

la croissance est trés rapide.

ITI. CARACTERISTIQUE DE NEVANLINNA
ET PROPRIETE DE N (r, Z).

40. Fonction T (r, f) de Nevanlinna.

On a vu (n° 18) que, si f (z) est méromorphe pour | z | <
si f(0) % 0, oo et si n (z) désigne le nombre des zéros et p
le nombre des pdles pour | z| < z, on a

r?
(%)
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