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FONCTIONS ENTIERES D’ORDRE FINI
ET FONCTIONS MEROMORPHES *

par Georges VALIRON f

(suite)

DEUXIEME PARTIE

QUELQUES PROPRIETES
DES FONCTIONS MEROMORPHES

I. FoNCTIONS DE LA CLASSE W ET LEURS INVERSES.

99. Fonctions entiéres de la classe W et leurs fonctions inverses.

Une fonction entiére de la classe W est une fonction f (z)
pour laquelle existe une suite de courbes simples fermées I',
entourant lorigine, T ., contenant I', & son intérieur et telles
que le minimum de | f (z) | sur I'; tende vers I'infini lorsque n
tend vers linfini (ce qui exige évidemment que I, s’éloigne
indéfiniment lorsque n— o). On peut supprimer une suite
infinie de courbes I', sans changer ces propriétés; il est donc
permis de supposer que le minimum 7, de | f(z)| sur ',y
est supérieur au maximum M, de | f (z) | sur T, maximum qui
est atteint en un point P, au moins de I',. Considérons les do-
maines dans lesquels | f (2) | < M,, n étant donné; 'un d’eux,
soit D,, contient l'intérieur de I', puisque, dans Pintérieur de
L, | f (2) | < M, ; le point P, appartient a la frontiere C, de D,
qui est une courbe analytique intérieure a I',., puisque
m,,, > M,. Nous obtenons ainsi une suite de courbes de module
constant C_; sur chaque C,, | f(2) | = M, et a Pintérieur de D,
| f (z) | < M,. Pour tous les Z de module inférieur a M,, I'équa-

*) Série de cours et de conférences sur la théorie des fonctions entiéres, faits en
1948 au Caire et & Alexandrie, d’aprés le manuscrit revu et mis au point par le pro- -
fesseur Henri MILLOUX.

L’Enseignement mathém., t. IV, fasc. 4. 16




230 . G. VALIRON

tion f (z) = Z a le méme nombre p, de racines intérieures & D,,
la dérivée f' (z) a exactement p, — 1 racines dans D, si T'on
suppose, ce qui est possible en diminuant infiniment peu §’il y
a lieu la valeur de M,, que f' (z) ne s’annule pas sur C,. La
fonction inverse z = f, (Z) de Z = f(z) correspondant a z
intérieur & D, est une fonction a p, branches définie dans le
cercle | Z| < M,. On peut rendre ses branches uniformes en
joignant les points Z! = f (2') correspondant a f' () = 0 a la:
circonférence | Z| = M, par des rayons (si Z' = 0) ou des
segments de rayon. Et on peut considérer la surface de Riemann
a p, feuillets circulaires réunis les uns aux autres le long de
certains de ces rayons ou segments de rayon de facon a former
une surface connexe sur laquelle z = f, (Z) est uniforme 22
Lorsque n croit le rayon du cercle | Z | = M,, croit, les feuillets
voient augmenter leur rayon, les lignes de passage doivent étre
prolongées et de nouvelles lignes s’introduisent permettant le
passage dans de nouveaux feuillets. Si I'on fait croitre n indéfi-
niment, on obtient & la limite la surface de Riemann & une
infinité de feuillets sur laquelle la fonction inverse z = f_; (Z)
est définie et uniforme quel que soit Z fini. On peut préciser ce
qui vient d’étre dit: si dans le domaine limité par G, et G, ,,
f (z) ne s’annule pas, aucun feuillet nouveau ne s’introduit
lorsqu’on passe de C, a C,,,; si au contraire p, ., — p, n’est pas
nul, p,., — p, nouveaux feuillets s’introduisent et /' (z) a aussi
Pnit — Pn 26ros dans le domaine compris entre C, et C,.,.
Comme la portion de surface de Riemann correspondant & D,,,,
est formée de p,,., feuillets circulaires formant une surface
connexe, 'un au moins des points ZI correspondant & un 2’
compris entre C, et C, ., est extérieur & la circonférence
| Z | < M,, et se trouve sur 'un des feuillets correspondant a D,
prolongés dans | Z | < M,,,.

Les points singuliers de la surface £ de Riemann sont les
points critiques algébriques Z! et le point & I'infini. D’apres ce
qui vient d’&tre dit, le point & I'infini est point limite de points
critiques algébriques. Ce point & linfini doit étre considéré
comme un seul point sur la surface X, car lorsqu’on tourne et
décrit une courbe C,, le point Z tourne p, fois sur le cercle
| Z| = M,, et parcourt les p, feuillets; il s’ensuit qu’on peut
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aller sur ¥ d’un point Z de grand module & un autre point Z’
de grand module sans cesser de rester dans le voisinage du point
a Dinfini. Ce méme fait est visible dans le plan des z. S1 Z et Z'
sont de grands modules, les valeurs z et z’ le sont aussi, z et 2z’
sont par exemple extérieurs & C, et intérieurs & C,, m > n,
et en outre extérieurs aux domaines | f (z) | < A contenus dans
la « couronney comprise entre C, et C,, on peut joindre ces
points par une courbe le long de laquelle | f (z) | > A.

Ainsi, il y a un seul point singulier & I'infini sur 2. Quelle que
soit la fagcon dont Z s’éloigne indéfiniment sur 2, z tend vers
Pinfini. On dit que Z infini est un point directement critique et
comme il est point limite de points critiques algébriques on dit
qu’il est de seconde espéce.

Si I’on considere ’un des feuillets de la surface % telle qu’elle
a été construite et si on prend sur ce feuillet I'intérieur d’un
cercle | Z | < R, il n’existe dans ce cercle qu’un nombre fini de
points Z7 situés sur ce feuillet et par suite un nombre fini de
lignes de passage issues de ces points. Au feuillet complet
correspond dans le plan des z un domaine A nécessairement non
borné qui est un domaine complet d’univalence de la fonction
f(2); dans A augmenté de sa frontiére f (z) prend toute valeur
finie. La frontiére de A correspond aux lignes de passage situées
sur le feuillet considéré, elle est formée de lignes sur lesquelles
I'argument de f(z) est constant. A la surface X et & ses lignes.
de passage correspond ainsi une division du plan des z en
domaines complets d’univalence.

Bien que les surfaces de Riemann ainsi obtenues soient les
plus simples parmi les surfaces simplement connexes (elles sont
simplement connexes puisqu’elles correspondent biunivoquement
au plan des z privé du point & P'infini), elles peuvent présenter
quelques anomalies. Dans les cas simples, chaque feuillet ne
contiendra qu’'un nombre fini de points critiques, mais dans
certains cas un feuillet, ou un nombre fini de feuillets, ou méme
tous les feuillets pourront renfermer une infinité de lignes de
passage. Les fonctions d’ordre nul permettent de construire des
exemples de cette espéce, en partant évidemment de la dérivée
de la fonction. On obtient ainsi des fonctions pour lesquelles, soit
sur un feuillet, soit sur un nombre fini de feuillets, soit sur tous
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les feuillets, les arguments des lignes de passage sont denses sur
le segment (0, 2r). Dans le plan des z, les lignes arg Z = const.
qui coupent un arc de courbe | Z | = const. et qui sont menées
dans le sens des | Z | croissants, coupent cet arc en des points
denses sur cet arc 23,

30. Fonctions de la classe W holomorphes pour | z| < 1.

Les fonctions de Koenigs étudiées par Fatou dans ses mé-
moires sur litération (Bull. Soc. math., 1920), les fonctions
construites par Lusin et Priwalof (Annales Ecole norm., 1925)
jouissent de la propriété suivante: Ces fonctions sont holo-
morphes (z) étant une de ces fonctions, il existe
une suite de courbes I, simples fermées, I', étant contenue dans
une couronne 1 — ¢, < | z| < 1 (g, tendant vers zéro lorsque n
croit 1ndeﬁn1ment) telles que le minimum de | F (z) | sur F,
tende vers I'infini avec n. On peut répéter pour une telle fonctlo.n
ce qui a été dit au n° 29 pour les fonctions entieres: il existe une
suite de courbes C, de module constant | F (z) | = M, telles
que C,,, contienne C, & son intérieur, enveloppant l'origine, et
telles que M croisse indéfiniment avec n. Si grand que soit A, il
existe une suite de domaines A, ayant pour frontiéres deux
courbes consécutives C,, C, ., contenant des domaines 3, (A)
dans lesquels |F (z)| < A, ces domaines 9§, ne tournant pas
autour de l'origine. Tout point de la circonférence | z| = 1 est
point limite de points 3, (A,) si A, —~ oo (sinon | F (z) | tendrait
vers l'infini lorsque z tendrait vers les points d’un arc o de

| z| =1, donc 57 ( ] tendrait vers zéro, Fi( J serait identiquement

nul d’aprés le principe de la symétrie de Schwarz). En est-il de
méme si on laisse A fixe ?

On peut construire la surface de Riemann % décrite par
7. = F (z) comme dans le cas des fonctions entiéres du n° 29.
Pour les mémes raisons qu’au n° 29, le point a I'infini, Z = oo,
doit étre considéré comme un seul point sur cette surface, c’est
le seul point critique non algébrique de cette surface X et ce point
critique est limite de points critiques algébriques. 2 est une
surface simplement connexe qui est représentée par la fonction
inverse z = F_, (Z) de F (z) sur le cercle | z| < 1. C’est une
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surface du type hyperbolique, les surfaces simplement connexes
représentables conformément (sauf aux points de ramification)
sur le plan privé du point a 'infini étant dites du type parabolique
et les surfaces représentables sur le plan complet étant les sur-
faces du type elliptique. Les surfaces du type elliptique sont les
surfaces décrites par les valeurs des fractions rationnelles, les
surfaces du type parabolique sont les surfaces décrites par les
valeurs des fonctions méromorphes sauf a Pinfini qui est point
essentiel, les surfaces du type hyperbolique sont les surfaces
décrites par les valeurs des fonctions méromorphes dans un
cercle et admettant la circonférence comme coupure.

Dans le cas actuel, la surface X est du type hyperbolique et
est illimitée. A la surface telle qu’elle a été obtenue correspond
dans le plan des z une division de I'intérieur du cercle | z| < 1
en domaines complets d’univalence pour F (z). Ces domaines
ne sont pas complétement intérieurs au cercle | z| < 1 mais la
fagon dont ils approchent de la circonférence | z| = 1 reste
Inconnue.

Dans les cas particuliers des fonctions de Koenigs, par
exemple, la fonction F (z) tend vers 'infini lorsque | z | tend vers
un sur un rayon, arg. z = const., presque pour tous les rayons,
dans les exemples de Lusin et Priwalof; parmi les courbes r,
figurent des cercles de centre & l'origine. A-t-on toujours des
propriétés de ce genre ?

Quot qu’il en soit, le fait important est I'existence d’un seul
point critique non algébrique pour la fonction inverse, point qui
est point limite de points critiques algébriques.

31. Sur une classe de surfaces du type hyperbblique.

Dans les exemples de Fatou, Lusin et Priwalof signalés ci-
dessus, il existe des rayons arg. z = const. sur lesquels f F (2) l—> 0
lorsque | z| — 1. Pour la fonction inverse z — F_, (Z), il existe
donc des chemins tendant vers I'infini sur lesquels z a une limite.
Il'y a naturellement d’autres chemins sur lesquels Z — o tandis
que z n’a pas de limite, | z | - 1 et, par.exemple, arg. z tend vers
infini. Nous allons voir qu’il existe des fonctions pour lesquelles
la fonction inverse n’a qu’'une seule singularité a Dinfini, isolée
des singularités algébriques et pour lesquelles, quelle que soit
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la fagon dont Z tend vers l'infini, z n’a jamais de limite. Nous
nous bornerons a un exemple particulier 29,
Prenons la fonction

s
s=e VO, L=t +4in,

ou 'on suppose n > 7, > 0 et ou 'on prend

\/E:(l—ki)\/% pour £E=0,

et | &] n? < 1. Cette fonction représente conformément et
biunivoquement le domaine A défini par % > no, | £| % < 1
sur un domaine D en forme de spirale, intérieur au cercle | z | < 1
et qui s’enroule autour de ce cercle. En deux points homologues
de D et A, le rapport de similitude tend vers un lorsqu’on
s’éloigne indéfiniment dans A.

Considérons, d’autre part, la fonction

e“iC
g(g) = ¢°

qui tend rapidement vers zéro lorsqu’on s’éloigne indéfiniment
dans A dans certains domaines et qui croit indéfiniment dans
d’autres puisque

oiE — it
¢ 1C  gfMcosExising) _ e e0SE [oo5 (¢M sin £) + isin (e" sin £)]
de sorte que, si

e"sinf = + © + a, |a|<%,

| g (¥)| tend vers zéro comme
e~ COS aee"(1-0(1)) , (2
tandis que, si
_esin £ = «, |a|<32°_,

| g (¥) | tend vers l'infini comme

e COS aee(1-0(1))
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Désignons par { = h (z) la fonction inverse de (1) lorsque &
est dans A; c’est une fonction holomorphe dans le domaine
spiralique D; la fonction

F (z) = g (h(3)

se comporte comme g ({). Appelons T'(a, b) la courbe de D
correspondant & la frontiére de la portion 3(a, b) de A définie
par | »

[e"sin&|<7t+a, O<a<%; n>b>m.

La courbe I'(a, b) décompose le cercle |z| < 1 en deux

domaines: un domaine en spirale intérieur a D, soit I (a, 0), et
un domaine complémentaire E (a, b).

La rapidité de la décroissance de (2) montre que I'intégrale

1 F (u)

217 u—3z
I'(a,b)

ot u décrit T' (a, b) dans le sens direct, définit une fonction f (z)
holomorphe dans E (a, b) et une fonction f, (z) holomorphe dans

I (a, b). Lorsque | z| tend vers 1, | f (z) | et | /1 (s) | restent uni-

formément bornés si z ne se rapproche pas trop de I' (a, b); on
vérifie qu’il suffit que

[e"sin&;t(n+a)]>e>0

pour qu’il en soit ainsi.

Laissant a fixe, et faisant croitre 5, on prolonge f(z) dans
tout le cercle | z| < 1, soit C. D’autre part, si I'on donne a &
deux valeurs b et o' > b et si 'on prend z entre les courbes
I' (a, b) et I' (a, b'), 'intégrale (3) est égale & F (z) sur le contour
formé par les parties non communes de I' (a, b) et I' (a, ). On
a donc, en supposant que I' (@, b) est parcourue dans le sens
direct par rapport aux points de E (a, b),

flz) = F(a) + f1 () .

Comme on peut aussi faire varier a, on voit que f (z) est bornée
sauf dans les domaines correspondant a

le"singl <2, 9>, (4)
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ou']‘ (z) est la somme de F (z) et d’une fonction bornée. Et dans
le domaine (4), F (z) croit indéfiniment lorsque | z | tend vers un
de la méme fagon que g (¢). D’autre part, la dérivée de f (z) est

bornée dans les mémes conditions que g’ ({) puisque % tend

vers un. Comme

et que

2T
— e" b cosk

on voit que | g’ (¢) | tend vers I'infini, dans tout le domaine (4),
/' (z) ne s’annule pas. Le point & l'infini est un point critique
pour la fonction inverse f, (Z) et il est isolé des points critiques
algébriques.

On ne change pas ces résultats si 'on prend la somme de f (z)
et d’une fonction k (z) dont la dérivée k' (z) est bornée dans C
et admet C comme coupure. La fonction % (z) sera aussi bornée
et d’apres un théoréme de Fatou et Riesz, k (re*®) aura une limite
lorsque r tendra vers 1, presque pour toutes les valeurs de 0 et
I'ensemble de ces valeurs limites formeront un ensemble non
dénombrable.

Considérons les deux fonctions f (z) et f (z) + k& (z). Si I'une
tend vers une limite finie lorsque z décrit un chemin L tendant
vers le cercle C, Pautre n’a pas de limite puisque & (z) n’en a pas.
Est-1l possible que f(z) ait une limite pour un chemin L et
f (2) + k (z) pour un chemin L’ ? Ces deux chemins ne se coupe-
ront pas pour | z | assez proche de 1 et limiteront un domaine D’
de forme spiralique s’enroulant autour de C & I'intérieur de C 25,
La fonction f (z) tend vers une limite sur L et est bornée dans
ce domaine D’; f (z) + k (z) tend vers une limite sur L’ et est
bornée dans le domaine D’. Représentons conformément D’ sur
un cercle | ¢ | < 1. Aux deux chemins L et L’ correspondront
deux arcs de ce cercle aboutissant & un méme point, ¢ = 1, par
exemple, correspondant & | z| tendant vers 1. Alors & f (z) et
f (2) + k (z) correspondent des fonctions ¢ (¢) et ¢ (¢) bornées
dans le cercle, tendant vers des limites lorsque ¢ tend vers 1 sur
- la circonférence d’un cdté de ce point pour ¢ (¢), de I’autre pour
¢ (¢). D’aprés un théoréme de Lindelsf, elles auront les mémes
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limites respectivement lorsque ¢ tendra vers 1 sur 'axe réel.
Et c’est impossible puisque la différence de ¢ (¢) et ¢ (¢) n’a
pas de limite.

Par suite, soit f(z), soit f(z) + k(z), n’a pas de limite
possible autre que I'infini lorsque | z | tend vers un. La fonction
inverse @ (Z) admet pour singularités uniquement des points
critiques algébriques et le point a linfini, qui est un point cri-
tique 1s0lé et tel que lorsque Z tend vers ce point d’une facon
quelconque, la valeur z de la fonction n’a aucune limite.

32. Démonstration du théoréme de Lindelsf.

Par une transformation conforme du cercle en un demi-plan,
puis du demi-plan en un angle, on est ramené a démontrer la
proposition suivante: Supposons que ¥ (z) soit holomorphe dans
le secteur

|argz!<£, lz] < 1

qu’elle soit bornée par M dans le secteur, continue sur le cdté

TC ’ 14
arg z = & et tende vers zéro lorsque z tend vers zéro sur ce

coté. Dans ces conditions, ¥ (z) tend vers zéro lorsque z tend

vers zéro sur la bissectrice arg z = 0.
, . . . ’ . ‘ 1 ol ’
Prenons en effet z réel positif inférieur a n < 5 et considé-

rons la fonction

V(iEr+ ¥ (z+ Lo)¥P(z + Co?) ¥ (z + Lwd) ¥ (z + tm4)qf(z +

+ {wd), w=e¢3.
Elle est holomorphe dans I’hexagone limité par les droites obte-
nues en faisant tourner le coté arg z = % des angles % %

k=1, ..., 5 autour du point z, et il s’ensuit que sur les cotés de
cet hexagone, et par suite au centre, son module est au plus égal

4 ¢, maximum de | ¥ (z) | sur la portion du c6té arg z = % qui

fait partie de la frontiére, multiplié par la borne de | ¥ (2) |
élevé & la puissance 5. Ceci démontre la proposition.
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