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FONCTIONS ENTIERES D’ORDRE FINI
ET FONCTIONS MEROMORPHES *

par Georges VALIRON f

(suite)

DEUXIEME PARTIE

QUELQUES PROPRIETES
DES FONCTIONS MEROMORPHES

I. FoNCTIONS DE LA CLASSE W ET LEURS INVERSES.

99. Fonctions entiéres de la classe W et leurs fonctions inverses.

Une fonction entiére de la classe W est une fonction f (z)
pour laquelle existe une suite de courbes simples fermées I',
entourant lorigine, T ., contenant I', & son intérieur et telles
que le minimum de | f (z) | sur I'; tende vers I'infini lorsque n
tend vers linfini (ce qui exige évidemment que I, s’éloigne
indéfiniment lorsque n— o). On peut supprimer une suite
infinie de courbes I', sans changer ces propriétés; il est donc
permis de supposer que le minimum 7, de | f(z)| sur ',y
est supérieur au maximum M, de | f (z) | sur T, maximum qui
est atteint en un point P, au moins de I',. Considérons les do-
maines dans lesquels | f (2) | < M,, n étant donné; 'un d’eux,
soit D,, contient l'intérieur de I', puisque, dans Pintérieur de
L, | f (2) | < M, ; le point P, appartient a la frontiere C, de D,
qui est une courbe analytique intérieure a I',., puisque
m,,, > M,. Nous obtenons ainsi une suite de courbes de module
constant C_; sur chaque C,, | f(2) | = M, et a Pintérieur de D,
| f (z) | < M,. Pour tous les Z de module inférieur a M,, I'équa-

*) Série de cours et de conférences sur la théorie des fonctions entiéres, faits en
1948 au Caire et & Alexandrie, d’aprés le manuscrit revu et mis au point par le pro- -
fesseur Henri MILLOUX.

L’Enseignement mathém., t. IV, fasc. 4. 16




230 . G. VALIRON

tion f (z) = Z a le méme nombre p, de racines intérieures & D,,
la dérivée f' (z) a exactement p, — 1 racines dans D, si T'on
suppose, ce qui est possible en diminuant infiniment peu §’il y
a lieu la valeur de M,, que f' (z) ne s’annule pas sur C,. La
fonction inverse z = f, (Z) de Z = f(z) correspondant a z
intérieur & D, est une fonction a p, branches définie dans le
cercle | Z| < M,. On peut rendre ses branches uniformes en
joignant les points Z! = f (2') correspondant a f' () = 0 a la:
circonférence | Z| = M, par des rayons (si Z' = 0) ou des
segments de rayon. Et on peut considérer la surface de Riemann
a p, feuillets circulaires réunis les uns aux autres le long de
certains de ces rayons ou segments de rayon de facon a former
une surface connexe sur laquelle z = f, (Z) est uniforme 22
Lorsque n croit le rayon du cercle | Z | = M,, croit, les feuillets
voient augmenter leur rayon, les lignes de passage doivent étre
prolongées et de nouvelles lignes s’introduisent permettant le
passage dans de nouveaux feuillets. Si I'on fait croitre n indéfi-
niment, on obtient & la limite la surface de Riemann & une
infinité de feuillets sur laquelle la fonction inverse z = f_; (Z)
est définie et uniforme quel que soit Z fini. On peut préciser ce
qui vient d’étre dit: si dans le domaine limité par G, et G, ,,
f (z) ne s’annule pas, aucun feuillet nouveau ne s’introduit
lorsqu’on passe de C, a C,,,; si au contraire p, ., — p, n’est pas
nul, p,., — p, nouveaux feuillets s’introduisent et /' (z) a aussi
Pnit — Pn 26ros dans le domaine compris entre C, et C,.,.
Comme la portion de surface de Riemann correspondant & D,,,,
est formée de p,,., feuillets circulaires formant une surface
connexe, 'un au moins des points ZI correspondant & un 2’
compris entre C, et C, ., est extérieur & la circonférence
| Z | < M,, et se trouve sur 'un des feuillets correspondant a D,
prolongés dans | Z | < M,,,.

Les points singuliers de la surface £ de Riemann sont les
points critiques algébriques Z! et le point & I'infini. D’apres ce
qui vient d’&tre dit, le point & I'infini est point limite de points
critiques algébriques. Ce point & linfini doit étre considéré
comme un seul point sur la surface X, car lorsqu’on tourne et
décrit une courbe C,, le point Z tourne p, fois sur le cercle
| Z| = M,, et parcourt les p, feuillets; il s’ensuit qu’on peut
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aller sur ¥ d’un point Z de grand module & un autre point Z’
de grand module sans cesser de rester dans le voisinage du point
a Dinfini. Ce méme fait est visible dans le plan des z. S1 Z et Z'
sont de grands modules, les valeurs z et z’ le sont aussi, z et 2z’
sont par exemple extérieurs & C, et intérieurs & C,, m > n,
et en outre extérieurs aux domaines | f (z) | < A contenus dans
la « couronney comprise entre C, et C,, on peut joindre ces
points par une courbe le long de laquelle | f (z) | > A.

Ainsi, il y a un seul point singulier & I'infini sur 2. Quelle que
soit la fagcon dont Z s’éloigne indéfiniment sur 2, z tend vers
Pinfini. On dit que Z infini est un point directement critique et
comme il est point limite de points critiques algébriques on dit
qu’il est de seconde espéce.

Si I’on considere ’un des feuillets de la surface % telle qu’elle
a été construite et si on prend sur ce feuillet I'intérieur d’un
cercle | Z | < R, il n’existe dans ce cercle qu’un nombre fini de
points Z7 situés sur ce feuillet et par suite un nombre fini de
lignes de passage issues de ces points. Au feuillet complet
correspond dans le plan des z un domaine A nécessairement non
borné qui est un domaine complet d’univalence de la fonction
f(2); dans A augmenté de sa frontiére f (z) prend toute valeur
finie. La frontiére de A correspond aux lignes de passage situées
sur le feuillet considéré, elle est formée de lignes sur lesquelles
I'argument de f(z) est constant. A la surface X et & ses lignes.
de passage correspond ainsi une division du plan des z en
domaines complets d’univalence.

Bien que les surfaces de Riemann ainsi obtenues soient les
plus simples parmi les surfaces simplement connexes (elles sont
simplement connexes puisqu’elles correspondent biunivoquement
au plan des z privé du point & P'infini), elles peuvent présenter
quelques anomalies. Dans les cas simples, chaque feuillet ne
contiendra qu’'un nombre fini de points critiques, mais dans
certains cas un feuillet, ou un nombre fini de feuillets, ou méme
tous les feuillets pourront renfermer une infinité de lignes de
passage. Les fonctions d’ordre nul permettent de construire des
exemples de cette espéce, en partant évidemment de la dérivée
de la fonction. On obtient ainsi des fonctions pour lesquelles, soit
sur un feuillet, soit sur un nombre fini de feuillets, soit sur tous
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les feuillets, les arguments des lignes de passage sont denses sur
le segment (0, 2r). Dans le plan des z, les lignes arg Z = const.
qui coupent un arc de courbe | Z | = const. et qui sont menées
dans le sens des | Z | croissants, coupent cet arc en des points
denses sur cet arc 23,

30. Fonctions de la classe W holomorphes pour | z| < 1.

Les fonctions de Koenigs étudiées par Fatou dans ses mé-
moires sur litération (Bull. Soc. math., 1920), les fonctions
construites par Lusin et Priwalof (Annales Ecole norm., 1925)
jouissent de la propriété suivante: Ces fonctions sont holo-
morphes (z) étant une de ces fonctions, il existe
une suite de courbes I, simples fermées, I', étant contenue dans
une couronne 1 — ¢, < | z| < 1 (g, tendant vers zéro lorsque n
croit 1ndeﬁn1ment) telles que le minimum de | F (z) | sur F,
tende vers I'infini avec n. On peut répéter pour une telle fonctlo.n
ce qui a été dit au n° 29 pour les fonctions entieres: il existe une
suite de courbes C, de module constant | F (z) | = M, telles
que C,,, contienne C, & son intérieur, enveloppant l'origine, et
telles que M croisse indéfiniment avec n. Si grand que soit A, il
existe une suite de domaines A, ayant pour frontiéres deux
courbes consécutives C,, C, ., contenant des domaines 3, (A)
dans lesquels |F (z)| < A, ces domaines 9§, ne tournant pas
autour de l'origine. Tout point de la circonférence | z| = 1 est
point limite de points 3, (A,) si A, —~ oo (sinon | F (z) | tendrait
vers l'infini lorsque z tendrait vers les points d’un arc o de

| z| =1, donc 57 ( ] tendrait vers zéro, Fi( J serait identiquement

nul d’aprés le principe de la symétrie de Schwarz). En est-il de
méme si on laisse A fixe ?

On peut construire la surface de Riemann % décrite par
7. = F (z) comme dans le cas des fonctions entiéres du n° 29.
Pour les mémes raisons qu’au n° 29, le point a I'infini, Z = oo,
doit étre considéré comme un seul point sur cette surface, c’est
le seul point critique non algébrique de cette surface X et ce point
critique est limite de points critiques algébriques. 2 est une
surface simplement connexe qui est représentée par la fonction
inverse z = F_, (Z) de F (z) sur le cercle | z| < 1. C’est une
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surface du type hyperbolique, les surfaces simplement connexes
représentables conformément (sauf aux points de ramification)
sur le plan privé du point a 'infini étant dites du type parabolique
et les surfaces représentables sur le plan complet étant les sur-
faces du type elliptique. Les surfaces du type elliptique sont les
surfaces décrites par les valeurs des fractions rationnelles, les
surfaces du type parabolique sont les surfaces décrites par les
valeurs des fonctions méromorphes sauf a Pinfini qui est point
essentiel, les surfaces du type hyperbolique sont les surfaces
décrites par les valeurs des fonctions méromorphes dans un
cercle et admettant la circonférence comme coupure.

Dans le cas actuel, la surface X est du type hyperbolique et
est illimitée. A la surface telle qu’elle a été obtenue correspond
dans le plan des z une division de I'intérieur du cercle | z| < 1
en domaines complets d’univalence pour F (z). Ces domaines
ne sont pas complétement intérieurs au cercle | z| < 1 mais la
fagon dont ils approchent de la circonférence | z| = 1 reste
Inconnue.

Dans les cas particuliers des fonctions de Koenigs, par
exemple, la fonction F (z) tend vers 'infini lorsque | z | tend vers
un sur un rayon, arg. z = const., presque pour tous les rayons,
dans les exemples de Lusin et Priwalof; parmi les courbes r,
figurent des cercles de centre & l'origine. A-t-on toujours des
propriétés de ce genre ?

Quot qu’il en soit, le fait important est I'existence d’un seul
point critique non algébrique pour la fonction inverse, point qui
est point limite de points critiques algébriques.

31. Sur une classe de surfaces du type hyperbblique.

Dans les exemples de Fatou, Lusin et Priwalof signalés ci-
dessus, il existe des rayons arg. z = const. sur lesquels f F (2) l—> 0
lorsque | z| — 1. Pour la fonction inverse z — F_, (Z), il existe
donc des chemins tendant vers I'infini sur lesquels z a une limite.
Il'y a naturellement d’autres chemins sur lesquels Z — o tandis
que z n’a pas de limite, | z | - 1 et, par.exemple, arg. z tend vers
infini. Nous allons voir qu’il existe des fonctions pour lesquelles
la fonction inverse n’a qu’'une seule singularité a Dinfini, isolée
des singularités algébriques et pour lesquelles, quelle que soit
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la fagon dont Z tend vers l'infini, z n’a jamais de limite. Nous
nous bornerons a un exemple particulier 29,
Prenons la fonction

s
s=e VO, L=t +4in,

ou 'on suppose n > 7, > 0 et ou 'on prend

\/E:(l—ki)\/% pour £E=0,

et | &] n? < 1. Cette fonction représente conformément et
biunivoquement le domaine A défini par % > no, | £| % < 1
sur un domaine D en forme de spirale, intérieur au cercle | z | < 1
et qui s’enroule autour de ce cercle. En deux points homologues
de D et A, le rapport de similitude tend vers un lorsqu’on
s’éloigne indéfiniment dans A.

Considérons, d’autre part, la fonction

e“iC
g(g) = ¢°

qui tend rapidement vers zéro lorsqu’on s’éloigne indéfiniment
dans A dans certains domaines et qui croit indéfiniment dans
d’autres puisque

oiE — it
¢ 1C  gfMcosExising) _ e e0SE [oo5 (¢M sin £) + isin (e" sin £)]
de sorte que, si

e"sinf = + © + a, |a|<%,

| g (¥)| tend vers zéro comme
e~ COS aee"(1-0(1)) , (2
tandis que, si
_esin £ = «, |a|<32°_,

| g (¥) | tend vers l'infini comme

e COS aee(1-0(1))
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Désignons par { = h (z) la fonction inverse de (1) lorsque &
est dans A; c’est une fonction holomorphe dans le domaine
spiralique D; la fonction

F (z) = g (h(3)

se comporte comme g ({). Appelons T'(a, b) la courbe de D
correspondant & la frontiére de la portion 3(a, b) de A définie
par | »

[e"sin&|<7t+a, O<a<%; n>b>m.

La courbe I'(a, b) décompose le cercle |z| < 1 en deux

domaines: un domaine en spirale intérieur a D, soit I (a, 0), et
un domaine complémentaire E (a, b).

La rapidité de la décroissance de (2) montre que I'intégrale

1 F (u)

217 u—3z
I'(a,b)

ot u décrit T' (a, b) dans le sens direct, définit une fonction f (z)
holomorphe dans E (a, b) et une fonction f, (z) holomorphe dans

I (a, b). Lorsque | z| tend vers 1, | f (z) | et | /1 (s) | restent uni-

formément bornés si z ne se rapproche pas trop de I' (a, b); on
vérifie qu’il suffit que

[e"sin&;t(n+a)]>e>0

pour qu’il en soit ainsi.

Laissant a fixe, et faisant croitre 5, on prolonge f(z) dans
tout le cercle | z| < 1, soit C. D’autre part, si I'on donne a &
deux valeurs b et o' > b et si 'on prend z entre les courbes
I' (a, b) et I' (a, b'), 'intégrale (3) est égale & F (z) sur le contour
formé par les parties non communes de I' (a, b) et I' (a, ). On
a donc, en supposant que I' (@, b) est parcourue dans le sens
direct par rapport aux points de E (a, b),

flz) = F(a) + f1 () .

Comme on peut aussi faire varier a, on voit que f (z) est bornée
sauf dans les domaines correspondant a

le"singl <2, 9>, (4)
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ou']‘ (z) est la somme de F (z) et d’une fonction bornée. Et dans
le domaine (4), F (z) croit indéfiniment lorsque | z | tend vers un
de la méme fagon que g (¢). D’autre part, la dérivée de f (z) est

bornée dans les mémes conditions que g’ ({) puisque % tend

vers un. Comme

et que

2T
— e" b cosk

on voit que | g’ (¢) | tend vers I'infini, dans tout le domaine (4),
/' (z) ne s’annule pas. Le point & l'infini est un point critique
pour la fonction inverse f, (Z) et il est isolé des points critiques
algébriques.

On ne change pas ces résultats si 'on prend la somme de f (z)
et d’une fonction k (z) dont la dérivée k' (z) est bornée dans C
et admet C comme coupure. La fonction % (z) sera aussi bornée
et d’apres un théoréme de Fatou et Riesz, k (re*®) aura une limite
lorsque r tendra vers 1, presque pour toutes les valeurs de 0 et
I'ensemble de ces valeurs limites formeront un ensemble non
dénombrable.

Considérons les deux fonctions f (z) et f (z) + k& (z). Si I'une
tend vers une limite finie lorsque z décrit un chemin L tendant
vers le cercle C, Pautre n’a pas de limite puisque & (z) n’en a pas.
Est-1l possible que f(z) ait une limite pour un chemin L et
f (2) + k (z) pour un chemin L’ ? Ces deux chemins ne se coupe-
ront pas pour | z | assez proche de 1 et limiteront un domaine D’
de forme spiralique s’enroulant autour de C & I'intérieur de C 25,
La fonction f (z) tend vers une limite sur L et est bornée dans
ce domaine D’; f (z) + k (z) tend vers une limite sur L’ et est
bornée dans le domaine D’. Représentons conformément D’ sur
un cercle | ¢ | < 1. Aux deux chemins L et L’ correspondront
deux arcs de ce cercle aboutissant & un méme point, ¢ = 1, par
exemple, correspondant & | z| tendant vers 1. Alors & f (z) et
f (2) + k (z) correspondent des fonctions ¢ (¢) et ¢ (¢) bornées
dans le cercle, tendant vers des limites lorsque ¢ tend vers 1 sur
- la circonférence d’un cdté de ce point pour ¢ (¢), de I’autre pour
¢ (¢). D’aprés un théoréme de Lindelsf, elles auront les mémes
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limites respectivement lorsque ¢ tendra vers 1 sur 'axe réel.
Et c’est impossible puisque la différence de ¢ (¢) et ¢ (¢) n’a
pas de limite.

Par suite, soit f(z), soit f(z) + k(z), n’a pas de limite
possible autre que I'infini lorsque | z | tend vers un. La fonction
inverse @ (Z) admet pour singularités uniquement des points
critiques algébriques et le point a linfini, qui est un point cri-
tique 1s0lé et tel que lorsque Z tend vers ce point d’une facon
quelconque, la valeur z de la fonction n’a aucune limite.

32. Démonstration du théoréme de Lindelsf.

Par une transformation conforme du cercle en un demi-plan,
puis du demi-plan en un angle, on est ramené a démontrer la
proposition suivante: Supposons que ¥ (z) soit holomorphe dans
le secteur

|argz!<£, lz] < 1

qu’elle soit bornée par M dans le secteur, continue sur le cdté

TC ’ 14
arg z = & et tende vers zéro lorsque z tend vers zéro sur ce

coté. Dans ces conditions, ¥ (z) tend vers zéro lorsque z tend

vers zéro sur la bissectrice arg z = 0.
, . . . ’ . ‘ 1 ol ’
Prenons en effet z réel positif inférieur a n < 5 et considé-

rons la fonction

V(iEr+ ¥ (z+ Lo)¥P(z + Co?) ¥ (z + Lwd) ¥ (z + tm4)qf(z +

+ {wd), w=e¢3.
Elle est holomorphe dans I’hexagone limité par les droites obte-
nues en faisant tourner le coté arg z = % des angles % %

k=1, ..., 5 autour du point z, et il s’ensuit que sur les cotés de
cet hexagone, et par suite au centre, son module est au plus égal

4 ¢, maximum de | ¥ (z) | sur la portion du c6té arg z = % qui

fait partie de la frontiére, multiplié par la borne de | ¥ (2) |
élevé & la puissance 5. Ceci démontre la proposition.
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II. SINGULARITES DES FONCTIONS INVERSES
"DES FONCTIONS MEROMORPHES.

33. Fonctions méromorphes en tout point @ distance finie.
Valeurs asymptotiques.

S1 Z = f(z) est une fonction méromorphe en tout point a
distance finie, mais qui ne se réduit pas a une fraction ration-
nelle, on peut construire un polyndéme ou une fonction entiére
g (z) admettant pour zéros les pdles de f(z) avec les mémes ordres
de multiplicité. Le produit f(z) . g (z) est alors une fonction

entiére, soit & (z) de sorte que f (z) = %; I’'une au moins des

deux fonctions £ (z), g (z) qui sont sans zéros communs ne se
réduit pas a un polyndéme.

Considérons une courbe simple continue I' dans le plan
des z qui s’éloigne indéfiniment: une telle courbe est définie par
une fonction z (¢) de la variable réelle ¢, définie pour ¢ > 0 par
exemple, telle que z (t) 7= z (') si ¢t %= 1’ et telle que, si grand
que soit A, il existe un nombre ¢, pour lequel |z(t)| > Asit >,
I’ensemble des valeurs Z = f (z (t)) pourt > B est un ensemble
continu, si nous ajoutons & cet ensemble ses points limites nous
obtenons un ensemble E (I', B) et lorsque B tend vers l'infini,
I’ensemble limite de E (I', B) est un ensemble, qui est ’ensemble
commun aux E (I', B); c¢’est un ensemble fermé E (I') qui peut
étre une courbe, un point, tout le plan. Nous I’appellerons ’er-
semble d’indétermination de f (z) au point a Uinfint de I'. Si cet
ensemble se réduit & un point ®, nous dirons que o est une
valeur asymptotique de f (z) et que la courbe T' est un chemin de
détermination ou chemin de détermination . Par exemple pour
e’, 2 = x + 1y, la courbe y = 0, x > 0 est chemin de déter-
mination infinie; y = 0, x << 0 est chemin de détermination 0;
0 et oo sont des valeurs asymptotiques. Mais pour x = 0,y > 0
I’ensemble d’indétermination & !'infini est la circonférence
| Z| = 1; pour z = sin ky, y > 0, k irrationnel, on obtient la

1 .
couronne — < |Z| <'e; et on voit comment on aura- des

chemins I' d'indétermination compléte pour lesquelles ’ensemble
E (') sera le plan complet. |
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Si w est valeur asymptotique pour Z = f (z), il existe non
seulement un chemin I' de détermination «, mais, & cause de la
continuité, tout un ensemble de chemins de méme détermina-
tion o qui sont contigus & I'. Deux chemins I', IV de méme
détermination o sont contigus dans les deux cas suivants:
10 T" et T ont des points d’intersection aussi éloignés que l’on
veut; 20 I" et I sont sans points communs & partir d’un point P
qu’on peut considérer comme leur origine commune, ils déter-
minent alors deux domaines A et A’; dans I'un de ces domaines,
soit A, existe une suite de courbes v, qui s’éloignent indéfiniment
lorsque n croit indéfiniment, telles que chaque v, joint un point
de I' & un point de I et que les valeurs de f (z) sur v, tendent
uniformément vers  lorsque n— .

Une fonction méromorphe peut n’avoir aucune valeur
asymptotique, c¢’est évidemment le cas pour les fonctions ellip-
tiques. Mais toute fonction entiére admet o comme valeur asympto-
tigue. C’est un cas particulier du théoréme d’Iversen qui sera
donné au n° 35.

Pour toute fonction entiére dela classe W,il n’y a qu’une valeur
asymptotique et tous les chemins de détermination sont contigus.

Sire a montré (Bull. Soc. math., 1913) qu’une fonction entiére
d’ordre infini peut avoir une infinité non dénombrable de valeurs
asymptotiques, Gross a construit un exemple de fonction entiére
dans lequel tout nombre complexe est valeur asymptotique
(Math. Ann., t. 79, 1918). Mais aprés avoir étudié certains cas
particuliers, Denjoy a énoncé en 1907 la proposition suivante
comme etant probable: une fonction entiére d’ordre fini ¢ a
au plus 2o valeurs asymptotiques finies correspondant a des
chemins non contigus. Carleman démontra en 1921 un résultat
un peu moins précis; en 1930, Ahlfors démontra complétement
le théoreme de Denjoy; une démonstration différente fut donnée
par Carleman en 1933 (Comptes rendus, t. 196).

Nous nous bornerons ici & démontrer la proposition élémen-
taire suivante: _ .

Toute fonction méromorphe qui est le quotient de deux fonctions
entiéres dont le module maximum vérifie la condition

. logM(r)
lim =2 & \/
T'1=oo (log r)2 % (9)
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posséde au plus une valeur asymptotique et n'en a pas en
général 28,
On a, en effet,

__ h(z)
flz) = T
avec
h(z) = Ebnzn, g(z)zzanzn, - (5)
0 0

et si ¢, désigne le plus grand des deux nombres | b
fonction

nletla’nl713

[eo]
\
9 la) = D,
0
vérifie aussi la condition (b), par suite

lim
n=oc n?

— log ¢ ‘
__g__n>0.

On est dans le cas des fonctions a croissance lente du n° 16, on
a pour les rapports rectifiés R, la condition
— R

llm n+1
nN=oox R

>1.

n

Silon prend m tel que R, > R k% k> 1, kR < r < KR,
on obtient a

<1 S SO <o)

m+1

On considére la fonction f (z) dans les couronnes
kR, <|z|< kR, ;

en posant z = R, {, on a & étudier la suite de fonctions f (R,, &)
dans la couronne  k < | {| < k% Pour chaque m l'un des
nombres | b, |, | a,, | est égal a ¢, ; on peut extraire de la suite
des m une suite S pour laquelle on a constamment, par exemple
| a,, | = ¢,- On a dans la couronne envisagée

h(Rpl) = e C"REH (G m), g (RpC) = 6, ("RIG (L, m)
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et les fonctions H (¢, m) et G (¢, m) sont bornées- dans leur
ensemble dans la couronne k < | {| < k?; on peut extraire de
la suite S une autre suite pour laquelle H |{, m) et G (¢, m)
tendront respectivement, uniformément vers des fonctions
limites holomorphes H ({) et G (¢) (théoréme de Montel). En

outre, comme pour | z| = r, on a M(r, g) > ¢, ™, la fonction
G () n’est pas identiquement nulle. La fonction g—% est une

fonction méromorphe ou une constante finie. Ainsi, pour une
suite S’ de valeurs de m, f (R, ) converge uniformément dans
la couronne vers une fonction méromorphe (qui peut étre une
constante finie). Supposons que f (z) admette une valeur asymp-
totique w. Pour chaque m de la suite S’ existera une courbe I',

traversant la couronne k < | {| < k%etsur I, f (C R,,) tendra

vers . Il s'ensuit que B _ o et que o est fini. Dans les

_ G (9)
couronnes | ‘7
kR, < |z| < k®R,,

de la suite S, la fonction f (z) tend vers o uniformément. o est
la seule valeur asymptotique possible et tous les chemins de
détermination o sont contigus. -

Cette proposition, qui s’étend aux fonctions algébroides,
fonctions u (z) définies par |

Ag(B)w + A B uwt + .- +A(5) =0,

ot les A, (z) sont des fonctions entieres 27 a été étendue par
Y. Tumura 28. Mais il existe des fonctions méromorphes, quo-
tients de fonctions entiéres pour lesquelles

log M (r) < & (r) (log 7)? ,

ot ¢ (r) est indéfiniment croissante, mais croissant moins vite
qu’'une fonction croissante donnée arbitrairement, qui ont autant
de valeurs asymptotiques que ’on veut 29,

34. Singularités des fonctions inverses des fonctions
méeromorphes.

Hurwitz et Denjoy, en 1907, dans le cas des fonctions entieres
et Iversen (theése, Helsingfors, 1914) dans le cas général des
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fonctions méromorphes sauf a Iinfini, ont montré que les
singularités de la fonction inverse qui ne sont pas des points
critiques algébriques sont les valeurs asymptotiques de la
fonction. Si Z = f (z) est la fonction méromorphe donnée, sa
fonction inverse z = @ (Z) est définie par I’ensemble de ses
éléments. Si z, est un point en lequel f' (z,) s 0, la fonction f (z)
est holomorphe et univalente pour |z— zy| < r si Zy = f (zy) # oo,
ce qui définit autour de Z, un élément de la fonction inverse
holomorphe dans un cercle |Z —7Z,| < R. Si Z;, = o, on
définit un élément holomorphe au point a linfini du plan Z.
On peut passer de I'un de ces éléments de @ (Z) a un autre par
prolongement analytique: il suffit de joindre le point z, fournis-
sant 1'élément ® (Z, Z,, z,) au point z, du plan z fournissant
® (Z, Z,, z;), par une ligne polygonale ne passant par aucun
des zéros de f' (z) pour obtenir ce prolongement. On définit en
méme temps des éléments circulaires de la surface de Riemaunn
sur laquelle ® (Z) sera uniforme. Si au point z,, Z, est fini, mais
f' (20) = 0, on a pour |z —z,| < r,

Z:f(z):ZO—}_cp(z‘__ZO)p_l_"': p>1

ce qu'on peut écrire, en posant Z — Z, = u?,

P 1
= A/c, (s — s [1 + F (s — 2,)17 , (6)

la série entiére V' (z — z,) définissant une fonction holomorphe
et nulle pour z = z,. La racine d’ordre p définit p fonctions
holomorphes qui se déduisent de 'une d’elles par multiplication
par les racines de I'unité. On peut faire 'inversion dans (6), on
obtient

et, en remplacant u par la racine d’ordre p de Z — Z, on obtient
une fonction a p branches, réguliéres en chaque point dans un
domaine 0 < |Z — Z,| < r, qui se permutent entre elles par
rotation autour de Z,. Le point Z, est un point critique algé-
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brique de ® (Z), la fonction est bien définie en ce point et autour
de ce point par

1
(Z —7,)" [1 10 ((z — Zo)%ﬂ :

3 = 2o + T
cpp

On a un élément algébrique de @ (Z) autour de Z,, défini dans
un certain cercle de centre Z, On incorpore le point Z, a la

surface de Riemann décrite par Z = f (z). St Z, = oo, on opere

sur % et ’on obtient un élément algébrique lorsque la racine est

multiple

1
3 = 23 + ! 1[1.+®(Z p)]

(cp 2)"

Autour d’un point critique algébrique, I’élément de la surface
de Riemann est composé de p feuillets circulaires ayant pour
centre ce point et qui se raccordent le long de rayons superposés.
Le passage d’'un élément holomorphe ou algébrique a un autre
se fait encore en considérant dans le plan des z une ligne joignant
les deux points correspondant aux deux centres, donc au moyen
d’un nombre fini d’éléments intermédiaires tels que chacun d’eux
est un prolongement du précédent. Nous appellerons @ (Z, Z,, z,)
un élément holomorphe ou algébrique, la notation désignant -a
la fois la série qui définit I’élément et le cercle de convergence
de cette série.

Supposons que le point Z décrive la surface de Riemann, ce
qui revient & dire que l'on fait le prolongement analytique a
partir d’'un élément @ (Z, Z,, z,). Utilisons uniquement les
éléments holomorphes. Sil’on fait décrire & Z’ une ligne vy tracée
sur la surface et si I'on considere les éléments @ (Z, Z’, z'),
lorsque vy aboutit a un point non critique Z;, le rayon de
O (Z, 7', 7') tend vers le rayon @ (Z, Z,, z,) de I'un des éléments
de centre Z,. Si Z, est point critique algébrique, dés que Z’ sera
assez voisin de Z,, le point Z; sera un point singulier de I’élément
® (Z, 7, 7), le rayon de cet élément tendra vers zéro 39, Les
autres points singuliers de la surface sont des points qui ne lui
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appartiennent pas mais dont on peut approcher d’aussi prés que
Ion veut en restant sur la surface, donc par prolongement analy-
tigue. Lorsqu’on fait le prolongement, on doit pouvoir trouver
une courbe y de la surface qui s’approche autant que I'on veut
du point en question Q, c’est-a-dire qui reste dans un cercle
de centre Q et de rayon aussi petit que ’on veut a partir d’'un de
ses points, et telle que le prolongement est possible le long de v,
le rayon des éléments ® (Z,Z', z') dont les centres 7" sont sur v
tendant vers zéro lorsque | Z' — Q | tend vers zéro 3V, Lorsqu’il
existera un élément algébrique @ (Z, Q, z,), Q = [ (z,), tel que
® (Z, 7', z') coincide & partir d’une valeur de Z’ avec @ (Z, Q, z,)
dans la partie commune des cercles de convergence, le point €
sera simplement un point critique algébrique, sinon ce sera
vraiment un point singulier sur un feuillet ou plusieurs feuillets
de la surface de Riemann et de la fonction inverse @ (Z).

Nous allons préciser un peu la fagon dont se comportent les
éléments ® (Z, Z', z'). 11 est possible que certains de ces éle-
ments contiennent le point Q, c¢’est-a-dire que, pour certains 7,
avee Z' — Q tendant vers zéro, ® (Z, 7', z') prenne la valeur Q;
donc que cet élément et un ® (Z, Q, z,) coincident dans la por-
tion commune de leurs cercles de convergence, mais il n’est pas
possible que cela ait liew pour tous les 7" de v suffisamment proches
de Q. Car si @ (Z,Z’, z') contenait Q pour tous les Z’ de y &
partir de l'un d’eux, Z’ variant contintiment, @ (Z, Z', z') aurait
une portion commune avec un méme élement ® (Z, Q, z,), de

rayon R (z,) et des que | Z' — Q [ serait inférieur é% R (z,), le

rayon de I'élément @ (Z, Z', z) serait au moins—;— R (z,), 1l ne

tendrait pas vers zéro.

Inversement, s'il existe une courbe vy tendant vers C le long
de laquelle le prolongement est possible et s’il existe des L' sur cetle
courbe aussi proches que Uon veut pour lesquels ® (Z, 7', z") ne
contient pas Q, Q est point singulier. Car les rayons des éléments
ne contenant pas € tendent vers zéro. Si un élément ® (Z,Z", z"')
contient Q) et si & partir de ce point Z” de v, | Z' — Q| < ¢,
le rayon de cet élément est au plus 3¢, sinon tous les points de vy
4 partir de Z” appartiendraient & @ (Z, Z"”, z"'), et puisque
| Z/ — Z" | < 2, tous les @ (Z, Z', z') contiendraient Q.
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On a utilisé seulement les éléments holomorphes, donc on a
supposé que la courbe y ne passe pas par les points critiques algé-
briques. Sil'on prend une courbe passant par ces points, on peut
la déformer d’aussi peu que I'on veut au voisinage de chacun de
ces points sans qu’elle cesse d’6tre sur la surface. Il s’ensuit
quon peut utiliser tous les éléments aussi bien algébriques
qu'holomorphes dans la définition des points singuliers.

Ces explications données, on va montrer que lorsque le point Z
tend vers un point singulier (non algébrique) de la surface de
Riemann, z = © (Z) tend vers Pinfini, c'est-a-dire que les singu-
larités de la surface correspondent nécessairement au valeurs
asymptotiques de Z = 1 (z).

Dans un cercle | z | < M, I'équation f(z) = Q a un nombre
fini de racines (si Q est infini, il s’agit des poles), on peut isoler
ces racines z, par des petits cercles de centres z, extérieurs les
uns-aux autres et de rayons assez petits pour que, lorsque z est
dans le cercle de centre z,, Z = f (z) appartienne a I’élément
® (Z, Q, z,). On peut d’ailleurs supposer que M a été choisi de
facon qu’il n’y ait pas de points z, sur la circonférence | z| = M
et enfin que les petits cercles ne coupent pas cette circonférence.

. 1 :
La fonction g —a est holomorphe dans | z| < M & lexterieur
des petits cercles et sur leurs circonférences, son module a un

. 1 - : :
maximum —. Dans ces conditions, si | Z — Q| < e, le point

z = ® (Z) est ou bien extérieur au cercle | z | < M ou bien .
intérieur & Pun des petits cercles. Or lorsque Z tend vers
le point singulier €, il ne peut pas appartenir & un méme
slement @ (Z, Q, z,), done | z| > M, ce qui démontre la propo-
sition.

Inversement, si o est valeur asymptotique de Z = f (2),
¢’est une singularité (non algébrique évidemment) de la fonction
inverse. Car lorsque z' décrit le chemin I' de détermination o,
7' = f (z') décrit une courbe y qui se rapproche indéfiniment
du point et le rayon de I’élément ® (Z, 7', 7') tend vers zéro.
Sinon on aurait pour un élément @ (Z, Z", z") un rayon supé-
rieur & 3¢, et & partir de cette valeur Z", on aurait | 27— o | <k,
les Z' appartiendraient & 1'élément @ (Z, Z"”, z"), ce qui est
impossible puisque z' = © (Z', 2", z'') serait alors borné.

L’Enseignement mathém., t. IV, fasc. 4. 17
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En définitive:

Les singularités (autres que les singularités algébriques) de la
surface de Riemann décrite par les valeurs d’une fonction méro-
morphe f (z) dans tout le plan & distance finie correspondent aux
valeurs asymptotiques de cette fonction. A deux chemins I', 1" de
détermination o qui sont contigus correspondent des courbes y et y'
aboutissant & o et telles que on peut les joindre par des courbes
de la surface de Riemann qui sont aussi voisines que 'on veut de e,
ces chemins v, v’ “dotvent étre considérés comme aboutissant a une
seule singularité . '

Les surfaces de Riemann correspondant aux fonctions entiéres
de la classe W ont donc une seule singularité qui est a I'infini.

35. Théorémes de Lindelof et d’Iversen.

Lindelof a étendu le théoréme de Cauchy sur le maximum du
module. Nous nous bornerons & I’énoncé suivant:

THEOREME DE LINDELOF. — Soit un domaine borné D de fron-
tiere F et une fonction f (z) holomorphe dans D et continue sur
D + F sauf en un point O de F. Si | f(z)| < M sur F sauf
en O et st [ f (z) ‘ < K dans D au voisinage de O, on a dans

tout D
[flz) ] <M

Comme D est borné, on peut par transformation homogra-
phique se ramener au cas ou O est l'origine et ou D est dans le
cercle | z| < 1. Dans ces conditions, si e > 0, la fonction 2* f (z)
n’est pas surement holomorphe dans D, mais seulement analy-
tique, mais le théoréeme de Cauchy s’applique encore a son
module qui est uniforme. Sur F, O excepté, on a | z° f (z) | < M.
Soit z, un point de D ; prenons r assez petit pour que, pour | z | < r
on ait | f(z)| < K et par suite |z°f(z)| < Kr®; on pourra
prendre r assez petit pour que Kr® <M et r < | zo |- Appli-
quons le théoréme de Cauchy & z* f (z) dans le domaine formé
par la portion de D contenant z, et extérieure a | z| < r. Comme
sur la frontiére constituée par des points de F et de |z| = r, le
module est au plus M, on aura aussi au point z, '

|25 f (el | < M.
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Done | f (z,) | < Me='€!%l et puisque ¢ > 0 est arbitraire
[f(z0) | <M.

Il est clair que le théoréme s’applique a un domaine D
quelconque mais tel qu’il y ait des points extérieurs permettant
de se ramener au cas de I’énoncé.

De ce théoréme, on déduit le suivant qui servira de lemme
pour la démonstration du théoréme d’Iversen B2l ;

Tugorime 1I. — Si la fonction f(z) est holomorphe dans un
domaine borné D et continue sur D et sur la frontiére F sauf
en un point O de F; st sur F, O excepté, | f (z) | = M tandis
que |f(z)| <M dans D, on a deux alternatives: 10 f (z)
s'annule en un point au moins de D; 20 il existe dans D une
courbe continue aboutissant a O sur laquelle f (z) tend vers zéro
lorsque z tend vers 0.

Supposons que f(z) ne s’annule pas dans D. Alors L est

f(2)

; % PR (. O 1
holomorphe dans D; et sur F, O excepté »ﬂzﬂ)‘ =3’ done "

n’est pas bornée au voisinage de O, sinon, d’aprés le théoreme de

M
Phypothése | f (z)] < M. Il existe donc un domaine D, intérieur

Lindel6f, on aurait dans D, ,]‘_z?)‘ < 1 en contradiction avec

3 D et admettant O comme point frontiére dans lequel { I(l_z) ' o % :

Dans D ona|f(z)]| < —1;—([; sur sa frontiére, O excepté, | f(z) | = %[—
et f (z) ne s’annule pas dans D;. On peut recommencer le raison-

nement indéfiniment. On peut joindre un point de /' & un point
z; de la frontiére de D, (autre que O) par un chemin intérieur &

D, puis z; & un point z, en lequel | f(z,) | = % par un chemin
appartenant & D,, et ainsi de suite, ce qui définit une courbe vy

de D sur laquelle | f (z) | tend vers zéro. vy est composée d’arcs

successifs Y, Y1, Yoy +-s Ymy oy LATC 7y, appartenant & D,. Les
arcs v, n'ont pas de points limites intérieurs & D puisqu’en un
tel point on aurait f (z) = 0, leur seul point d’accumulation est O.

TuEOREME D’ IVERSEN. — Soit X la surface de Riemann décrite
par les valeurs d’une fonction méromorphe, c’est-a-dire une
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surface simplement connexe du type parabolique. Soit Z, un
point du plan et Z, un point de la surface X, | Zy — Z;| = p.
Il est possible de joindre Z, & Z, par une courbe intérieure au
cercle | 7. — Zo| < ¢ qui appartient a la surface sauf peut-éire
son extrémité L.

Considérons, en effet, dans le plan z le domaine D défini par
| f(z) — Zy| < p qui contient le point z;, = ® (Z,) sur sa fron-
tiere /. Si le domaine D contient un point z, en lequel f (z)) = Z,
la proposition est établie. Dans le cas contraire, D n’est pas

borné (sinon dans D borne }—(2)1—2— holomorphe n’atteindrait
— 4o

pas son maximum sur le contour). Mais on peut le ramener a un
domaine borné par transformation homographique et appliquer
le théoréme I1; il s’ensuit que dans D on a un chemin joignant z,
au point & linfini sur lequel f(z) tend vers Z,. Le cas ou le
chemin considéré dans 1’énoncé n’a pas son extrémité dans X
est celui ou Z, est valeur asymptotique.

Du théoréme d’Iversen on déduit que si Z, est un point de %
et L une courbe simple issue de Z,, on peut tracer un chemin qui
joint Z, au voisinage d’un point de L en restant dans le voisinage
de L. 11 suffit d’appliquer le théoréme de proche en proche & des
petits cercles centrés sur L et suffisamment rapprochés.

Comme corollaire, on voit que st une valeur Q n’est pas prise
par une fonction méromorphe, cette valeur est valeur asymptotique.
En particulier, pour toute fonction entiére, Pinfini est valeur
asymptotique. ‘

36. Théoréme de Gross.

Si Uon considére un élément ® (Z, Z,, z,), Z, # oo holomorphe de
la fonction inverse z = @ (Z) d’une fonction méromorphe, on
peut prolonger cet élément jusquw'a Uinfini sur les rayons
arg (Z — Z,) = ¢ = const. sauf au plus pour des ¢ apparte-

nant a un ensemble de mesure nulle.

Pour D'établir, on peut se borner a considérer les rayons
arg (Z — Z,) = ¢ dans un cercle | Z —Z, | < R. Car si 'on
peut atteindre la circonférence de ce cercle sauf pour un ensemble
de mesure nulle de valeurs o, il suffira de donner a R les valeurs
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1,2, ..., 7, ... et comme une suite d’ensembles de mesures nulles
est de mesure nulle, le théoréme sera démontre.

D’autre part, I'ensemble E; des valeurs de ¢ pour lesquelles
le rayon passe par un point critique algébrique Z, = f(z,),
f (z,) = 0 est dénombrable, ce sont les rayons passant par un
point critique transcendant qui sont seuls & considérer.

Nous faisons donc le prolongement radial de P’élément
® (Z, Z,, 2,) dans le cercle | Z — Z, | < R, R étant supérieur au
rayon R, du cercle d’holomorphie de cet élément, et nous
supposons que dans ce prolongement nous rencontrons des
points critiques transcendants. Nous définissons un domaine €
qui contient le cercle | Z — Z, | < R, et dans lequel z = @ (Z)
est holomorphe. A ce domaine correspond dans le plan des z
un domaine o contenant le cercle | z —z,| < r, dans lequel
Z = f (z) est univalente et holomorphe et qui n’est pas borné
puisqu’il contient des chemins de détermination. Si I'on coupe
ce domaine par une circonférence | z — z, | = r, on obtient sur
cette circonférence des arcs A, de longueur totale s (r). A ces
arcs correspondent des ares de courbes du plan des Z qui
coupent les rayons |Z —Z,| = ¢ passant par les points
critiques transcendants puisque, a ces rayons correspondent des
chemins de détermination finie allant & I'infini et intérieurs & w.
Si I'on considére les valeurs de ¢ correspondant a ces arcs, elles
forment des mtervalles dont la longueur est au moins egale au

produit de s (r) par , d étant la plus courte distance de ces

arcs a l'origine Z,,. Cette plus courte distance d est supérieure a
la plus courte distance de la courbe transformée de | z— z, | = r,,
donc a un nombre fixe d,. Les intervalles contenant 1’ensemble
E — E; des ¢ pour lesquels le prolongement est impossible ont

s(r)

donc une longueur au plus égale & =—. Or on a
0

sy =[17@d=[If(a|rde, z=rd?,

B Ag
donc d’aprés la formule de Schwarz

s (r)2 <Jlf'(z) lzrdcp'--ﬁnr

Ap
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et comme A (r) étant I'aire de Q correspondant a la portion de w
limitée par |z —z,| = r, on a

r2n
Alr) = [[1F () 1rdrde,
00
Iinégalité s’écrit
dA (r)
dr

s(r2<2=wr

On a donc

fs—(r)r—zglr-<2ﬂ:[A(r)—~A(ro)]< 22 R%.

To

Ceci montre que s (r) a pour limite inférieure pour r infini la
valeur 0 puisque, dans le cas contraire le premier membre de
cette inégalité serait infini. On a donc des r pour lesquels s (r) < ¢
ce qui montre que les points de E — E; appartiennent a des
intervalles dont la somme des longueurs est aussi petite que I'on
veut. E — E, est de mesure nulle et le théorémees t démontré.

37. Classtfication d’ Iversen.

Si @ est une singularité transcendante de la fonction inverse
z = @ (Z), c’est-a-dire aussi de la surface de Riemann, il existe
un chemin v, le long duquel un élément ® (Z, Z', z') prolongé
le long de vy, tend vers oo, ce chemin v, tendant vers w. Suppo-

. _—y x . 1
sons « fini, sinon on considérerait ® comme fonction de 7

A partir d'un point Z'* de v, ce chemin reste dans le cercle
Cyy | Z — | < Rj si Z’ est un point de cette portion on peut
prolonger @ (Z, Z', z') & partir de cet élément en restant dans
C,. Si, en opérant ainsi a partir de vy, on peul chotsir R assez
pelit pour qu'on ne rencontre pas d’aulres singulariiés iranscen-
dantes que , on dit que » est une singularité transcendante isolée.
Le prolongement effectué dans C, définit un morceau X de la
surface de Riemann auquel la fonction z = @ (Z) fait corres-
pondre un domaine DY du plan des z; c¢’est un domaine illimité
qui contient des chemins de détermination o et qui ne contient
pas d’autres chemins de détermination; en faisant décroitre R,
on voit que tous ces chemins de détermination w sont contigus.

Iversen a donné dans sa Thése (1914) une classification des
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singularités transcendantes isolées qui compléte et précise un
essal antérieur de Boutroux. ,

Si I’'on peut choisir R assez petit pour que Z ne prenne pas
la valeur o dans C,, ¢’est-a-dire si » n’appartient pas a 2%, ou
encore si f (z) ne prend pas la valeur » dans Dg, le point  est
appelé point transcendant directement critique. En outre, si 'on
peut choisir R assez petit pour que @ (%) n’admette pas de sin-
gularités algébriques dans Cy, « est dit de premiére espéce; dans
Je cas contraire, w est point limite de points critiques algébriques,
il est dit de seconde espéce.

Si « n'est pas directement critique, il existe des éléments
®(Z,7',7), avec | Z/ — w | < &, qui contiennent «, autrement
dit D® contient des racines de f (z) — o si petit que soit R. Si
sur tout rayon arg (Z' — w) = const., ® (Z, Z’, z") ou ® (2,7, z')
peut &tre un élément algébrique, tend vers une valeur finie, ou
si Ion préfére si la valeur de @ (Z) finit par coincider avec un
élément @ (Z, Q, z,) lorsque Z tend vers o sur un rayon de G,
le point w est dit point transcendant indirectement critique.

Un point critique transcendant (qui est isolé) n’appartenant
pas & I'une ou Pautre de ces deux catégories est dit point directe-
ment et indirectement critique.

Ahlfors a montré que le nombre des chemins d’indétermina-
tion finie non contigus des fonctions entiéres d’ordre p est au
plus égal & 2p, il s’ensuit que le nombre de singularités a l'infini,

1 v y p s s Ty
pour p > - est aussi au plus égal a 2p, ainsi que le nombre des

singularités transcendantes & distance finie. Nous admettrons ces
résultats qui rentrent dans un énoncé plus général dii & Ahlfors 33,

Si Z = f (z) est une fonction entiére d’ordre fini, toutes les
singularités transcendantes de la fonction inverse sont isolées;
la classification d’Iversen s’applique. Si w est singularité trans-
cendante a distance finie, le domaine D} qui est illimité est borné
par un nombre fin1 de courbes. Car si D}, est ce domaine et si sa
frontiére sur laquelle | f(z) — o | = R comporte une courbe
illimitée I', cette courbe I' est aussi frontiére d’un domaine non
borné dans lequel | f(z) — | < R. D’aprés le théoréme du
n® 35, ce domaine contient un chemin de détermination infinie.
A chaque frontiére I' correspond un chemin de détermination
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infinie et les chemins ainsi obtenus pour deux frontiéres ne sont
pas contigus; il n’y en a qu’un nombre fini. Alors, en diminuant
R on voit que ’on aura une seule courbe frontiére. Par suite

St £ (z) est fonction entiére d’ordre fini et si  est une valeur
asymptotique finie, le domaine |f(z) — w| > ¢ contenant les
chemins de détermination o est limité par une seule courbe dés
que € est assez petil.

On voit de méme que si o est fini et directement critique et
sl ’ est une singularité algébrique appartenant a C, les courbes
| f(3) —w] =] o — | décomposent D} en au moins deux
domaines d’indétermination finie; on pourra, d’aprés ce qui
précéde, prendre R assez petit pour que cette circonstance soit
impossible. Donc

Pour une fonction entiére d’ordre fini, les poinis directement
critiques a distance finie de la fonction inverse sont tous de premicre
espéce. "

Mais les singularités transcendantes a Dinfini, qui sont
directement critiques puisque f (z) ne prend pas la valeur infinie,
peuvent étre de seconde espece. On a vu (n° 29) que la singularité
a I'infini des fonctions inverses des fonctions de la classe W est
de seconde espéce.

38. Remarques sur la décomposition en feuillets de la surface
de Riemann. Feuillets singuliers et division tmpropre.

L’idée la plus simple pour décomposer en feuillets la surface
de Riemann décrite par les valeurs Z d’une fonction f (z) que
nous supposerons entiére et d’ordre fini est d’utiliser les étoiles
d’holomorphie de la fonction inverse z = ® (Z). On considére
les éléments @ (Z, 0, z,), f(z,) = 0 et on les prolonge radiale-
ment apres avoir coupé le long d’'une demi-droite arg Z = const.,
si I’élément est algébrique. On obtient ainsi des feuillets (qui
pour toute fonction inverse de fonction méromorphe sont illi-
mités d’apres le théoréme de Gross) qui dans le cas actuel sount
des domaines dont les frontiéres sont des demi-droites,
arg Z = const., formant sur chaque feuillet un ensemble
dénombrable. A ces feuillets correspondent dans le plan des z
des domaines limités par des courbes d’argument constant. Si
ces domaines, leurs frontieres et les points limites de ces fron-
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tieres couvrent le plan des z en entier & distance finie, on a fait
4 la fois la division du plan des z en domaines d’univalence et la
division de la surface de Riemann en feuillets dont le raccorde-
ment est donné par la considération du plan des z. Dans le cas
contraire, P'origine est point critique transcendant; s’il y a a
I'origine un point directement critique, il est de premiére espece
et I'on a une infinité de feuillets aboutissant a I'origine; s’il y a
un point directement et indirectement critique il peut exister
des feuillets incomplets aboutissant & l’origine, dont l'angle
d’ouverture est moindre que 2.

On peut éviter les feuillets de cette derniére espéce en chan-
geant Z en Z + k de fagon & n’avoir plus de singularité trans-
cendante & l'origine. Toute la surface de Riemann est alors
fournie par les feuillets obtenus en prolongeant les éléments
® (Z, 0, z,). Mais il pourra arriver que sur certains feuillets la
frontiére ne soit pas entiérement accessible par suite de la pré-
sence d’un point critique transcendant qui, d’apres les propo-
sitions du n® 37, ne peut pas étre directement critique puisqu’il
serait isolé des singularités algébriques, et qui n’est pas indi-
rectement critique puisqu’on ne pourrait pas 'atteindre par
prolongement radial, c’est donc un point directement et indi-
rectement critique. Le domaine correspondant du plan des z
sera un domaine complet singulier d’univalence; dans ce domaine
et sur sa frontiere & distance finie, f (z) prend des valeurs dont.
I’ensemble complémentaire contient une ligne.

La jonction des feuillets, c’est-a-dire des domaines d’uni-
valence, peut aussi présenter des anomalies. Il peut se faire que
pour passer d’un feuillet & un autre il soit nécessaire de passer
sur une infinité d’autres feuillets. On aura une division impropre
du plan z en domaines d’univalence.

La fonction

ou & est une constante présente des circonstances de ce genre.
Dans le cas b = 0, déja étudié par Iversen, la division en feuillets
par les lignes arg Z = const., fournit un feuillet incomplet; pour
h = —1, 1l existe un feuillet singulier 3; pour A = 1, on obtient
une division impropre.
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L’étude de la division du plan des z en domaines complets
d’univalence pour une fonction méromorphe générale Z = f (2)
a été 'objet de travaux de Shimizu *® et de Marty. Elle demande
de nouveaux efforts.

39. Remarque sur les surfaces du type hyperbolique.

Si 'on considére une fonction Z = f (z) méromorphe pour
’z[ < 1 et admettant la circonférence [z[ = 1 comme coupure,
sa fonction inverse est uniforme sur une surface du type hyper-
bolique dont I’étude des singularités est peu avancée. Les
- valeurs asymptotiques sont ici les valeurs limites sur des che-
- mins tendant vers la circonférence C, | z| = 1. Les considéra-
tions du n° 34 s’étendent, les singularités de la fonction inverse
autres que les singularités algébriques sont fournies par les
valeurs asymptotiques. Le théoreme d’Iversen n’est plus valable
en général non plus que le théoréeme de Gross dont la démons-
tration tombe évidemment en défaut.

La fonction spéciale étudiée au n® 31 rentre dans la classe
générale des fonctions holomorphes et non bornées pour |z | > 1
telles que chaque F (z) est bornée sur un chemin simple L, = L (F),
z=12z(;F), t >0 avec lim|z (¢ F)| =1, tout point de

l= o

| 2| = 1 étant point limite des valeurs z (¢, F). Le théoréme
d’Iversen s’étend a ces fonctions. Lorsqu’on suppose que sur
L (F) P'une des limites d’indétermination de z (f) pour ¢ infini est
infinie, on a

la croissance est trés rapide.

ITI. CARACTERISTIQUE DE NEVANLINNA
ET PROPRIETE DE N (r, Z).

40. Fonction T (r, f) de Nevanlinna.

On a vu (n° 18) que, si f (z) est méromorphe pour | z | <
si f(0) % 0, oo et si n (z) désigne le nombre des zéros et p
le nombre des pdles pour | z| < z, on a

r?
(%)
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r

r _ « 2
!/ﬂnm dz ,/*de — .;_m/’ log | f (r¢®) | d — log | £(0) | -
0 ( o

x x
0 0

Si f (0) est nul ou infini, on peut appliquer la formule a %(? sig

est Pordre du zéro & l’brigine, af (z) 22 si’on a un pdle d’ordre ¢,
de sorte que, en désignant par ¢, la limite pour z = 0 de f (z)/2*
ou de f (z)z% on a | ‘

2 r : 2

/n(x)—n(O) dx__ff;’(r)—p(o) dz + glogr = ;—T—t / loglf("ew)ld@_logICQI'

S :

O~

0
On a ¢ = n (0) et le signe + si l’origine est zéro, ¢ = p (0) et
le signe — si D'origine est pole. Par suite, si I'on désigne d’une
facon générale par n (z,Z) le nombre des zéros de f(z) —Z
pour | z| < z, et si 'on pose | '

r )
N (r, 7) = /”("”" Z) ;,”(0’ Z) 4z + n (0, z)log r
0

on a
2T

N(r,O)—N(r,oo):;;cf log | £ (réi®) | do —log | ¢, | . (1)
0 ' '

Dans D'intégrale, on peut séparer les parties ou log | f (re'®) |

est positif de celles ou cette quantité est négative. Si1'on désigne
par u" le nombre égal & u si u est réel positif et 0 si u < 0, on a

1 2w 1 An 2

3 ¥ . 1 . .
rw | osl1 0 do =2 [ log" | fr¥) [do — o [ tog
0 : _ 0 0

do .

f(re'®)

Si on désigne d’une fagon générale par m (r, a) I'intégrale -

1 2r 1 ' _m
1o, * o ' _1 + L¢
m(r,a) = 2-7: / log F (rét®) — a’d‘P ; <m (r, oo) = ﬂé/ log™ |1 (ré'?) ]d@)

la formule (1) s’écrit

N (r, 0) — N (r, ) = m (r, ©)— m (r, 0) — log ]
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ou
N (r, ©) + m (r, ) = N (r, 0) + m(r, 0) +log|cq| ;

Le premier membre est la caractéristique T (r) ou T (r, f) de

Nevanlinna.

41. Théorémes de H. Cartan. Propriété de T (r).

9 étant réel, appliquons la formule de Jensen (1) a f (z) — ™.
Nous aurons

5171: ,/‘ log | f (re'?) — &' |do —log |f(0) — é¥ = N (r, é% — N (r, 0) .

Multiplions les deux membres par g—g et intégrons de 0 & 2.

Nous aurons, d’apres la formule de Jensen appliquée a la fone-
tion u — f(0), |u| = 1,

2

o | log [ 1(0) — ] a0 = 1og* | £ (0) |

[ %

0
car, si | f(0)| > 1, u — f(0) ne s’annule pas dans le cercle
|u| < 1,etsi|f(0)] < 4,ily aun zéro, qui est f (0), le second

membre est alors log |  (0) | + log I—f—(%)—l = 0.

D’autre part,

a4 2T 1 2 i 2
1 1 ioy o), 1 __( i9) __ 4i0] 40 =
EJ deﬂf log | f (ré'®) — e ]d@_znu‘ do o~ log | f (re!®) — €| d 6
0 0 0 0
2
= 2_17;.,( 10g+'f(reiq’)ld<p = m(r, ®) .
s A

On déduit donc de (2)
1 d i6 +
T(rf) =m(r, o) + N(r, o) = é‘ﬁf N (r, ¢) d0 + log* | (0) ] .
0 - (3)
Ceci suppose | f (0) | # o . Sil’origine est pole, on aura & mettre
log™ | ¢, | au lieu de log™ | f(0) |.
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Comme N (r, ¢°) est une fonction convexe non décroissante
de log r, la formule (3) de Cartan montre qu’il en est de méme
de T (r, f). Mais on peut aussi écrire, en remplacant N (r, e®)
par sa valeur, n (0, ¢*°) n’étant différent de O que pour une valeur
au plus de 6,

| i e
1 [ N, e a0 = | ‘—ZE’J n (@, ¢ 0

. J oz

0 0 0
ce qui donne le théoréme de Cartan 3%,

La fonction T (r, f) a une dérivée, on a

La formule (3) définit T (r, f) comme étant, & une constante
additive pres, la moyenne de N (r, Z) pour les Z de module 1.
Elle se généralise en considérant la moyenne pour les Z de
module ¢ 37, On a & la place de la formule (2)

27
zin- | log|f(re®) —pe®|do—log[f(0) —pe®| = N(r, o) —N{(r, o) .
0 ,

En intégrant les deux membres multipliés par 51; d0 et procédant

comme ci-dessus, on obtient la formule de H. Cartan qui géné-
ralise (3) s
Par :
1 i 0
T<r, i) — ﬁ.,‘ N (r, pei®) 20 + log* L1

. o (%)

Or, si u et ¢ sont positifs, on a, on le voit de suite

log®™ (ue) < log"™ u + log* o |
donc aussi |
log" u <log® uy + log™ % :

Il s’ensuit que

%n
—logt p < L ‘ log™

r
1 , )
do — 5— f log® | £ (r'®) [ dp < log+—:;
-0

f (re*?)
0

27




donc
—logt p < T<r,%) —T(rf) < log+%
—1log" p < log” ”PO) \ log™ |1 (0)| < log" =
et, par suite, d’aprés (4)
" e
Tirf) =g | Niroe® a0+ log"|£(0)] + 6(10g+ o + logT—ip—>, _1<b<t.

T (r

f)—log |f(0)] + 67

258 - G. VALIRON

¥

42. Représentation sphérique. Formules de Cartan et Shimizu.

On sait qu’on peut représenter les nombres complexes
z = x + iy, sur une sphére de diameétre 1 tangente au plan Ozy
a Porigine. Si P est le point de la sphére diamétralement opposé
a4 0, on fait correspondre au point M (2, y) du plan Ozy le point m
de la sphére situé sur PM. Le point m sera I'image sphérique
du nombre z. Si le point M décrit un arc de courbe dont I’élément
d’arc est ds = | dz |, le point m décrit un arc do et les formules
de I'inversion montrent que

ds
IR
La longueur de I'image de la circonférence | z| = p est donc

21p
1+ ¢

.. L’aire de la calotte sphérique image du cercle | z| < pest

_‘ “n vdedd /1 ‘_n__gf_"
(==L T ) Tt

La moyenne de N (r, te'®) pour ¢ < p, prise sur la spheére est

p 2w ,
1 + o2 ‘ “ tN (r, ) dtd0

me? (1 -+ 22)?
0 0

2m
et, en remplagant [ N (r, t¢) d6 par sa valeur tirée de (5), on
0

obtient

(5)
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Le coefficient de 6 est borné pour p > p, > 0. On a donc cette
conséquence:

Pour o > oy > 0, la valeur absolue de la différence enire
T (r, f) et la moyenne sphérique de N (r, Z) pour les Z de module
moindre que o est bornée par un nombre fize, ne dépendant que
de | £(0) |:
L ‘jqu(r,Z)dwl<K. (6)

A(p) S
AP

-}T<f,f>—

En prenant p infini, on obtient un résultat de Shimizu 3%:

La différence entre T (v, f) et la moyenne de N (r, Z) sur la
sphére est bornée par un nombre tndépendant de r.

Ces propositions montrent que la fonction T (r, f), ou toute
fonction qui n’en différe que par une constante, ou une quantité
bornée, est celle qui s’impose dans I’étude des propriétés
moyennes de N (r, Z), tandis que sa dérivée peut caractériser
les propriétés moyennes de n (r, Z).

43. Limitation de N(r, a). Valeﬁrs déficientes V.

Si a est fini, on a

T

T(r,f—a) =N (r, o) —!—%CJ 10g+|]‘(rei'*’)—a[dcp.
: S0

vt

On vérifie aisément que

log® (v + ¢) <log® u 4 log* ¢ + log 2

donc |
om 9%
| og* | (re®) — aldcp—— j’ log™ | (ré'%) | do | < log” | a| + log

[ %

0 0

O

et en conséquence
[ T(r,f—a) —T(r, /)| <log"|al| 4+ log2.
Comme, dans le cas général ou f.(O) —a # 0,

T(r,f—a) =N {r,a) + m(r,a) + log | (0) —
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on obtient pour N (r, a) une borne
N(r,a) <T(rf) +log" |a|—1log |[f(0) —a|+log2. (7)

dans laquelle, en dehors de T (r, f) figure une expression qui est
bornée si a s’écarte suffisamment de f (0). Donc, si | f(0) — a|

> o >0, on a
N (r,a) <Ti(rf) + K . (8)

Le rapprochement des inégalités (6) et (8), ou plus précisément
de (8) et du théoréme de Shimizu suggeére évidemment que la
différence entre T (r, f) et N (r, a) doit étre en général relative-
ment, petite si T (r, f) tend vers 'infini.

Supposons que f (z) soit méromorphe dans tout le plan sauf a
Uinfini. Si 'on admet le théoréeme de Picard, on sait que f (2)
prend une infinité de fois toute valeur sauf au plus deux valeurs
exceptionnelles, donc si a n’est pas valeur exceptionnelle,
N (r, a) croit indéfiniment et le rapport de N (r, a) a log r tend
vers I'infini, donc, d’aprés (7)

lim L)

Cr=w logr
D’une fagon plus générale, si T (r, f) était borné lorsque
r— o, N(r, a) serait borné, donc n(r,a) =0, f(z) —a ne
s’annulerait pour aucun a tel que f(0) —a # 0, f(z) serait

constant; les cas ou «
T (r, f) = 0 (log r)

correspondent aux fractions rationnelles.
Si T (r) tend vers l'infini avec r, comme la moyenne super-
ficielle de N (r, Z) sur la sphére difféere de T (r) de moins de K,

si Pon avait

1+s

N(rZ) <T@ —T@FEH2 , >0

’7

, ces aires
+e

dans des aires sphériques dont la somme serait

' . | T (r)
ne fourniraient qu’une contribution au plus égale a

wo| =

T (r) — K”




CARACTERISTIQUE DE NEVANLINNA 261

et ailleurs, d’aprés (7) et (8), on aurait au plus

<n__ Ki )T(r)+ K,

T (r)g i

ce qui donuerait une contradiction si K’ est assez grand. On a

donc
1
i, + €
N (r,Z) >T()—T(r)? (9)
sauf au plus dans des aires de somme
K//
1
T
Si nous remplagons (9) par
| 1 + e
N(,Z) >T@F)—2T@)* (10)

on voit que si (9) a lieu pour r, (10) a lieu pour

+ €

?

1
r<r<r, T{)=T(@+TrF?
et (10) aura encore lieu entre r, et r, défini par

1

Tir) =T () + T2

1
a condition d’exclure de nouvelles aires. Au bout de T (r)2
opérations on arrivera a atteindre un rp pour lequel T(r,) > 2T (r);

la somme des aires exclues sera moindre que

2K”
T (r)*€ -

et (10) aura lieu dans un intervalle r, 7" avec T (r'y = 2T (r).
En itérant ce procédsé, on voit que (10) aura lieu pour tous les r’
pour les Z représentés a Pextérieur d’aires formant une série
convergente. L’inégalité (10) aura lieu a partir d’une valeur r’
pour tous les Z extérieurs & des aires dont la somme est aussi
petite que 'on veut. Pour tous les Z représentés sur la spheére

L’Enseignement mathém., t. IV, fasc. 4. 18
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3 Textérieur d’un ensemble de mesure superficielle nulle on a,
pour r > r (Z)

..
N Z) >T(@F —2TFH* , e>0.

En rapprochant cette inégalité de (7), on a ce résultat:

Le rapport de N (v, z) a T (r, f) tend vers 1 lorsque r tend vers
Pinfini sauf pour un ensemble exceptionnel de paleurs de 7. Ces
valeurs de Z. sont appelées valeurs déficientes V 39),

D’aprés la démonstration élémentaire qui vient d’étre donnée,
ensemble exceptionnel est au plus de mesure superficielle nulle.
En réalité sa mesure linéaire est nulle et méme davantage et la
propriété est vraie pour les fonctions méromorphes dans un
cercle lorsque T (r, f) n’est pas borné 10 Mais cet ensemble peut
exister et avoir la puissance du continu (voir Valiron, premier
‘mémoire cité ci-dessous). La propriété d’homogénéité de la
distribution des valeurs Z ainsi mise en évidence subsiste aussi
pour les fonctions algébroides méromorphes u (z) définies par
une équation

w A (z) + ut A, (a) + o + Agls) =0,

v

ou les A; (z) sont des fonctions entiéres, la définition de N (r, a)
étant la méme pour u — a que pour f— a.
On remarquera que la propriété de N (r, Z) montre que, pour

les fonctions d’ordre nul de la classe normale
b

T (r, f) ~ log M (r, ).

4h. Formule de Nevanlinna.

I,a formule de Jensen, dans le cas f (0) fini non nul donne la
valeur de | f (0) | au moyen des modules des zeros, des poles
et de la moyenne de | f (z) | pour | z| = r; elle a éte généralisée
par R. Nevanlinna. On peut obtenir sa formule en faisant une
transformation homiographique du cercle de rayon r sur lui-méme.
On a | :

& r

o 1700)1 = 5 [ Tog |70 [do + D log g — S log gy (41

r
] 1 AR
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les b; étant les poles et les g, les zéros de f (z) intérieurs au cercle
| z | < r. On obtiendra une formule donnant |f(z) |, | 2] <7
en faisant la transformation

g=r 22 F (%) = f(a) (12)
r?—zyz
et en appliquant la formule (11) & F (C). La transformation de
I'intégrale s’effectue en posant pour z = ret®, ¢ = re', ce qui
montre, en prenant les dérivées logarithmiques dans (12), que

r2 — |z |?

. i
7’2+IZolz—erzolcos(q;_.%)d‘p’ g = |z e .

do =

On obtient ainsi la premiére formule de Nevanlinna

2 .
log 1) | = 9= | 108 11 06%) | oo g Tt o g 44
D n
—[—210g|<b(zo,bjl—zldg!d)(zo,ahl, (13)
avec 1 1
® e o) = I (14)

De cette formule, R. Nevanlinna en déduit une autre don-
nant la dérivée logarithmique V.

45. Comparaison de T (v, f) et log M (r, f) lorsque f (z)
est une fonction entiére.

Si f (z) est une fonction entiére, on a

2T

T ) = mir, @) = 5= | log" [ (¢"%) |dp < log M(r, f) .

0

D’autre part, la formule (13) dans laquelle les termes relatifs
aux poéles disparaissent et ou, d’apres (14) et (12), | D(z,, a;,) l > 1,
donne .

9

log | f (%) | - f0g+|fre“" %d@
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puisque
r® 2 [P —2r | 3] cos (b — o) = (r—12])?.

Il s’ensuit qlie, en appliquant cette inégalité au point z, de
module kr, £k << 1, en lequel | f (z,) | = M (kr, f), on a

1+ k

log M (kr, f) <1_/€T(r,f).

De ces deux inégalités, on déduit (Nevanlinna)

1 —k

L g Mk /) < T /) <logMinf), 0<k<t. (19

Il en résulte que

Tm log T(r. /) _ 7 loge M (r, f)
r=c lOgr  r=ow log r

Pordre de T (r, f) est égal a Dordre de f(z) défini a laide de

log M (r, f).

On pourra définir la classe convergente ou divergente de
I’ordre fini positif p au moyen de T (r, f) au lieu de log M (r, f).
On pourra définir un ordre précisé de T (r, f) comme on I'a
défini a partir de log M (r, f). Toutes ces définitions s’étendront
d’elles-mémes au cas ou f (z) est méromorphe.

La relation (15) reste évidemment imprécise dans les cas
généraux, ou si ’on préféere, lorsque f (z) est une fonction entiére,
la connaissance méme trés précise de log M (r, f) fournie par les
coefficients du développement taylorien ne donne pas une
connaissance précise de T (r, f). Par exemple, si f (z) est parfai-
tement réguliére par rapport a un ordre précisé p (r), (15) montre
seulement que |

H {1 —0 (1)) 0 < Tr, f) < (140 (1)) 0,

ou
_A—k
e 1+ k

H k°, k<1
On pourra choisir & pour obtenir le maximum de H..
L’emploi de la relation (15) et des inégalités entre log M (r, f)
et log M (r, /') obtenues au n° 4 fournira des relations entre T (7, f)
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et T (r, )L Dans le cas général des fonctions méromorphes
I’étude de ces relations utilise la considération des propriétés de
la dérivée logarithmique 42).

46. Remarques.

I. Dans quelques cas simples, le calcul approché de T (r, f)
pour une fonction entiére est aussi facile que celui de log M (r, f).
C’est le cas pour les fonctions élémentaires, pour les fonctions
de Mittag-Leffer, pour les fonctions d’ordre non entier dont les
zéros ont tous le méme argument et 7 (r) ~ r*™. C’est aussi le
cas pour les fonctions vérifiant certaines équations fonction-
nelles simples. Ainsi, pour les solutions des équations de Poincaré

fles) =P (z,f(a)) , IsI>1,

ou P (z, y) est un polyndéme dont le degré ¢ en y est supérieur
a 1. On obtient

T(rlsl,f) = ¢T(r,f) + 0 (log r)
et, en itérant,
T (ro|s ™ f) o~ B (rg) g,
ce qui donne en posant r = ro | s "

log ¢
T . 1 e -
rof) o~ Allogr)r®, o = BL

?

A (z) étant une fonction périodique de période log | s|. A (x)
est effectivement non constante dans certains cas, par exemple
lorsque

qui est solution de
flas) = (1 —2)[f (57 .

I1. Soit une fonction méromorphe pour laquelle, pour
r > Tos

T (r, f) < A (log )2 , A fini. (16)
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On aura une inégalité analogue pour N (r, o) et N (r, s). On
pourra donc former des produits infinis g (z) et A (z) admettant
respectivement pour zéros les poles et les zéros de f(z) et on
aura pour ces fonctions

Tim 108 M (r, ¢)

7-=00_W<00, (P:g et CP:h. (17)

Le quotient

n’aura plus ni poles ni zéros et I'on aura, d’aprés I'inégalité

log" (wo) <log® uw + log* ¢,

T, K) <T(rf)+T(r g —{—T(r,%—)

T<r,%> — T(rh) + h

donc
T (r, K) < B (log r)? , r>rg.

Or K (z) est une fonction entiére sans zéros, donc de la forme €@
d’apres la formule (15), sa partie réelle pour | z | < r sera bornée
par B, (logr)?, ce sera une constante d’aprés le théoréme sur la
- partie réelle (n° 18). Toute fonction méromorphe vérifiant (16)
est le quotient de deux fonctions entiéres vérifiant (17).

III. D’une fagon générale, une fonction méromorphe f (z)
peut se mettre sous la forme du quotient de deux fonctions
entiéres g (z) et & (z) sans zéros communs. On a

f=—;3, T(rf) = N(r, o) + m{r, =) ,
L e | A0
+ re
m (r, ) :ﬂb} log g(rei<P)

et, d’aprés le théoreme de Jensen

2m .

N (r, @) + log [e,| = 3= [ log |g (e |a
N 0
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Si|h|<|g|lelog" dans m(r, ) est nul; si |A| > |g]| le
log™ est égal a logl%‘ — log | | — log | g |. Par suite, on a

T
T, f) = log [o| + 5= | log 1l de
0
A (Z) étant le plus grand des deux nombres | % (z) | et | g (2) .

IV. CARACTERISTIQUE DE SHIMIZU-AHLFORS.
Foncrion L (7).

47. Aire couverte par les valeurs de f (z).

Considérons la fonction Z = f (z) méromorphe pour |z | <7
et représentons les points Z sur la sphére de diamétre 1 déja
envisagée au n° 42. Lorsque z parcourt le cercle 2] <r, le
point Z décrit une surface de Riemann transposée sur la spheére,
¢’est en général une surface & plusieurs feuillets. Nous appelle-
rons « S (r) Paire totale de ces feuillets. On a vu que, a I’élément
d’aire dX dY du plan des X, Y (Z = X 4 ¢ Y) correspond sur
la sphére un élément d’aire

dXdyY

=Tz

D’autre part, & ’élément d’aire tdide du point te** du plan z,
la fonction Z = f (z) fait correspondre I’élément d’aire
dXdY = |f () |2tdido .

On a done, sur la sphere,

T
4o = T 7@

5 tdtdo |

et
r 2T

S (r) = f/(tew)lz |
o ofo( G+ e e W

Le second membre peut s’écrire autrement; n (r, Z) est le nombre
des feuillets de la surface de Riemann sphérique qui recouvrent
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I'image de Z. On a donc aussi

e ] »

nS(r) = ’ J n(r, Z) do, @)
Z .

v

dw, étant 'élément d’aire de la sphére ¥ au point image de Z.
En remplacant r par ¢ < r, divisant par ¢ et intégrant de 0 & 7,

on obtient
.J SL = ——J fN (r,Z)d

et d’aprés le théoreme de Shimizu du n° 42, cette quantité est
égale a la fonction T (r, f) & une constante additive prés qui est
bornée quel que soit r. Il est donc loisible de prendre comme
fonction caractéristique, a la place de T (r, f) la fonction
A
0
dont la dérivée donnée par (1) ou (2) a une interprétation géo-
métrique simple. C’est ce qui avait été proposé par Bloch et a
été utilisé systématiquement par Shimizu et Ahlfors 43,

48. Fonction L (r).

Lorsque le point z décrit la circonférence | z| = r, I'image
sphérique de Z = f(z) décrit une courbe I' = T',, qui est la
frontiére de la surface de Riemann décrite par Z et dont I’aire
est ©S (r). Ahlfors a introduit, & c6té de la fonction S (r), la
longueur L (r) de cette courbe I'.. A 1'élément d’arc rdo de la
circonférence C,, |z| = r, la transformation Z = f(z) fait
correspondre I'élément | f' (re*®) | rd¢ et I’on a sur la sphére un
élément,

|/ (re*®) | rdo
1+ ] (re) [
Par conséquent,
2
N — ’ ,f’(rei¢)‘rdcp.
Lo = | 1+ [ (re®) 2 (3)

0
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49. Inégalité fondamentale.

D’apres ’égalité (1), on a

=~

2 .
as _ 1 _ |yl S
r ’”bj U+ T e PR W
et, en appliquant l'inégalité de Schwarz a Dintégrale (3), et
tenant compte de (4)
as

Lr)<m—-2nr.

dr
Ainsi
L(r)2<2n2r‘fl—§- (5)

On déduit de cette inégalité que, si le point a I'infini est
point essentiel, L (r) est en général infiniment petit par rapport
a S (r). Car, admettant toujours, comme au n° 43, le théoréme
de Picard, T (r, f)/logr n’est pas borné, donc S (r) n’est pas
bornée. Si S (r) n’est pas borné, et si 'on suppose que dans
certains intervalles, pour lesquels r > ry, on a

1
5 T ¢
Lin>8@H* , >0,

on a, dans ces intervalles, d,

la variation totale de logr dans ces intervalles est finie. Ainsi, &
I’extérieur d’intervalles dans lesquels la variation totale de logr
est finie, on a

1
34—3
Lr) <8(r) , €>0.

(A suiore).
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NOTES

22) Sur chaque feuillet, on ne conserve que les segments de rayon (ou le rayon)
sur les deux bords desquels z a des valeurs distinctes.

23) Voir VALIRON, G.: Sur les surfaces de Riemann définies par certaines fonctions
entiéres, C.R. Acad. Sci., Paris, 208, p. 711-713 (1939).

24) Pour une construction de fonctions plus générales, voir VALIRON, G.: Sur les
singularités de certaines fonctions holomorphes et de leurs inverses, J. Math. pures appl.,
15, p. 423-435 (1936). Pour I’exemple particulier donné ici, voir VALIRON, G-.: Sur les
singularités des fonctions holomorphes dans un cercle. C.R. Acad. Sci., Paris, 198,
p. 2065-2067 (1934). ’

25) On suppose, ce qui est loisible, L et L’ issus d’un méme point et ne se coupant

pas.
26) I1 est équivalent de dire que Iindicatrice T (r) de Nevanlinna de la fonction
T ‘
méromorphe, qui sera définie au § I1I, vérifie la condition a-a—g(:)—)g

27) Voir VALIRON, G.: Sur le nombre des singularités transcendantes des fonctions
inverses d’une classe d’algébroides, C. R. Acad. Sci., Paris, 200, p. 713-715 (1935).

28) Voir TUMURA, Y.: Sur les théorémes de M. Valiron et les singularités transcen-
dantes indirectement critiques, Proc. Imp. Acad. Jap., 17, D. 65-69 (1941).

29) Voir VALIRON, G.: Sur les valeurs asymptotiques de quelques fonctions méro-
morphes, Rendic. del Circ. Math. di Palermo, 49, p. 415-421 (1925).

30) On suppose Zy fini; si Z; est infini on considére Z comme variable.

31) Si O est infini, on prend 1/g pour variable.

32) Le théoréme d’Iversen est demontré par son auteur d’une autre facon : IVERSEN,
F.: Recherches sur les fonctions inverses des fonctions méromorphes, These, Helsing-
fors, 1914. Pour la démonstration donnée ici voir VALIRON, G.: Démonstration de
I’existence pour les fonctions entiéres de chemins de détermination infinie, C. R. Acad.
Sci., Paris, 166,, p. 382-384 (1918), et NEVANLINNA, R.: Eindeutige analytische Funk-
tionen (Die Grundlehren der Mathematischen Wissenschaften, Band 46), p. 275,
Springer, Berlin, 1r¢ édition, 1936.

33) Voir AuLFORs, L.: Untersuchungen zur Theorie der konformen Abbildung und
der ganzen Funktionen, Acta, Soc. Sci. Fennicae, 1, Nr. 9 (40 pages), (1930); AHLFORS, L.:
Uber die asymptotischen Werte der meromorphen Funktionen endlicher Ordnung.
Acta Acad. Aboensis. Math. et Phys., 6, Nr. 9 (1932); NEVANLINNA, R.: loc. cit.: 32,
P. 293.

34) Voir VALIRON, G.: Remarques sur les domaines complets d’univalence des
fonctions entiéres, Bull. Sci. math., (2), 63, D. 132-138 (1939), et VALIRON, G.: Division

Z—
en feuillets de la surface de Riemann définie par w = Ez—i + h. J. Math. pures appl.,
(IX), 19, p. 339-358 (1940).

35) Smimizu, T.: On the foundamental domains and the groups for meromorphic
functions, Jap. J. Math., 8,, D. 175-304 (1931-1932); MarTY, F.: Recherches sur la
répartition des valeurs d’une fonction meéromorphe (Thése), Ann. Toulouse, (3) 23,
p. 183-262 (1932). :

36) CARTAN, H.: Sur la fonction de croissance attachée & une fonction méromorphe
de deux variables, et ses applications aux fonctions méromorphes d’une variable,
C. R. Acad. Sci., Paris, 189, p. 521-523 (1929).

37) VALIRON, G.: Sur les fonctions algébroides méromorphes du second degreé, C.R.
Acad. Sci., Paris, 189, p. 623-625 (1929).

38) Smimizu, T.: On the theory of meromorphic functions, Japanese Journ. of
Math., 6, p. 119-171 (1929). — La restriction p > po, faite ci-dessus, tombe puisque

1
pour ¢ < 1, on peut remplacer T (r, f) oar T (r, —f—).

39) Voir VALIRON, G.: Sur la distribution des valeurs des fonctions méromorphes,
Acta Math., 47, p. 117-142 (1925); NEVANLINNA, R.: Le théoréme de Picard-Borel et
la theéorie des fonctions méromorphes (Collection de monographies sur la théorie des
fonctions), Gauthier-Villars, Paris, 1929; LitTrLEwooD, J.E.: Mathematical notes.
X : On a theorem of Zygmund, J. London Math. Soc., 4, D. 305-307 (1929); VALIRON, G.:
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Sur quelques propriétes de fonctions algébroides, C. R. Acad. Sci., Paris, 189, p. 824-
826 (1929), et: Sur les fonctions algébroides méromorphes, C. R. Acad. Sci., Paris, 189,
p. 729-731 (1929), ainsi que: loc. cit.: 37); AHLFORS, L. : Beitrage zur Theorie des mero-
morphen Funktionen, C. R. du 7° Congrés des mathématiciens scandinaves tenu o Oslo,
19-22 aolit 1929, p. 84-88 (1930).

40) AHLFORS, L.: loc. cit.: 38,

41) Voir NEVANLINNA, R.: loc. cit.: 32; loc. cit.: 39, et VALIRON, G.: loc. cit.: 3.

42) Voir, 4 ce sujet, VALIRON, G.: Acta, Math., loc. cit.: 39, et VALIRON, G.: Sur la
dérivee des fonctions algébroides, Bull. Soc. math. France, 59, p. 17-39 (1931), ainsi que
NEVANLINNA, R.: loc. cit.: 32,

43) BrocH, A.: Les fonctions holomorphes et méromorphes dans le cercle unité.
(Mémorial des sciences mathématiques, fasc. 20), Gauthier-Villars, Paris, 1926;
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