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FONCTIONS ENTIÈRES D'ORDRE FINI

ET FONCTIONS MÉROMORPHES *

par Georges Valiron f
suite)

DEUXIÈME PARTIE

QUELQUES PROPRIÉTÉS

DES FONCTIONS MÉROMORPHES

I. Fonctions de la classe W et leurs inverses.

29. Fonctions entières de la classe W et leurs fonctions inverses.

Une fonction entière de la classe W est une fonction / (z)

pour laquelle existe une suite de courbes simples fermées Fn

entourant l'origine, rn+1 contenant à son intérieur et telles

que le minimum de | / (z) | sur Tn tende vers l'infini lorsque n

tend vers l'infini (ce qui exige évidemment que Tn s'éloigne

indéfiniment lorsque n-* as). On peut supprimer une suite

infinie de courbes Tn sans changer ces propriétés; il est donc

permis de supposer que le minimum de | / (z) | sur

est supérieur au maximum Mn de | / (z) | sur rm, maximum qui

est atteint en un point P„ au moins de Tn. Considérons les

domaines dans lesquels | / (z) | < Mn, n étant donné; l'un d'eux,

soit Dn, contient l'intérieur de Fn puisque, dans l'intérieur de

r„, | / (z) | < Mn; le point Pn appartient à la frontière Cn de Dn

qui est une courbe analytique intérieure à Tn+1 puisque

mn+l > Mn. Nous obtenons ainsi une suite de courbes de module

constant Cn; sur chaque Cn, | f(z) | Mn et à l'intérieur de Dn,

| / (z)| < Mn. Pour tous les Z de module inférieur à Mn, l'équa-

*) Série de cours et de conférences sur la théorie des fonctions entières, faits en

1948 au Caire et à Alexandrie, d'après le manuscrit revu et mis au point par le
professeur Henri MILLOUX.
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230 G. VALIRON

tion f (z) Z a le même nombre pn de racines intérieures à Dn,
la dérivée /' (z) a exactement pn — 1 racines dans Dn si l'on

suppose, ce qui est possible en diminuant infiniment peu s'il y
a lieu la valeur de Mn, que /' (z) ne s'annule pas sur Cn. La
fonction inverse z f_{ (Z) de Z / (z) correspondant à z

intérieur à Dn est une fonction à pn branches définie dans le

cercle | Z | < Mn. On peut rendre ses branches uniformes en

joignant les points D f (zJ) correspondant à f (zj) 0 à la
circonférence | Z | Mn par des rayons (si Z? 0) ou des

segments de rayon. Et on peut considérer la surface de Riemann
à pn feuillets circulaires réunis les uns aux autres le long de

certains de ces rayons ou segments de rayon de façon à former

une surface connexe sur laquelle z (Z) est uniforme22).

Lorsque n croît le rayon du cercle | Z | Mn croît, les feuillets
voient augmenter leur rayon, les lignes de passage doivent être

prolongées et de nouvelles lignes s'introduisent permettant le

passage dans de nouveaux feuillets. Si l'on fait croître n
indéfiniment, on obtient à la limite la surface de Riemann à une

infinité de feuillets sur laquelle la fonction inverse z f_{ (Z)

est définie et uniforme quel que soit Z fini. On peut préciser ce

qui vient d'être dit: si dans le domaine limité par Cn et Cn+1,

/ (z) ne s'annule pas, aucun feuillet nouveau ne s'introduit
lorsqu'on passe de Cn à Cn+1 ; si au contraire pn+i — pn n'est pas

nul, pn+i — pn nouveaux feuillets s'introduisent et /' (z) a aussi

Pn+i—Pn zéros dans le domaine compris entre Cn et Cn+1.

Comme la portion de surface de Riemann correspondant à Dn+1

est formée de pn+l feuillets circulaires formant une surface

connexe, l'un au moins des points Z3 correspondant à un zj

compris entre Cn et Cn+1 est extérieur à la circonférence
| Z | < Mn et se trouve sur l'un des feuillets correspondant à Dn

prolongés dans | Z | < Mn+1.

Les points singuliers de la surface 2 de Riemann sont les

points critiques algébriques Zj et le point à l'infini. D'après ce

qui vient d'être dit, le point à l'infini est point limite de points

critiques algébriques. Ce point à l'infini doit être considéré

comme un seul point sur la surface 2, car lorsqu'on tournn et

décrit une courbe Cn, le point Z tourne pn fois sur le cercle

| Z | Mn et parcourt les pn feuillets; il s'ensuit qu'on peut
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aller sur 2 d'un point Z de grand module à un autre point Z'
de grand module sans cesser de rester dans le voisinage du point
à l'infini. Ce même fait est visible dans le plan des z. Si Z et Z'
sont de grands modules, les valeurs z et z' le sont aussi, z et z'

sont par exemple extérieurs à Cn et intérieurs à Cm, m > n,
et en outre extérieurs aux domaines | / (z) | < A contenus dans

la « couronne » comprise entre Cn et Cm, on peut joindre ces

points par une courbe le long de laquelle | f (z) | > A.
Ainsi, il y a un seul point singulier à l'infini sur 2. Quelle que

soit la façon dont Z s'éloigne indéfiniment sur 2, z tend vers
l'infini. On dit que Z infini est un point directement critique et
comme il est point limite de points critiques algébriques on dit
qu'il est de seconde espèce.

Si l'on considère l'un des feuillets de la surface 2 telle qu'elle
a été construite et si on prend sur ce feuillet l'intérieur d'un
cercle | Z | < R, il n'existe dans ce cercle qu'un nombre fini de

points T) situés sur ce feuillet et par suite un nombre fini de

lignes de passage issues de ces points. Au feuillet complet
correspond dans le plan des z un domaine A nécessairement non
borné qui est un domaine complet d'univalence de la fonction
/ (z) ; dans À augmenté de sa frontière / (z) prend toute valeur
finie. La frontière de À correspond aux lignes de passage situées
sur le feuillet considéré, elle est formée de lignes sur lesquelles
l'argument de / (z) est constant. A la surface 2 et à ses lignes
de passage correspond ainsi une division du plan des z en
domaines complets d'univalence.

Bien que les surfaces de Riemann ainsi obtenues soient les
plus simples parmi les surfaces simplement connexes (elles sont
simplement connexes puisqu'elles correspondent biunivoquement
au plan des z privé du point à l'infini), elles peuvent présenter
quelques anomalies. Dans les cas simples, chaque feuillet ne
contiendra qu'un nombre fini de points critiques, mais dans
certains cas un feuillet, ou un nombre fini de feuillets, ou même
tous les feuillets pourront renfermer une infinité de lignes de

passage. Les fonctions d'ordre nul permettent de construire des
exemples de cette espèce, en partant évidemment de la dérivée
de la fonction. On obtient ainsi des fonctions pour lesquelles, soit
sur un feuillet, soit sur un nombre fini de feuillets, soit sur tous
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les feuillets, les arguments des lignes de passage sont denses sur
le segment (0, Itz). Dans le plan des i, les lignes arg Z const,

qui coupent un arc de courbe \ Z\ — const, et qui sont menées

dans le sens des | Z | croissants, coupent cet arc en des points
denses sur cet arc 23).

30. Fonctions de la classe W holomorphes pour | z | < 1.

Les fonctions de Kœnigs étudiées par Fatou dans ses

mémoires sur l'itération (Bull. Soc. math., 1920), les fonctions
construites par Lusin et Priwalof (Annales Ecole norm., 1925)

jouissent de la propriété suivante: Ces fonctions sont
holomorphes pour | z | < 1. F (z) étant une de ces fonctions, il existe

une suite de courbes Tn simples fermées, Tn étant contenue dans

une couronne 1 — sn < | z | < 1 (en tendant vers zéro lorsque n

croît indéfiniment) telles que le minimum de | F (z) | sur Fn

tende vers l'infini avec n. On peut répéter pour une telle fonction
ce qui a été dit au n° 29 pour les fonctions entières: il existe une
suite de courbes Cn de module constant | F (z) | Mn telles

que Cn+1 contienne Cn à son intérieur, enveloppant l'origine, et

telles que Mn croisse indéfiniment avec n. Si grand que soit A, il
existe une suite de domaines An ayant pour frontières deux

courbes consécutives Cn, Cn+{ contenant des domaines Sn (A)
dans lesquels |F (z) | < A, ces domaines 8n ne tournant pas

autour de l'origine. Tout point de la circonférence | s | 1 est

point limite de points Sn (An) si An -* oo (sinon | F (z) | tendrait
vers l'infini lorsque z tendrait vers les points d'un arc oc de

l 1
I z I 1, donc ÏT7- tendrait vers zéro, serait identiquement

-T (z) r \z)

nul d'après le principe de la symétrie de Schwarz). -En est-il de

même si on laisse An fixe
On peut construire la surface de Riemann S décrite par

Z F (z) comme dans le cas des fonctions entières du n° 29.

Pour les mêmes raisons qu'au n° 29, le point à l'infini, Z go

doit être considéré comme un seul point sur cette surface, c'est

le seul point critique non algébrique de cette surface S et ce point

critique est limite de points critiques algébriques. S est une

surface simplement connexe qui est représentée par la fonction
inverse z F_{ (Z) de F (z) sur le cercle | z | < 1. C'est une
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surface du type hyperbolique, les surfaces simplement connexes
représentables conformément (sauf aux points de ramification)
sur le plan privé du point à l'infini étant dites du type parabolique
et les surfaces représentables sur le plan complet étant les
surfaces du type elliptique. Les surfaces du type elliptique sont les
surfaces décrites par les valeurs des fractions rationnelles, les
surfaces du type parabolique sont les surfaces décrites par les
valeurs des fonctions méromorphes sauf à l'infini qui est point
essentiel, les surfaces du type hyperbolique sont les surfaces
décrites par les valeurs des fonctions méromorphes dans un
cercle et admettant la circonférence comme coupure.

Dans le cas actuel, la surface S est du type hyperbolique et
est illimitée. A la surface telle qu'elle a été obtenue correspond
dans le plan des z une division de l'intérieur du cercle | z | < 1

en domaines complets d'univalence pour F {z). Ces domaines
ne sont pas complètement intérieurs au cercle | z | < 1 mais la
façon dont ils approchent de la circonférence \ z \ i reste
inconnue.

Dans les cas particuliers des fonctions de Kœnigs, par
exemple, la fonction F (z) tend vers l'infini lorsque | 2 | tend vers
un sur un rayon, arg. 2 const., presque pour tous les rayons,
dans les exemples de Lusin et Priwalof; parmi les courbes Fn
figurent des cercles de centre à l'origine. A-t-on toujours des

propriétés de ce genre
Quoi qu'il en soit, le fait important est l'existence d'un seul

point critique non algébrique pour la fonction inverse, point qui
est point limite de points critiques algébriques.

31. Sur une classe de surfaces du type hyperbolique.
Dans les exemples de Fatou, Lusin et Priwalof signalés ci-

dessus, il existe des rayons arg. 2 const, sur lesquels | F (z) | 00
lorsque \ z\-+ 1. Pour la fonction inverse 'z F_{ (Z), il existe
donc des chemins tendant vers l'infini sur lesquels z a une limite.
Il y a naturellement d'autres chemins sur lesquels Z -> 00 tandis
que z n'a pas de limite, \z \-> l et, par .exemple, arg. z tend vers
l'infini. Nous allons voir qu'il existe des fonctions pour lesquelles
la fonction inverse n'a qu'une seule singularité à l'infini, isolée
des singularités algébriques et pour lesquelles, quelle que soit
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la façon dont Z tend vers l'infini, z n'a jamais de limite. Nous
nous bornerons à un exemple particulier 24).

Prenons la fonction

ze^,ZÇ + ii)
(1)

où l'on suppose y) > y)0 > 0 et où l'on prend

V? (1 + i) y/y pour 5 0,

et | ^ | 7j2 < 1. Cette fonction représente conformément et

biunivoquement le domaine A défini par y] > y)0, | \ | if < 1

sur un domaine D en forme de spirale, intérieur au cercle | z | < 1

et qui s'enroule autour de ce cercle. En deux points homologues
de D et A, le rapport de similitude tend vers un lorsqu'on
s'éloigne indéfiniment dans A.

Considérons, d'autre part, la fonction

e-K
g e6

qui tend rapidement vers zéro lorsqu'on s'éloigne indéfiniment
dans A dans certains domaines et qui croît indéfiniment dans
d'autres puisque

e-*

ee ^(cos l + i sin *) __ eé^ cos l £cos ^ s'n £ sjn sjn

de sorte que, si

e71 sin Ç ± tc + a | a | < ~

| g (Ç) | tend vers zéro comme

e
-cosaeenG (2

7T

tandis que, si

%

e71 sin £ a J a [ < ^

| g (0 I tend vers l'infini comme

gCOSae^d-O(l))
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Désignons par Ç h (z) la fonction inverse de (1) lorsque £

est dans A; c'est une fonction holomorphe dans le domaine

spiralique D ; la fonction

F (z) g (h [z))

se comporte comme g (Ç). Appelons T (a, b) la courbe de D

correspondant à la frontière de la portion §(a, b) de A définie

par
| sin Ç | < 7T + a 0<a<^-j r\ > b > r\ 0

La courbe T (a, b) décompose le cercle | z | < 1 en deux
domaines: un domaine en spirale intérieur à D, soit I (a, ft), et

un domaine complémentaire E (a, b).

La rapidité de la décroissance de (2) montre que l'intégrale

où u décrit T (a, b) dans le sens direct, définit une fonction / (z)

holomorphe dans E (a, b) et une fonction /x (z) holomorphe dans

I (a, b). Lorsque | z | tend vers 1, | / (z) [ et J /x (z) | restent
uniformément bornés si z ne se rapproche pas trop de T (a, b); on
vérifie qu'il suffit que

pour qu'il en soit ainsi.
Laissant a fixe, et faisant croître ô, on prolonge / (z) dans

tout le cercle | z | < 1, soit C. D'autre part, si l'on donne à b

deux valeurs b et b' > b et si l'on prend z entre les courbes
T (a, b) et T (a, &'), l'intégrale (3) est égale à F (z) sur le contour
formé par les parties non communes de F (a, b) et T (a, b'). On
a donc, en supposant que T (a, b) est parcourue dans le sens
direct par rapport aux points de E (a, 6),

Comme on peut aussi faire varier a, on voit que / (z) est bornée
sauf dans les domaines correspondant à

(3)

T(a,b)

e71 sin Ç ± (tc + a) j > s > 0

f(z) F [z) + h [z)

| e71 sin 5 < y » ^ > b ' (4)
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où / (z) est la somme de F (z) et d'une fonction bornée. Et dans
le domaine (4), F (z) croît indéfiniment lorsque | z | tend vers un
de la même façon que g(Ç). D'autre part, la dérivée de / (z) est

bornée dans les mêmes conditions que g' (Ç) puisque — tend

vers un. Comme

g'&) g{Q*~*e-K-i
et que

| ee'lKe~lK\

on voit que | g' (Ç) | tend vers l'infini, dans tout le domaine (4),
/' (z) ne s'annule pas. Le point à l'infini est un point critique
pour la fonction inverse /_, (Z) et il est isolé des points critiques
algébriques.

On ne change pas ces résultats si l'on prend la somme de / (z)
et d'une fonction k(z) dont la dérivée k' (z) est bornée dans C
et admet C comme coupure. La fonction k (z) sera aussi bornée
et d'après un théorème de Fatou et Riesz, k (rete) aura une limite
lorsque r tendra vers 1, presque pour toutes les valeurs de 6 et
l'ensemble de ces valeurs limites formeront un ensemble non
dénombrable.

Considérons les deux fonctions / (z) et (z) + (z). Si l'une
tend vers une limite finie lorsque z décrit un chemin L tendant
vers le cercle C, l'autre n'a pas de limite puisque k (z) n'en a pas.
Est-il possible que / (z) ait une limite pour un chemin L et
f (z) + k (z) pour un chemin L' Ces deux chemins ne se couperont

pas pour | z | assez proche de 1 et limiteront un domaine D'
de forme spiralique s'enroulant autour de C à l'intérieur de C 25).

La fonction f(z)tendvers une limite sur L et est bornée dans
ce domaine D'; f(z) + k(z) tend vers une limite sur L' et est
bornée dans le domaine D'. Représentons conformément D' sur
un cercle | c | < 1. Aux deux chemins L et L' correspondront
deux arcs de ce cercle aboutissant à un même point, 1, par
exemple, correspondant à | z | tendant vers 1. Alors à / (z) et
/ (z) -f k (z) correspondent des fonctions <p (c) et (c) bornées
dans le cercle, tendant vers des limites lorsque tend vers 1. sur
la circonférence d'un côté de ce point pour <p (c), de l'autre pour
ij; (c). D'après un théorème de Lindelöf, elles auront les mêmes
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limites respectivement lorsque v tendra vers 1 sur l'axe réel.
Et c'est impossible puisque la différence de 9 (v) et (v) n'a
pas de limite.

Par suite, soit / (z), soit f (z) k (z), n'a pas de limite
possible autre que l'infini lorsque | z | tend vers un. La fonction
inverse 3> (Z) admet pour singularités uniquement des points
critiques algébriques et le point à l'infini, qui est un point
critique isolé et tel que lorsque Z tend vers ce point d'une façon
quelconque, la valeur z de la fonction n'a aucune limite.

32. Démonstration du théorème de Lindelöf.

Par une transformation conforme du cercle en un demi-plan,
puis du demi-plan en un angle, on est ramené à démontrer la
proposition suivante: Supposons que \P (z) soit holomorphe dans
le secteur

I ar£ 2 < ^ >
I * I < 1

qu elle soit bornée par M dans le secteur, continue sur le côté

arg z — et tende vers zéro lorsque z tend vers zéro sur ce
côté. Dans ces conditions, W (z) tend vers zéro lorsque z tend
vers zéro sur la bissectrice arg z 0.

Prenons en effet z réel positif inférieur à 7} < ~ et considérons

la fonction

T (z + Ç) r (z -f Ç co) Y (z + Ç co2) Y (Z + Ç co3) Y (z + Ç co4) T (z +
in

+ Ç co5) co e
3

Elle est holomorphe dans l'hexagone limité par les droites obtenues

en faisant tourner le côté arg z des angles k -,
k 1, 5 autour du point z, et il s'ensuit que sur les côtés de
cet hexagone, et par suite au centre, son module est au plus égal
à s, maximum de | Y (z)|sur la portion du côté arg z j qui
fait partie de la frontière, multiplié par la borne de | Y I

élevé à la puissance 5. Ceci démontre la proposition.
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II. Singularités des fonctions inverses
DES FONCTIONS MEROMORPHES.

33. Fonctions méromorphes en tout point à distance finie.
Valeurs asymptotiques.

Si Z / (z) est une fonction méromorphe en tout point à

distance finie, mais qui ne se réduit pas à une fraction rationnelle,

on peut construire un polynôme ou une fonction entière

g (z) admettant pour zéros les pôles de f(z) avec les mêmes ordres
de multiplicité. Le produit / (z) g (z) est alors une fonction

entière, soit h {z) de sorte que / (z) — |-||| ; l'une au moins des

deux fonctions h (z), g (z) qui sont sans zéros communs ne se

réduit pas à un polynôme.
Considérons une courbe simple continue T dans le plan

des z qui s'éloigne indéfiniment: une telle courbe est définie par
une fonction z (t) de la variable réelle f, définie pour t > 0 par
exemple, telle que z (t) ^ z (t') si t ^ t' et telle que, si grand
que soit A, il existe un nombre tA pour lequel 12 (t) | > A si t > tA.
L'ensemble des valeurs Z f (z (t)) pour t > B est un ensemble

continu, si nous ajoutons à cet ensemble ses points limites nous
obtenons un ensemble E (T, B) et lorsque B tend vers l'infini,
l'ensemble limite de E (T, B) est un ensemble, qui est l'ensemble
commun aux E (T, B); c'est un ensemble fermé E (T) qui peut
être une courbe, un point, tout le plan. Nous l'appellerons
l'ensemble d'indétermination de f (z) au point à Vinfini de T. Si cet
ensemble se réduit à un point to, nous dirons que to est une
valeur asymptotique de / (z) et que la courbe F est un chemin de

détermination ou chemin de détermination to. Par exemple pour
ez, z x + iy, la courbe y — 0, x > 0 est chemin de
détermination infinie; y — 0, x < 0 est chemin de détermination 0;
0 et 00 sont des valeurs asymptotiques. Mais pour x 0, y > 0

l'ensemble d'indétermination à l'infini est la circonférence
1 Z I 1 ; pour x sin ky, y > 0, k irrationnel, on obtient lalicouronne — < Z I < e: et on voit comment on aura- des

e 1 1 '

chemins F d'indétermination complète pour lesquelles l'ensemble
E (F) sera le plan complet.
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Si où est valeur asymptotique pour Z / (2), il existe non
seulement un chemin T de détermination co, mais, à cause de la
continuité, tout un ensemble de chemins de même détermination

où qui sont contigus à T. Deux chemins T, Tr de même
détermination où sont contigus dans les deux cas suivants:
1° T et F ont des points d'intersection aussi éloignés que l'on
veut; 2° T et T' sont sans points communs à partir d'un point P

qu'on peut considérer comme leur origine commune, ils
déterminent alors deux domaines A et A' ; dans l'un de ces domaines,
soit A, existe une suite de courbes yn qui s'éloignent indéfiniment
lorsque n croît indéfiniment, telles que chaque yn joint un point
de T à un point de V et que les valeurs de f (z) sur yn tendent
uniformément vers où lorsque n -> 00.

Une fonction méromorphe peut n'avoir aucune valeur
asymptotique, c'est évidemment le cas pour les fonctions
elliptiques. Mais toute fonction entière admet 00 comme valeur asymptotique.

C'est un cas particulier du théorème d'Iversen qui sera
donné au n° 35.

Pour toute fonction entière de la classe W, il n'y a qu'une valeur
asymptotique et tous les chemins de détermination sont contigus.

Sire a montré {Bull. Soc. math., 1913) qu'une fonction entière
d'ordre infini peut avoir une infinité non dénombrable de valeurs
asymptotiques, Gross a construit un exemple de fonction entière
dans lequel tout nombre complexe est valeur asymptotique
{Math. Ann., t. 79, 1918). Mais après avoir étudié certains cas
particuliers, Denjoy a énoncé en 1907 la proposition suivante
comme étant probable: une fonction entière d'ordre fini p a
au plus 2p valeurs asymptotiques finies correspondant à des
chemins non contigus. Carleman démontra en 1921 un résultat
un peu moins précis; en 1930, Ahlfors démontra complètement
le théorème de Denjoy; une démonstration différente fut donnée
par Carleman en 1933 {Comptes rendus, t. 196).

Nous nous bornerons ici à démontrer la proposition élémentaire

suivante:
Toute fonction méromorphe qui est le quotient de deux fonctions

entières dont le module maximum vérifie la condition

lim lpg M (r>
< oQ

r= » (log r)2



240 G. VALIRON

possède au plus une valeur asymptotique et n'en a pas en

général 26).

On a, en effet,
h (z)Hz]-

avec

h(z) yibnzn ,(5)0 0

et si cn désigne le plus grand des deux nombres | bn | et | an |, la

fonction

9W 2c»sn
0

vérifie aussi la condition (5), par suite

iEL~l0gc" - o
n=oo n2

On est dans le cas des fonctions à croissance lente du n° 16, on

a pour les rapports rectifiés Rn la condition

05 >in= oo tin

Si l'on prend m tel que Rw+1 > Rm&2, k > 1, kRm < r < &2Rm,

on obtient 1

Ifen?®'
On considère la fonction / (z) dans les couronnes

k Rm < Iz I < Rm '

en posant z RmÇ, on a à étudier la suite de fonctions (Rm

dans la couronne, k < \ Ç j <Pour chaque m l'un des

nombres | bm|,| am|est égal à cmonpeut extraire de la suite

des m une suite S pour laquelle on a constamment, par exemple
| am| cm. On a dans la couronne envisagée

h(Rm Ç) cmV RJHfU), g (Rm q cm r R£ G K, m)



SINGULARITÉS DES FONCTIONS INVERSES

et les fonctions H (Ç, m) et G (Ç, m) sont bornées dans leur

ensemble dans la couronne k < | Ç | < A2; on peut extraire de

la suite S une autre suite pour laquelle H |Ç, m) et G (Ç, m)

tendront respectivement, uniformément vers des fonctions

limites holomorphes H (Ç) et G (Ç) (théorème de Montel). En

outre, comme pour I z I r, on a M (r, g) > cm rm, la fonction
H (£)

G (Q n'est pas identiquement nulle. La fonction est une

fonction méromorphe ou une constante finie. Ainsi, pour une

suite S' de valeurs de m, / (Rm Q converge uniformément dans

la couronne vers une fonction méromorphe (qui peut être une

constante finie). Supposons que / (z) admette une valeur asymp-

totique co. Pour chaque m de la suite Sr existera une courbe Tm

traversant la couronne k< | Ç | < k2etsur rm, / (Ç Rm) tendra

vers co. Il s'ensuit que ^
Ü co et que co est fini. Dans les

couronnes
kRm<\z\< k» R.m

de la suite Sr, la fonction / (z) tend vers co uniformément, co est

la seule valeur asymptotique possible et tous les chemins de

détermination co sont contigus.
Cette proposition, qui s'étend aux fonctions algébroïdes,

fonctions u (z) définies par

A0 (z) uv + Ax (z) uv~[ + • • • + Av (z) 0

où les A3- (z) sont des fonctions entières 27), a été étendue par
Y. Tumura 28). Mais il existe des fonctions méromorphes,
quotients de fonctions entières pour lesquelles

log M (r) < ^ (r) (log r)2

où 4* (0 est indéfiniment croissante, mais croissant moins vite
qu'une fonction croissante donnée arbitrairement, qui ont autant
de valeurs asymptotiques que l'on veut29).

34. Singularités des fonctions inverses des fonctions
méromorphes.

Hurwitz et Denjoy, en 1907, dans le cas des fonctions entières
et Iversen (thèse, Helsingfors, 1914) dans le cas général des
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fonctions méromorphes sauf à l'infini, ont montré que les

singularités de la fonction inverse qui ne sont pas des points
critiques algébriques sont les valeurs asymptotiques de la
fonction. Si Z / (z) est la fonction méromorphe donnée, sa
fonction inverse z — ® (Z) est définie par l'ensemble de ses

éléments. Si z0 est un point en lequel f (z0) 0, la fonction / (z)
est holomorphe et univalente pour | % — z01 < r si Z0 / (z0) ^ qo

ce qui définit autour de Z0 un élément de la fonction inverse
holomorphe dans un cercle \Z — Z01 < R. Si Z0 oo, on
définit un élément holomorphe au point à l'infini du plan Z.
On peut passer de l'un de ces éléments de ® (Z) à un autre par
prolongement analytique: il suffit de joindre le point z0 fournissant

l'élément <D (Z, Z0, z0) au point z1 du plan % fournissant
® (Z, Zl5 zx), par une ligne polygonale ne passant par aucun
des zéros de /' (z) pour obtenir ce prolongement. On définit en
même temps des éléments circulaires de la surface de Riemann
sur laquelle ® (Z) sera uniforme. Si au point z0, Z0 est fini, mais

/' (2o) 0, on a pour \ z — z0 | < r,

Z «= f (z) Z0 + cp (z — z0)p + • • • p > 1

ce qu'on peut écrire, en posant Z — Z0 up,

p 1
U VCp (Z — zo)[l + T (z—zo)]P 1

la série entière (z — z0) définissant une fonction holomorphe
et nulle pour z — z0. La racine d'ordre p définit p fonctions
holomorphes qui se déduisent de l'une d'elles par multiplication
par les racines de l'unité. On peut faire l'inversion dans (6), on
obtient

s — *0 + 0 M)
V~P

et, en remplaçant u par la racine d'ordre p de Z — Z0 on obtient
une fonction à p branches, régulières en chaque point dans un
domaine 0 < | Z — Z01 < r, qui se permutent entre elles par
rotation autour de Z0. Le point Z0 est un point critique algé-



SINGULARITÉS DES FONCTIONS INVERSES 243

brique de <ï> (Z), la fonction est bien définie en ce point et autour
de ce point par

î

Z 2o + (z Zo)p
^ + @ ((z _ Zo)p

On a un élément algébrique de 0 (Z) autour de Z0, défini dans

un certain cercle de centre Z0. On incorpore le point Z0 à la
surface de Riemann décrite par Z (z). Si Z0 co, on opère

sur 7^ et l'on obtient un élément algébrique lorsque la racine est
Z

multiple

z Zq + Y
[l + ® (z p

(sz) v

Autour d'un point critique algébrique, l'élément de la surface
de Riemann est composé de p feuillets circulaires ayant pour
centre ce point et qui se raccordent le long de rayons superposés.
Le passage d'un élément holomorphe ou algébrique à un autre
se fait encore en considérant dans le plan des z une ligne joignant
les deux points correspondant aux deux centres, donc au moyen
d'un nombre fini d'éléments intermédiaires tels que chacun d'eux
est un prolongement du précédent. Nous appellerons <D (Z, Z0, zQ)

un élément holomorphe ou algébrique, la notation désignant à

la fois la série qui définit l'élément et le cercle de convergence
de cette série.

Supposons que le point Z décrive la surface de Riemann, ce

qui revient à dire que l'on fait le prolongement analytique à

partir d'un élément ® (Z, Z0, z0). Utilisons uniquement les
éléments holomorphes. Si l'on fait décrire à Z' une ligne y tracée
sur la surface et si l'on considère les éléments ® (Z, Z', z!),
lorsque y aboutit à un point non critique Zx, le rayon de
® (Z, Z', z') tend vers le rayon ® (Z, Zl5 zx) de l'un des éléments
de centre Zv Si Z1 est point critique algébrique, dès que Z' sera
assez voisin de Zx% le point Zx sera un point singulier de l'élément
0 (Z, Z', z'), le rayon de cet élément tendra vers zéro 30). Les
autres points singuliers de la surface sont des points qui ne lui
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appartiennent pas mais dont on peut approcher d'aussi près que

Von veut en restant sur la surface, donc par prolongement analytique.

Lorsqu'on fait le prolongement, on doit pouvoir trouver
une courbe y de la surface qui s'approche autant que l'on veut
du point en question c'est-à-dire qui reste dans un cercle

de centre Q et de rayon aussi petit que l'on veut à partir d'un de

ses points, et telle que le prolongement est possible le long de y,
le rayon des éléments O (Z, Z', z') dont les centres Z' sont sur y
tendant vers zéro lorsque | Z' — Cl | tend vers zéro 31). Lorsqu'il
existera un élément algébrique ® (Z, Cl, zk), Cl f (zk), tel que
O (Z, Z', z') coïncide à partir d'une valeur de Z' avec ® (Z, Cl, zk)

dans la partie commune des cercles de convergence, le point H

sera simplement un point critique algébrique, sinon ce sera

vraiment un point singulier sur un feuillet ou plusieurs feuillets
de la surface de Riemann et de la fonction inverse <P (Z).

Nous allons préciser un peu la façon dont se comportent les

éléments ® (Z, Z', z'). Il est possible que certains de ces

éléments contiennent le point Cl, c'est-à-dire que, pour certains Z',

avec Z! — Cl tendant vers zéro, ® (Z, Z', z') prenne la valeur Cl ;

donc que cet élément et un ® (Z, Cl, zk) coïncident dans la portion

commune de leurs cercles de convergence, mais il n'est pas

possible que cela ait lieu pour tous les Z' de y suffisamment proches

de Cl. Car si 0 (Z, Z', z') contenait Cl pour tous les Z' de y à

partir de l'un d'eux, Z' variant continûment, ® (Z, Z', z') aurait

une portion commune avec un même élément ® (Z, Cl, zk), de

rayon R (zk)et dès que | Z' — Q | serait inférieur à ^ R (zk), le

rayon de l'élément O (Z, Z', z') serait au moins - R (zj, il ne

tendrait pas vers zéro.

Inversement, s'ilexiste une courbe y tendant vers Q le long
de laquelle le prolongement est possible et s'il existe des Z' sur cette

courbe aussi proches que Von veut pour lesquels O (Z, Z', z') ne

contient pas Q, Q estpoint singulier. Car les rayons des éléments

ne contenant pas O tendent vers zéro. Si un élément <ï> (Z, Z", z")
contient Q et si à partir de ce point Z" de y, | Z' — £1 [ < e,

le rayon de cet élément est au plus 3s, sinon tous les points de y
à partir de Z" appartiendraient à O (Z, Z", z"), et puisque
| i' — z" | < 2s, tous les <D (Z, Z', z') contiendraient Q.
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On a utilisé seulement les éléments holomorphes, donc on a

supposé que la courbe y ne passe pas par les points critiques

algébriques. Si l'on prend une courbe passant par ces points, on peut

la déformer d'aussi peu que l'on veut au voisinage de chacun de

ces points sans qu'elle cesse d'être sur la surface. Il s'ensuit

qu'on peut utiliser tous les éléments aussi bien algébriques

qu'holomorphes dans la définition des points singuliers.

Ces explications données, on va montrer que lorsque le point Z

tend vers un point singulier (non algébrique) de la surface de

Riemann, z <t> (Z) tend vers V inque les singularités

de la surface correspondent nécessairement aux valeurs

asymptotiques deZ f (z).

Dans un cercle | zj < M, l'équation / (z) Q a un nombre

fini de racines (si Q est infini, il s'agit des pôles), on peut isoler

ces racines zhpar des petits cercles de centres extérieurs les

uns aux autres et de rayons assez petits pour que, lorsque z est

dans le cercle de centre zh, Z f (z) appartienne à l'élément

$ (Z, Q, zk).Onpeut d'ailleurs supposer que M a été choisi de

façon qu'il n'y ait pas de points zk sur la circonférence | z | M

et enfin que les petits cercles ne coupent pas cette circonférence.

La fonction 77-^—pr est holomorphe dans | z | < M à l'extérieur
/ (^)

des petits cercles et sur leurs circonférences, son module a un

maximum —. Dans ces conditions, si | Z Q | <c e, le point

Z O (Z) est ou bien extérieur au cercle \ z \ < M ou bien

intérieur à l'un des petits cercles. Or lorsque Z tend vers

le point singulier Q, il ne peut pas appartenir à un même

élément <D (Z, 0, zh),donc| z | > M, ce qui démontre la proposition.

Inversement, si w est valeur asymptotique de Z f (z),

c'est une singularité (non algébrique évidemment) de la fonction

inverse. Car lorsque z! décrit le chemin T de détermination co,

Z' / (z') décrit une courbe y qui se rapproche indéfiniment

du point w et le rayon de l'élément O (Z, Z', z') tend vers zéro.

Sinon on aurait pour un élément <I> (Z, Z", z") un rayon supérieur

à 3s, et à partir de cette valeur Z", on aurait | Z' w | < s,

les Z' appartiendraient à l'élément <ï> (Z, Z", z"), ce qui est

impossible puisque z' <D (Z', Z", z") serait alors borné.

L'Enseignement mathém., t. IV, fasc. 4. 17
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En définitive:

Les singularités (autres que les singularités algébriques) de la

surface de Riemann décrite par les valeurs d'une fonction méro-

morphe f (z) dans tout le plan à distance finie correspondent aux
valeurs asymptotiques de cette fonction. A deux chemins T, V de

détermination co qui sont contigus correspondent des courbes y et y'
aboutissant à cù et telles que Von peut les joindre par des courbes

de la surface de Riemann qui sont aussi voisines que Von veut de g),

ces chemins y, y' 'doivent être considérés comme aboutissant à une

seule singularité cù.

Les surfaces de Riemann correspondant aux fonctions entières

de la classe W ont donc une seule singularité qui est à l'infini.

35. Théorèmes de Lindelöf et diversen.

Lindelöf a étendu le théorème de Cauchy sur le maximum du

module. Nous nous bornerons à l'énoncé suivant:

Théorème de Lindelöf. — Soit un domaine borné D de fron¬

tière F et une fonction f (z) holomorphe dans D et continue sur
D + F sauf en un point 0 de F. Si \ î (z) \ < M sur F sauf

en 0 et si | f (z) | < K dans D au voisinage de 0, on a dans

tout D
I / M 1 < M

Gomme D est borné, on peut par transformation homogra-

phique se ramener au cas où 0 est l'origine et où D est dans le

cercle | z | < 1. Dans ces conditions, si s > 0, la fonction zz f (2)

n'est pas sûrement holomorphe dans D, mais seulement analytique,

mais le théorème de Cauchy s'applique encore à son

module qui est uniforme. Sur F, 0 excepté, on a | zz f (z) | < M.

Soit z0 un point de D ; prenons r assez petit pour que, pour \ z \ <r
on ait I f (z) | < K et par suite | zz f (z) | < Kre; on pourra
prendre r assez petit pour que Kr£ < M et r < | z0 |. Appliquons

le théorème, de Cauchy à zz f (z) dans le domaine formé

par la portion de D contenant z0 et extérieure à | z | < r. Comme

sur la frontière constituée par des points de F et de | z | r, le

module est au plus M, on aura aussi au point z0

k/w|<M.
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Donc | f (z0) | < Me"£loglZo1 et puisque s > 0 est arbitraire

I / (z0) I < M •

Il est clair que le théorème s'applique à un domaine D

quelconque mais tel qu'il y ait des points extérieurs permettant
de se ramener au cas de l'énoncé.

De ce théorème, on déduit le suivant qui servira de lemme

pour la démonstration du théorème d'Iversen 32) :

Théorème II. — Si let fonction f (z) est holomorphe dans un

domaine borné D et continue sur D et sur la frontière F sauf

en un point 0 de F ; si sur F, 0 excepté, | f (z) | M tandis

que \ î{z)\ < M dans D, on a deux alternatives: 1° f (z)

s'annule en un point au moins de D; 2° il existe dans D une

courbe continue aboutissant à 0 sur laquelle f (z) tend vers zéro

lorsque z tend vers 0.
1

Supposons que f {z) ne s'annule pas dans D. Alors j^ est

holomorphe dans D ; et sur F, 0 excepté

n'est pas bornée au voisinage de 0, sinon, c

Lindelöf, on aurait dans D,

1

/ (Z) M ; d0nC
/ (z)

.'après le théorème de

en contradiction avec
/ (z) M

l'hypothèse I / (z) | < M. Il existe donc un domaine Dx intérieur
1 2

à D et admettant 0 comme point frontière dans lequel
I / (*) I > M

'

Dans D-l on a | / (z) | < y ; sur sa frontière, 0 excepté, | f (z) \

M

et f (z) ne s'annule pas dans Dx. On peut recommencer le

raisonnement indéfiniment. On peut joindre un point de F à un point
Zj_ de la frontière de B1 (autre que 0) par un chemin intérieur à

D, puis z1 à un point z2 en lequel | / (z2) | ^ par un chemin

appartenant à D2, et ainsi de suite, ce qui définit une courbe y
de D sur laquelle \ f (z) \ tend vers zéro, y est composée d'arcs
successifs y0, yx, y2, yn, l'arc yn appartenant à Dn. Les

arcs yn n'ont pas de points limites intérieurs à D puisqu'en un
tel point on aurait / (z) 0, leur seul point d'accumulation est 0.

Théorème d'Iversen. — Soit S la surface de Riemann décrite

par les valeurs d'une fonction méromorphe, c'est-à-dire une
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surface simplement connexe du type parabolique. Soit Z0 un

point du plan et Z-^ un point de la surface 2, | Zq Z-^ | p.

Il est possible de joindre Zx à Z0 par une courbe intérieure au

cercle j Z — Z01 < p qui appartient à la surface sauf peut-être

son extrémité Z0.

Considérons, en effet, dans le plan z le domaine D défini par
| / (z) — Z0 | < p qui contient le point % O (Zx) sur sa fron-

I tière F. Si le domaine D contient un point z0 en lequel / {z0) Z0

| la proposition est établie. Dans le cas contraire, D n'est pas

1 borné (sinon dans D borné jtv~—w holomorphe n'atteindrait
j t \z)

^

j pas son maximum sur le contour). Mais on peut le ramener à un
I domaine borné par transformation homographique et appliquer

le théorème II ; il s'ensuit que dans D on a un chemin joignant zl
au point à l'infini sur lequel / (z) tend vers Z0. Le cas où le

chemin considéré dans l'énoncé n'a pas son extrémité dans 2
| est celui où Z0 est valeur asymptotique.

Du théorème d'Iversen on déduit que si est un point de 2
| et L une courbe simple issue de Zx, on peut tracer un chemin qui
| joint Zx au voisinage d'un point de L en restant dans le voisinage

de L. Il suffit d'appliquer le théorème de proche en proche à des

j petits cercles centrés sur L et suffisamment rapprochés.
Comme corollaire, on voit que si valeur Q n'est pas prise

par une fonction méromorphe, cette valeur est valeur asymptotique.

En particulier, pour toute fonction l'infini est valeur

asymptotique.

36. Théorème de Gross.

Si l'on considère un élément O (Z, Z0, z0), Z0 ^ oo holomorphe de

la fonction inverse z O (Z) d'une fonction on

peut prolonger cet élément jusqu'à l'infini sur les rayons

arg (Z — Z0) <p const, sauf au plus pour des <p apparte-

nant à un ensemble de mesure nulle.

Pour l'établir, on peut se borner à considérer les rayons
| arg çz — Z0) <p dans un cercle | Z — Z01 < R. Car si l'on

peut atteindre la circonférence de ce cercle sauf pour un ensemble

de mesure nulle de valeurs 9, il suffira de donner à R les valeurs
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1, 2, n, et comme une suite d'ensembles de mesures nulles

est de mesure nulle, le théorème sera démontré.

D'autre part, l'ensemble E1 des valeurs de 9 pour lesquelles

le rayon passe par un point critique algébrique Zk — f (zk),

f (zk) 0 est dénombrable, ce sont les rayons passant par un

point critique transcendant qui sont seuls à considérer.

Nous faisons donc le prolongement radial de l'élément
® (Z, Z0, Zq) dans le cercle | Z — Z0 | < R, R étant supérieur au

rayon R0 du cercle d'holomorphie de cet élément, et nous

supposons que dans ce prolongement nous rencontrons des

points critiques transcendants. Nous définissons un domaine O

qui contient le cercle | Z — Z01 < R0 et dans lequel 2 ® (Z)
est holomorphe. A ce domaine correspond dans le plan des 2

un domaine co contenant le cercle \ z — z0 | < r0 dans lequel
Z f (z) est univalente et holomorphe et qui n'est pas borné

puisqu'il contient des chemins de détermination. Si l'on coupe
ce domaine par une circonférence \ z — z0 \ r, on obtient sur
cette circonférence des arcs Ar de longueur totale s (r). A ces

arcs correspondent des arcs de courbes du plan des Z qui
coupent les rayons | Z — Z01 9 passant par les points
critiques transcendants puisque, à ces rayons correspondent des

chemins de détermination finie allant à l'infini et intérieurs à 00.

Si l'on considère les valeurs de 9 correspondant à ces arcs, elles

forment des intervalles dont la longueur est au moins égale au
1 •

produit de s (r) par d étant la plus courte distance de ces

arcs à l'origine Z0. Cette plus courte distance d est supérieure à

la plus courte distance de la courbe transformée de | z — z0\ r0,
donc à un nombre fixe d0. Les intervalles contenant l'ensemble
E — Ex des 9 pour lesquels le prolongement est impossible ont

S (t*)
donc une longueur au plus égale à Or on a

CLq

s M J 1 Y M I dt — J t f (z) I rd 9 * rélv

donc d'après la formule de Schwarz

s (r)2 < J I f (z) |2 rd 9 • 2 7x r
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et comme A (r) étant l'aire de Q correspondant à la portion de co

limitée par | z — z0\ r, on a

r 2ru

A (r) t= J J | f (z) |2 rdrd 9
0 0

l'inégalité s'écrit

On a donc
00

J sJ/Çdr^2 n[A (r) — A. (r0)] < 2 7r2 R2

r0

Ceci montre que s (r) a pour limite inférieure pour r infini la
valeur 0 puisque, dans le cas contraire le premier membre de

cette inégalité serait infini. On a donc des r pour lesquels s (r) < z

ce qui montre que les points de E — Ex appartiennent à des

intervalles dont la somme des longueurs est aussi petite que l'on
veut. E — Ex est de mesure nulle et le théorèmees t démontré.

37. Classification iïlversen.

Si oo est une singularité transcendante de la fonction inverse

z <D (Z), c' est-à-dire aussi de la surface de Riemann, il existe

un chemin yw le long duquel un élément <ï> (Z, Z', z') prolongé
le long de yw tend vers oo, ce chemin yw tendant vers oj. Suppo-

sons « fini, sinon on considérerait $ comme fonction de
^

•

A partir d'un point Z" de yM, ce chemin reste dans le cercle

CR, | Z - co | < R; si Z' est un point de cette portion on peut
prolonger O (Z, Z', z') à partir de cet élément en restant dans

CR. Si, en opérant ainsi à partir de yM, on peut choisir R assez

petit pour qu'on ne rencontre pas d'autres singularités transcendantes

que co, on dit que co estune singularité transcendante isolée.

Le prolongement effectué dans CR définit un morceau 2® de la

surface de Riemann auquel la fonction z <E> (Z) fait
correspondre un domaine D® du plan des z; c'est un domaine illimité
qui contient des chemins de détermination co et qui ne contient

pas d'autres chemins de détermination; en faisant décroître R,

on voit que tous ces chemins de détermination co sont contigus.
Iversen a donné dans sa Thèse (1914) une classification des



SINGULARITÉS DES FONCTIONS INVERSES

singularités transcendantes isolées qui complète et précise un

essai antérieur de Boutroux.
Si l'on peut choisir R assez petit pour que Z ne prenne pas

la valeur co dans CR, c'est-à-dire si co n'appartient pas à ou

encore si / (z) ne prend pas la valeur co dans D*, le point co est

appelé point transcendant directement critique. En outre, si l'on

peut choisir R assez petit pour que > (Z) n'admette pas de

singularités algébriques dans CR, co est dit de première espèce; dans

le cas contraire, co est point limite de points critiques algébriques,

il est dit de seconde espèce.

Si co n'est pas directement critique, il existe des éléments

3> (Z, Z', z'), avec | Z' — co | < s, qui contiennent co, autrement

dit D* contient des racines de f (z) — co si petit que soit R. Si

sur tout rayon arg (Z' — co) const., O (Z, Z', z') où O (Z, Z', z')

peut être un élément algébrique, tend vers une valeur finie, ou

si l'on préfère si la valeur de ® (Z) finit par coïncider avec un
élément O (Z, 0, zk) lorsque Z tend vers co sur un rayon de CR,

le point co est dit point transcendant indirectement critique.

Un point critique transcendant (qui est isolé) n'appartenant
pas à l'une ou l'autre de ces deux catégories est dit point directement

et indirectement critique.
Ahlfors a montré que le nombre des chemins d'indétermination

finie non contigus des fonctions entières d'ordre p est au

plus égal à 2p, il s'ensuit que le nombre de singularités à l'infini,

pour p > — est aussi au plus égal à 2p, ainsi que le nombre des

singularités transcendantes à distance finie. Nous admettrons ces

résultats qui rentrent dans un énoncé plus général dû à Ahlfors33).

Si Z / (z) est une fonction entière d'ordre fini, toutes les

singularités transcendantes de la fonction inverse sont isolées;
la classification d'Iversen s'applique. Si co est singularité
transcendante à distance finie, le domaine D* qui est illimité est borné

par un nombre fini de courbes. Car si D* est ce domaine et si sa

frontière sur laquelle | / (z) — co | — R comporte une courbe
illimitée F, cette courbe T est aussi frontière d'un domaine non
borné dans lequel | / (z) — co | < R. D'après le théorème du
n° 35, ce domaine contient un chemin de détermination infinie.
A chaque frontière T correspond un chemin de détermination
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infinie et les chemins ainsi obtenus pour deux frontières ne sont
pas contigus; il n'y en a qu'un nombre fini. Alors, en diminuant
R on voit que l'on aura une seule courbe frontière. Par suite

Si f (z) est jonction entière d'ordre fini et si co est une valeur
asymptotique finie, le domaine | f (z) — co | > z contenant les

chemins de détermination co est limité par une seule courbe dès

que z est assez petit.
On voit de même que si co est fini et directement critique et

si co' est une singularité algébrique appartenant à CR, les courbes
| j (z) — co | | co' — co | décomposent D* en au moins deux
domaines d'indétermination finie; on pourra, d'après ce qui
précède, prendre R assez petit pour que cette circonstance soit
impossible. Donc

Pour une jonction entière d'ordre fini, les points directement
critiques à distance finie de la jonction inverse sont tous de première
espèce.

Mais les singularités transcendantes à l'infini, qui sont
directement critiques puisque f (z) ne prend pas la valeur infinie,
peuvent être de seconde espèce. On a vu (n° 29) que la singularité
à l'infini des fonctions inverses des fonctions de la classe W est
de seconde espèce.

38. Remarques sur la décomposition en feuillets de la surface
de Riemann. Feuillets singuliers et division impropre.

L'idée la plus simple pour décomposer en feuillets la surface
de Riemann décrite par les valeurs Z d'une fonction / {z) que
nous supposerons entière et d'ordre fini est d'utiliser les étoiles
d'holomorphie de la fonction inverse z Q (Z). On considère
les éléments O (Z, 0, zk), j (zk) 0 et on les prolonge radiale-
ment après avoir coupé le long d'une demi-droite arg Z const.,
si l'élément est algébrique. On obtient ainsi des feuillets (qui
pour toute fonction inverse de fonction méromorphe sont
illimités d'après le théorème de Gross) qui dans le cas actuel sont
des domaines dont les frontières sont des demi-droites,
arg Z const., formant sur chaque feuillet un ensemble
dénombrable. A ceÉ feuillets correspondent dans le plan des z

des domaines limités par des courbes d'argument constant. Si

ces domaines, leurs frontières et les points limites de ces fron-
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tières couvrent le plan des 2 en entier à distance finie, on a fait
à la fois la division du plan des z en domaines d'univalence et la

division de la surface de Riemann en feuillets dont le raccordement

est donné par la considération du plan des z. Dans le cas

contraire, l'origine est point critique transcendant; s'il y a à

l'origine un point directement critique, il est de première espèce

et l'on a une infinité de feuillets aboutissant à l'origine; s'il y a

un point directement et indirectement critique il peut exister
des feuillets incomplets aboutissant à l'origine, dont l'angle
d'ouverture est moindre que 2tu.

On peut éviter les feuillets de cette dernière espèce en changeant

Z en Z -f k de façon à n'avoir plus de singularité
transcendante à l'origine. Toute la surface de Riemann est alors

fournie par les feuillets obtenus en prolongeant les éléments
<D (Z, 0, zh). Mais il pourra arriver que sur certains feuillets la
frontière ne soit pas entièrement accessible par suite de la
présence d'un point critique transcendant qui, d'après les propositions

du n° 37, ne peut pas être directement critique puisqu'il
serait isolé des singularités algébriques, et qui n'est pas
indirectement critique puisqu'on ne pourrait pas l'atteindre par
prolongement radial, c'est donc un point directement et
indirectement critique. Le domaine correspondant du plan des z

sera un domaine complet singulier d'univalence; dans ce domaine
et sur sa frontière à distance finie, f (z) prend des valeurs dont
l'ensemble complémentaire contient une ligne.

La jonction des feuillets, c'est-à-dire des domaines d'uni-
valence, peut aussi présenter des anomalies. Il peut se faire que
pour passer d'un feuillet à un autre il soit nécessaire de passer
sur une infinité d'autres feuillets. On aura une division impropre
du plan z en domaines d'univalence.

La fonction

où h est une constante présente des circonstances de ce genre.
Dans le cas h 0, déjà étudié par Iversen, la division en feuillets
par les lignes arg Z const., fournit un feuillet incomplet; pour
h — 1, il existe un feuillet singulier34); pour h 1, on obtient
une division impropre.
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L'étude de la division du plan des z en domaines complets
d'univalence pour une fonction méromorphe générale Z f (z)

a été l'objet de travaux de ShimizuC5) et de Marty. Elle demande
de nouveaux efforts.

39. Remarque sur les surfaces du type hyperbolique.

Si l'on considère une fonction Z f (z) méromorphe pour
| z | < 1 et admettant la circonférence | z | 1 comme coupure,
sa fonction inverse est uniforme sur une surface du type
hyperbolique dont l'étude des singularités est peu avancée. Les

valeurs asymptotiques sont ici les valeurs limites sur des
chemins tendant vers la circonférence C, | z | — 1. Les considérations

du n° 34 s'étendent, les singularités de la fonction inverse
autres que les singularités algébriques sont fournies par les

valeurs asymptotiques. Le théorème d'Iversen n'est plus valable
en général non plus que le théorème de Gross dont la démonstration

tombe évidemment en défaut.
La fonction spéciale étudiée au n° 31 rentre dans la classe

générale des fonctions holomorphes et non bornées pour | z | > 1

telles que chaque F (z) est bornée sur un chemin simple L L (F),
z z(t; F), t > 0 avec lim | z (*, F) | 1, tout point de

t= 00

| z | 1 étant point limite des valeurs z (£, F). Le théorème
d'Iversen s'étend à ces fonctions. Lorsqu'on suppose que sur
L (F) l'une des limites d'indétermination de z (t) pour t infini est

infinie, on a

ïîïn log*M ^ r>
> 1

logT=~r

la croissance est très rapide.

III. Caractéristique de Nevanlinna
et propriété de N (r, Z).

40. Fonction T (r, f) de Nevanlinna.

On a vu (n° 18) que, si f (z) est méromorphe pour | z | < r,
si / (0) t2— 0, go et si n (x) désigne le nombre des zéros et p (x)
le nombre des pôles pour | z | < x, on a
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2k

çn{x)_dx_ t'pWdx= J_flog|d9-log|/(0) |

J x ' X 2 7V J
0 Ö 0

Si / (0) est nul ou infini, on peut appliquer la formule à si

est l'ordre du zéro à l'origine, à f (z) zq si l'on a un pôle d'ordre q,

de sorte que, en désignant par cq la limite pour z 0 de f (z)jzq

ou de f {z) zq, on a

r 2k
[x)— n (0) dx _ P p (r)— p(0)dx±lo

1
log

I
(rei<P) I _ i0g

a; ./ # - Z 7U ' 1

On a q n(0)et le signe + si l'origine est zéro, et

le signe — si l'origine est pôle. Par suite, si l'on désigne d'une

façon générale par n x,'Z) le nombre des zéros de f (z) — Z

pour | z | < x,et si l'on pose

N (r, Z) f n (xt Z) — n (0, Z) dx + n (0, Z) log r

on a
2k

N (r, 0) — N (r, °o) — — f log | f (re1?) | d<p — log | cq (1)

Dans l'intégrale, on peut séparer les parties où log | f (relcp) |

est positif de celles où cette quantité est négative. Si l'on désigne

par u+ le nombre égal à u si u est réel positif et 0 si u < 0, on a

2tt 2k
1

f(re^)~ flog I f (reitp) I d<f~2'-flog+1| d<p —0.0 0

Si l'on désigne d'une façon générale par m (r, a) l'intégrale

2tc / 2K

d 9

2tc / 2k

{r' a) k f l0g+ | | dCf'\m (r' log+17 {rei*] ^
la formule (1) s'écrit

N (/*, 0) — N (r, oo) m (r, oc) — m (r, 0) — log I c
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OU

N (r, oo + m (r, oo) N (r, 0) + m(r, 0) + log | cq |

Le premier membre est la caractéristique T (r) ou T (r, /) de
Nevanlinna.

41. Théorèmes de H. Cartan. Propriété de T (r).
0 étant réel, appliquons la formule de Jensen (1) à / (z) — eiQ.

Nous aurons

2~ Jlog I / (reiv) — ei9 \df — log | / (0) — | N (r, — N (r, 0)
Ô

(2)

Multiplions les deux membres par et intégrons de 0 à 2tc.

Nous aurons, d'après la formule de Jensen appliquée à la fonction

u— / (0), | u|1,

2 7T

_1
2

Ö

~ f log I / (0) — eieI delog+ I (0) I

TU J

car, si | / (0) | > 1, u — f(0)ne s'annule pas dans le cercle
| « | < 1, et si | f(0)| < 1, il y a un zéro, qui est / (0), le second

|membre est alors log j / (0) | + log ^ 0.

D'autre part,

2TU 2TT 2tc 2tc

J d6éïf l0gI f(rei9)—eieldç=~|Ç log | / |

0 0 0 0

2tt

2^ f lo^+ I f (^ÎCP) I d<P m <r' 00 *

dd

On déduit donc de (2)
2tt

4

T (r, f) m(r, oo + N (r,co 2- f N (r, et6) d 6 + log+ | / (0) |

"
0 (3)

Ceci suppose J / (0) | ^ oo. Si l'origine est pôle, on aura à mettre
log+ | cq|au lieu de log+ | / (0) j,



CARACTÉRISTIQUE DE NEVANLINNA 257

Comme N (r, eie) est une fonction convexe non décroissante

de log r, la formule (3) de Cartan montre qu'il en est de même

de T (r, /). Mais on peut aussi écrire, en remplaçant N (r, elB)

par sa valeur, n (0, eie) n'étant différent de 0 que pour une valeur

au plus de 0,

2k r 2k

| N (r, elQ) d§ j ~~ J n ix> e%%) d®
~

0 0 0

ce qui donne le théorème de Cartan 36).

La fonction T (r, f) a une dérivée, on a

2rc

dT (r, f) 1 r id\ i a

-JW7 t{r'f)2*J n(r'e )dQ-
o

La formule (3) définit T (r, f) comme étant, à une constante
additive près, la moyenne de N (r, Z) pour les Z de module 1.

Elle se généralise en considérant la moyenne pour les Z de

module p 37). On a à la place de la formule (2)

- I log | f(reld) — pelQ | dcp — log | / (0) — pel% | N {r, pelQ) —N (r, oo)
^ i)

2'

_1

2
0

En intégrant les deux membres multipliés par — dd et procédant

comme ci-dessus, on obtient la formule de H. Cartan qui
généralise (3)

2k

t (r, t)JL f N (r, pei0) dQ + log+ LLËli (4)
\ p J 2tz J p

0

Or, si u et v sont positifs, on a, on le voit de suite

log+ (uv) < log+ u + log+ e

donc aussi

log+ u < log+ uv + log+ —

Il s'ensuit que

2k 2K

— log+ P < ^ j log+ d<p — j log+ I / (reicp) | dp < log + 1
P
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donc

— log* p < T (r, l'j — T f) < log+ i
— log p < log

et, par suite, d'après (4)

/ (0)
— log+ | / (0) | < log+ ~

r

2tt

T (r, /) 2^ f N (r, peid) dQ + log+ | / (0) | + 0 (log+ p + log+ ij ; i < e < i
(5)

42. Représentation sphérique. Formules de Cartan et Shimizu.

On sait qu'on peut représenter les nombres complexes

z x + iy, sur une sphère de diamètre 1 tangente au plan 0xy
à l'origine. Si P est le point de la sphère diamétralement opposé

à 0, on fait correspondre au point M (x, y) du plan 0xy le point m

de la sphère situé sur PM. Le point m sera l'image sphérique
du nombre 2. Si le point M décrit un arc de courbe dont l'élément

d'arc est ds | dz |, le point m décrit un arc da et les formules

de l'inversion montrent que
ds

da îTR2 '

La longueur de l'image de la circonférence | z | p est donc

2tcp2. L'aire de la calotte sphérique image du cercle | z| < p est
A ~h p

P 2tt

r r tdtdo (A i \ p2

a(p)=J j jr+w*\ ïT7*) *ï+7'
0 0

La moyenne de N (r, teie) pour t < p, prise sur la sphère est

1 + ps /' f* tN (r, iei9) 0

*pa (1 + «V
0 0

2ît

et, en remplaçant J N (r, teie) dQ par sa valeur tirée de (5), on
0

obtient
p

T (r, /) - log | / (0) | + 6 j' 21_ ^g+ + Jog+ ijdti _ < e <
0
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Le coefficient de 0 est borné pour p > p0 > 0. On a donc cette

conséquence :

Pour p > p0 > 0, la valeur absolue de la différence entre

T (r, f) et la moyenne sphérique de N (r, Z) pour les Z de module

moindre que p est bornée par un nombre fixe, ne dépendant que
de | f (0) | :

< K (6)

A(p)

En prenant p infini, on obtient un résultat de Shimizu 38)
:

La différence entre T (r, f) et la moyenne de N (r, Z) sur la

sphère est bornée par un nombre indépendant de r.
Ces propositions montrent que la fonction T (r, /), ou toute

fonction qui n'en diffère que par une constante, ou une quantité
bornée, est celle qui s'impose dans l'étude des propriétés
moyennes de N (r, Z), tandis que sa dérivée peut caractériser
les propriétés moyennes de n (r, Z).

43. Limitation de N(r, a). Valeurs déficientes V.

Si a est fini, on a
2tc

T (r,f — a)N (r, oo) + Lflog+ I (re^) — I

2 TT J '

0

On vérifie aisément que

log- [u + v) < log- U + log+ P + log 2

donc

2rc 2-Tt

~ | log+ | / {relc?) — a | dcp — j log+ | f (re1*) | de? \ < log~ | a \ + log 2

0 b

et en conséquence

| T (r, f —a) — T (r, f) | < log+ | a | + log 2

Comme, dans le cas général où / (0) — a V1 0,

T (r, / — a) N (r, a) + m (r, a) + log | / (0) — a \
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on obtient pour N (r, a) une borne

N (r, a) < T (r, /) + log+ | a | — log | / (0) — a | + log 2 (7)

dans laquelle, en dehors de T (r, /) figure une expression qui est
bornée si a s'écarte suffisamment de / (0). Donc, si | / (0) — a |

> a > 0, on a

N (r, a) < T (r, /) + K' (8)

Le rapprochement des inégalités (6) et (8), ou plus précisément
de (8) et du théorème de Shimizu suggère évidemment que la
différence entre T (r, /) et N (r, a) doit être en général relativement

petite si T (r, /) tend vers l'infini.
Supposons que f (z) soit méromorphe dans tout le plan sauf à

Vinfini. Si l'on admet le théorème de Picard, on sait que f (z)

prend une infinité de fois toute valeur sauf au plus deux valeurs

exceptionnelles, donc si a n'est pas valeur exceptionnelle,
N (r, a) croît indéfiniment et le rapport de N (r, a) à log r tend
vers l'infini, donc, d'après (7)

lim IM «
r= oo log r

D'une façon plus générale, si T (r, /) était borné lorsque

roo, N (r, a) serait borné, donc n (r, a) 0, f (z) — a ne

s'annulerait pour aucun a tel que / (0) — a =£ 0, / (z) serait

constant; les cas où
T (r, /) 0 (log r)

correspondent aux fractions rationnelles.
Si T (r) tend vers l'infini avec r, comme la moyenne

superficielle de N (r, Z) sur la sphère diffère de T (r) de ipoins de K,
si l'on avait

¥ + *
N (r,Z)< T (r) —T (r)2 s > 0

K"
dans des aires sphériques dont la somme serait —— ces aires

T (r)Y
+ £

ne fourniraient qu'une contribution au plus égale à

NT (r) — K"
1

i

X '
— + S



CARACTÉRISTIQUE DE NEVANLINNA 261

et ailleurs, d'après (7) et (8), on aurait au plus

/* j \T(r)+K2*
V T(r)Y

+ 7
ce qui donnerait une contradiction si K" est assez grand. On a
donc

N (r, Z) > T (r) — T (9)

sauf au plus dans des aires de somme

K"

TW2

Si nous remplaçons (9) par

i + S

N (r',Z)> T (r')— 2 T (r')2 (10)

on voit que si (9) a lieu pour r, (10) a lieu pour

i- +r < /" < ri,T (rt) T [r) + T 2
;

et (10) aura encore lieu entre r1 et r2 défini par

TW T(o)+T(r)2 - '

à condition d'exclure de nouvelles aires. Au bout de T (r)2
opérations on arrivera à atteindre un rp pour lequel T(r )> 2T(r) ;
la somme des aires exclues sera moindre que

2K//
T (r)2e

'

et (10) aura lieu dans un intervalle r, r" avec T (r") 2T (r).
En itérant ce procédé, on voit que (10) aura lieu pour tous les r'
pour les Z représentés à l'extérieur d'aires formant une série
convergente. L'inégalité (10) aura lieu à partir d'une valeur r'
pour tous les Z extérieurs à des aires dont la somme est aussi
petite que l'on veut. Pour tous les Z représentés sur la sphère

L'Enseignement mathém., t. IV, fasc. 4. 18
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à l'extérieur d'un ensemble de mesure superficielle nulle on a,

pour r> r(Z)

T + '
N (r,Z)> T (r) — 2 T (r) s > 0

En rapprochant cette inégalité de (7), on a ce résultat:

Lerapport de N (r, z) à T (r, f) tend vers 1 lorsque r tend vers

Vinfini sauf pour un ensemble exceptionnel de valeurs de Z. Ces

valeurs de Z sont appelées valeurs déficientes Y 39).

D'après la démonstration élémentaire qui vient d'être donnée,

l'ensemble exceptionnel est au plus de mesure superficielle nulle.

En réalité sa mesure linéaire est nulle et même davantage et la

propriété est vraie pour les fonctions méromorphes dans un

cercle lorsque T(r,/) n'est pas borné40). Mais cet ensemble peut

exister et avoir la puissance du continu (voir Valiron, premier

mémoire cité ci-dessous). La propriété d'homogénéité de la

distribution des valeurs Z ainsi mise en évidence subsiste aussi

pour les fonctions algébroïdes méromorphes u (z) définies par

une équation

uv Av (z)+ iiv ' (z) + + A0 (z) 0

où les Aj (z) sont des fonctions entières, la définition de N (r, a)

étant la même pour u — a que pour / — a.

On remarquera que la propriété de N (r, Z) montre que, pour
les fonctions d'ordre nul de la classe normale,

T (r, /) ~ log M (r, /).

44. Formule de Nevanlinna.

La formule de Jensen, dans le cas / (0) fini non nul donne la

valeur de | / (0) | au moyen des modules des zéros, des pôles

et de la moyenne de | / (z) | pour | z | r; elle a été généralisée

par R. Nevanlinna. On peut obtenir sa formule en faisant une

transformation homographique du cercle de rayon r sur lui-même.

On a
2tx p n

^

log I / (o) | y- f log | / (ré1'") | d<?+ 2 los r£ri — 2 los nri (11>

* ~ J i | 1 I 1 I R I

A A
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les h,- étant les pôles et les ak les zéros de / (z) intérieurs au cercle

| z | < r.Onobtiendra une formule donnant | (z0) |, | z0 \

en faisant la transformation

ç
* —j> f (Ç) / (z) (12)

r2 — z0 z

et en appliquant la formule (11) à F (Ç). La transformation de

l'intégrale s'effectue en posant pour z Ç ce qui
montre, en prenant les dérivées logarithmiques dans (12), que

dtp z0| z„ | ,^0
9 r2 +I Zo I2 — 2r | z0 I cos (+ — +0)

On obtient ainsi la première formule de Nevanlinna

2tt " Uol2
log 1/(3.) I«2ij l0g I f^Ir. + I ,0 |. _ 2, I

Zo°| COS (+ - +,)
0

p n

+ 2 lQg I ® (z0, bjI— 2 !og I ® («0. ak I (13)

avec

<&(*,*) r'~*' (14)
r [c — z)

De cette formule, R. Nevanlinna en déduit une autre
donnant la dérivée logarithmique 41).

45. Comparaison de T (r, f) et log M (r, f) lorsque f (z)

est une jonction entière.

Si f (z) est une fonction entière, on a

2tt

T (r, f) m(r, oo) J- j log+ | f (rel<p) | dy < log M (r, /)
0

D'autre part, la formule (13) dans laquelle les termes relatifs
aux pôles disparaissent et où, d'après (14) et (12), | ®(z0, ak) | > 1,

donne
2tt

iogi/wi<^j iog+ i/(^)i
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puisque

r2 + I *o I2 — 2r | z0 | cos — tyo) > (r — | z0 |)2

Il s'ensuit que, en appliquant cette inégalité au point z0 de

module kr,k < 1, en lequel | / (z0) | — M (kr, /), on a

log M (kr,f) < T

De ces deux inégalités, on déduit (Nevanlinna)

log M (kr, f)<T (r, f)<logM [r, f) 0 < 1 (15)

Il en résulte que

TET'OS T ir,f) log, M (r,f)
r= oo log r r=oo log r

Vordre de T (r, f) est égal à Vordre de f (z) défini à Vaide de

log M (r, f).
On pourra définir la classe convergente ou divergente de

l'ordre fini positif p au moyen de T (r, /) au lieu de log M (r, /).
On pourra définir un ordre précisé de T (r, /) comme on l'a
défini à partir de log M (r, /). Toutes ces définitions s'étendront
d'elles-mêmes au cas où / (z) est méromorphe.

La relation (15) reste évidemment imprécise dans les cas

généraux, ou si l'on préfère, lorsque / [z) est une fonction entière,
la connaissance même très précise de log M (r, /) fournie par les

Coefficients du développement taylorien ne donne pas une
connaissance précise de T (r, /). Par exemple, si / (z) est
parfaitement régulière par rapport à un ordre précisé p (r), (15) montre
seulement que

Hp (1 — 0 (1)) rp(r) < T (r, /) < (1 + 0 (1)) /'p(r)

OÙ

On pourra choisir k pour obtenir le maximum de Hp.

L'emploi de la relation (15) et des inégalités entre log M (r, /)
et log M (r, f) obtenues au n° 4 fournira des relations entre T (r, /)
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et T (r, /') 1. Dans le cas général des fonctions méromorphes
l'étude de ces relations utilise la considération des propriétés de

la dérivée logarithmique 42).

46. Remarques.

I. Dans quelques cas simples, le calcul approché de T (r, /)
pour une fonction entière est aussi facile que celui de log M (r, /).
C'est le cas pour les fonctions élémentaires, pour les fonctions
de Mittag-Lefïer, pour les fonctions d'ordre non entier dont les
zéros ont tous le même argument et n (r) ~ rp(r). C'est aussi le
cas pour les fonctions vérifiant certaines équations fonctionnelles

simples. Ainsi, pour les solutions des équations de Poincaré

/ M P (z,f (z)) j f I > 1

où P (x, y) est un polynôme dont le degré q en y est supérieur
à 1. On obtient

T (r I 5 I, /) q T (r, /) + 0 (log r)

et, en itérant,

T(r0M*,/) ro'B (r0) qn

ce qui donne en posant r — rQ \ s Jn,

log IT (r, f) A (log r) r9 p M '

A (x) étant une fonction périodique de période log | s |. A (x)
est effectivement non constante dans certains cas, par exemple
lorsque

00 / 7 \ 2n_1

/m n i-4-i M -le,
qui est solution de

II.Soit une fonction méromorphe pour laquelle, pour
r > r0,

T (r, f)<A(log r)2 A fini. (16)
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On aura une inégalité analogue pour N (r, oo et N (r, s). On

pourra donc former des produits infinis g (z) et h (z) admettant
respectivement pour zéros les pôles et les zéros de / (z) et l'on
aura pour ces fonctions

s'°iioTy< - »-« •' »-* <•"

Le quotient

Klz) =f{z)g(z)
h(z)

n'aura plus ni pôles ni zéros et l'on aura, d'après l'inégalité

log+ (uv) < log+ U + log+ P

T [r,K)< T (r, /) + T g) + T (r, i)
T (r, I) - T (r, h) + h

donc
T (r, K) < B (log r)2 r > r0

Or K (2) est une fonction entière sans zéros, donc de la forme el{z) ;

d'après la formule (15), sa partie réelle pour \z \ < r sera bornée

par B]l (logr)2, ce sera une constante d'après le théorème sur la
partie réelle (n° 18). Toute fonction méromorphe vérifiant (16)
est le quotient de deux fonctions entières vérifiant (17).

III. D'une façon générale, une fonction méromorphe / {z)

peut se mettre sous la forme du quotient de deux fonctions
entières g (z) et h (z) sans zéros communs. On a

/ A. T (r,/)N (r,oo)+ m (r, =o)

1
m °°^ Yi

ö

2tt

h)
0

et, d'après le théorème de Jensen

h reitp)

g («<»)
d 9

2k

N (r,00) + log I cqI j log I (reicp) | d<ç
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C | g | le log

log+ est égal à log

Si | h| < | g| le log+ dans m (r, oo) est nul; si | | > | g| le

h
log | A | — log | g |. Par suite, on a

2tt

T (r, f)log | cq|+ ~ j log X (reicp) p

0

X (z) étant le plus grand des deux nombres | (z) | et | g (z) |.

IV. Caractéristique de Shimizu-Ahlfors.
Fonction L (r).

47. Aire couverte par les valeurs de f (z).

Considérons la fonction Z / (z) méromorphe pour | z | < r
et représentons les points Z sur la sphère de diamètre 1 déjà

envisagée au n° 42. Lorsque z parcourt le cercle | z | < r, le

point Z décrit une surface de Riemann transposée sur la sphère,

c'est en général une surface à plusieurs feuillets. Nous appellerons

%S (r) l'aire totale de ces feuillets. On a vu que, à l'élément

d'aire dX dY du plan des X, Y (Z X + Y) correspond sur
la sphère un élément d'aire

dXdY
dcù

(1 + | Z I«)»

D'autre part, à l'élément d'aire tdtdy du point télcp du plan zr

la fonction Z / (z) fait correspondre l'élément d'aire

dXdY | f'(z) |Hdtdc?

On a donc, sur la sphère,

et
r 2tv

7tS (r) f f —Üli^üU
JJ (l + l/(te^)l2)2

(1)

Le second membre peut s'écrire autrement; n (r, Z) est le nombre
des feuillets de la surface de Riemann sphérique qui recouvrent
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l'image de Z. On a donc aussi

S W | jn(r, Z)d,co,'z

dcùz étant l'élément d'aire de la sphère 2 au point image de Z.
En remplaçant r par t < r, divisant par t et intégrant de 0 à r,
on obtient

et d'après le théorème de Shimizu du n° 42, cette quantité est
égale à la fonction T (r, /) à une constante additive près qui est
bornée quel que soit r. Il est donc loisible de prendre comme
fonction caractéristique, à la place de T (r, /) la fonction

dont la dérivée donnée par (1) ou (2) a une interprétation
géométrique simple. C'est ce qui avait été proposé par Bloch et a
été utilisé systématiquement par Shimizu et Ahlfors 43).

48. Fonction L (r).

Lorsque le point z décrit la circonférence | z | r, l'image
sphérique de Z / (z) décrit une courbe T Tr, qui est la
frontière de la surface de Riemann décrite par Z et dont l'aire
est tuS (r). Ahlfors a introduit, à côté de la fonction S (r), la
longueur L (r) de cette courbe Tr. A l'élément d'aro rd<p de la
circonférence Cr, | z\ r, la transformation Z / (z) fait
correspondre l'élément | /' (relcp) | rdcp et l'on a sur la sphère un
élément

r

r

0

| f (rff) | rd<f
1 + | /K*) |2

Par conséquent,

(3)
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49. Inégalité fondamentale.

D'après l'égalité (1), on a

i f IfK*)!2 (4)
^ TU J (l _|_ | / (rcl<P) |2)2

et, en appliquant l'inégalité de Schwarz à l'intégrale (3), et

tenant compte de (4)

L (r)2 < 7u 2 7urw dr

Ainsi

T I t>\2 <-^ 9 tt2
drL fi)2 < 2 ti2 r ^ • (5)

On déduit de cette inégalité que, si le point à l'infini est

point essentiel, L (r) est en général infiniment petit par rapport
à S (r).Car, admettant toujours, comme au n° 43, le théorème

de Picard, T (r, /)/logr n'est pas borné, donc S (r) n'est pas
bornée. Si S (r) n'est pas borné, et si l'on suppose que dans

certains intervalles, pour lesquels r > r0, on a

L fi) >S fi)2 e > 0

on a, dans ces intervalles, d,

dr S

r - Sl+2s '

J'
dr 2 tu2

r " 2s S (r0;

la variation totale de logr dans ces intervalles est finie. Ainsi, à

l'extérieur d'intervalles dans lesquels la variation totale de logr
est finie, on a

i
L (r) < S (r) 2 + £

s > 0

(A suivre).
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NOTES

22) Sur chaque feuillet, on ne conserve que les segments de rayon (ou le rayon)
sur les deux bords desquels z a des valeurs distinctes.

23) voir Valiron, G-. : Sur les surfaces de Riemann définies par certaines fonctions
entières, C.R. Acad. Sei., Paris, 208, p. 711-713 (1939).

20 Pour une construction de fonctions plus générales, voir Valiron, G.: Sur les

singularités de certaines fonctions holomorphes et de leurs inverses, J. Math, pures appt.,
15, p. 423-435 (1936). Pour l'exemple particulier donné ici, voir Valiron, G. : Sur les

singularités des fonctions holomorphes dans un cercle. C.R. Acad. Sei., Paris, 198,

p. 2065-2067 (1934).
25) On suppose, ce qui est loisible, L et L' issus d'un même point et ne se coupant

PaS'
26) Il est équivalent de dire que l'indicatrice T (r) de Nevanlinna de la fonction

T (r)
méromorphe, qui sera définie au § III, vérifie la condition - — - < oo

27) Voir Valiron, G. : Sur le nombre des singularités transcendantes des fonctions
inverses d'une classe d'algébroïdes, C. R. Acad. Sei., Paris, 200, p. 713-715 (1935).

28) Voir Tumura, Y. : Sur les théorèmes de M. Valiron et les singularités transcendantes

indirectement critiques, Proc. Imp. Acad. Jap., 17, p. 65-69 (1941).
29) Voir Valiron, G. : Sur les valeurs asymptotiques de quelques fonctions méro-

morphes, Rendic. del Cire. Math, di Palermo, 49, p. 415-421 (1925).
30) on suppose Zj fini; si Zi est infini on considère Z comme variable,
si) Si Q est infini, on prend 1/2 pour variable.
32) Le théorème d'Iversen est démontré par son auteur d'une autre façon : Iversen,

F. : Recherches sur les fonctions inverses des fonctions méromorphes, Thèse, Helsing-
fors, 1914. Pour la démonstration donnée ici voir Valiron, G.: Démonstration de

l'existence pour les fonctions entières de chemins de détermination infinie, C. R. Acad.

Sei., Paris, 166,, p. 382-384 (1918), et Nevanlinna, R. : Eindeutige analytische
Funktionen (Die Grundlehren der Mathematischen Wissenschaften, Band 46), p. 275,

Springer, Berlin, lre édition, 1936.
-,

33) voir Ahlfors, L. : Untersuchungen zur Theorie der konformen Abbildung und

der ganzen Funktionen, Acta, Soc. Sei. Fennicae, 1, Nr. 9 (40 pages), (1930) ; Ahlfors, L. :

Über die asymptotischen Werte der meromorphen Funktionen endlicher Ordnung.
Acta Acad. Aboensis. Math, et Phys., 6, Nr. 9 (1932); Nevanlinna, R. : loc. cit.: 32,

p 293
84) Voir Valiron, G. : Remarques sur les domaines complets d'univalence des

fonctions entières, Bull. Sei. math., (2), 63, p. 132-138 (1939), et Valiron, G.: Division

en feuillets de la surface de Riemann définie par u> -y- + h. J. Math, pures appl.,

(IX), 19, p. 339-358 (1940).
35) Shimizu T. : On the foundamental domains and the groups for meromorphic

functions, Jap. J. Math., 8„ p. 175-304 (1931-1932); Marty, F.: Recherches sur la

répartition des valeurs d'une fonction méromorphe (Thèse), Ann. Toulouse, (3) 23,

p. 183-262 (1932).
*

^
36) Cartan, H. : Sur la fonction de croissance attachée a une fonction méromorphe

de deux variables, et ses applications aux fonctions méromorphes d'une variable,
C. R. Acad. Sei., Paris, 189, p. 521-523 (1929).

37) Valiron, G. : Sur les fonctions algébroïdes méromorphes du second degré, C.R.

Acad. Sei., Paris, 189, p. 623-625 (1929).
38) Shimizu, T.: On the theory of meromorphic functions, Japanese Journ. of

Math 6 p 119-171 (1929)* —• La restriction p > po, faite ci-dessus, tombe puisque
•' ' {

pour p < 1, on peut remplacer T (r, /) oar T (r, y).
39) Voir Valiron, G. : Sur la distribution des valeurs des fonctions méromorphes,

Acta Math., 47, p. 117-142 (1925); Nevanlinna, R. : Le théorème de Picard-Borel et

la théorie des fonctions méromorphes (Collection de monographies sur la théorie des

fonctions), Gauthier-VilJars, Paris, 1929; Littlewood, J.E.: Mathematical notes.

X : On a theorem of Zygmund, J. London Math. Soc., 4, p. 305-307 (1929) ; Valiron, G..
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Sur quelques propriétés de fonctions algébroïdes, C. ^p' ^9"
09c (4 qooi et • Sur les fonctions algébroïdes méromorphes, C. R. Acaa. bei., raris,
p

729-^31 '(1929)) ainsi que : loc. cit. : 37) ; Ahlfoks, L. : Beiträge zur Theorie des. m«o-
niorplien Funktionen, C.R. du 7» Congrès des mathématiciens Scandinaves tenu a Oslo,

19-22 août 1929, p. 84-88 (1930).

::Î «sÄÄÄk >•«- VÄI; rsi421 vnir à ce suiet Yaliron, Gr. : Acta, Math., loc. cit. : ", et Yaliron, Cr.. Sur la

dérivée des fonctions algébroïdes, Bull. Soc. math. France, 59, p. 17-39 (1931), ainsi que

N'VÄAcHfA.: Les fonctions holomorphes et méromorphes dans le cercle unité.

(Mémorial des sciences mathématiques, fasc. 20), Gauthier-Yillars, Pans, 1926,

Shimizu, T. : loc. cit. : 38} et Ahlfors, L. : loc. cit. : 39.
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