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FONCTIONS ENTIERES D’ORDRE FINI
ET FONCTIONS MEROMORPHES *

par Georges VALIRON
FONCTIONS ENTIERES D’ORDRE FINI ET D’ORDRE NUL

I. L’ORDRE DE LA FONCTION ET L’ORDRE
DE SA DERIVEE. '

1. Rappel du théoréme de Cauchy sur le module maximum.

On suppose connu le théoréme de Cauchy: si f (z) est holo-
morphe dans un domaine D et si G est une courbe simple fermée
de D, rectifiable, dont I'intérieur appartient a D, ona

f ) = 1 g

2wc u—z
“ c/

On sait qu’on en déduit le développement de Taylor: si z, est
un point de D, on a

< 1 fw
f(Z) = %an (Z—- ZO)nr’ a’n == 2ZTCJ (u—z)n+1 du

c/

C étant une courbe entourant z, et dont l'intérieur appartient
a D. La série converge uniformément et absolument a I'intérieur
du cercle de centre z, tangent a la frontiére de D.

En particulier, si f (z) est holomorphe pour | z [ r, ¢’est-a-
dire dans un cercle | z| < r" avecr’ >r, on a

(o2}

=S,
0

*) Série de cours et de conférences sur la théorie des fonctions entieres, faits en

1948 au Caire et & Alexandrie, d’aprés le manuscrit revu et mis au point par le pro-
fesseur Henri MILLOUX. '
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2 G. VALIRON

avece
1 f(u)du

a, = — —_

n ) n+1 ?
2an u
|ul=r

et, en mettant en évidence les modules et arguments:
= A, w=rd () =B, 0) 6000

on peut écrire
o
MA — %fB (r, 8) 10000, =01 ;5
0

ou, puisque A, est réel:

T
MA — %IB (r,6) cos [C (r, 0) — 0, — n0]d6 . (1)
0

Les fonctions B (r, 0) et C (r, 6) sont fenctions continues
de 6. Si M (r) désigne le maximum de B (r, 6) lorsque 6 varie
de 0 & 2r, on déduit de (1)

A<M (). (2)

Peut-on avoir I’égalité ? Pour qu’il en soit ainsi, il faut et il
suffit, eu égard & la continuité, que, quel que soit 0,

B(r,6) =M(r), C(r,0 —6,—n0=2ikn, F&entier.

S’il en est ainsi, on aura pour P # n,
2m
1 & ’ P
AP = 2—7—th(r) c0s (6, — 6, + (n — p) 6) 46 = 0 .
0

Par suite, I'inégalité (2) est effectivement une inégalité sauf si
f (2) est un monémp: f(z) = a, 3. |

En particulier, si f (z) ne se réduit pas a une constante pour
|z] <r, on a |f(0)| <M(r). Le maximum de 1f(z)| est
atteint sur le contour | z| = r. On déduit de 14 le théoréme de
Cauchy sur le module maximum :
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TutortME. — St f(2) est holomorphe dans un domaine borné D,
est continue dans D et sur sa frontiére F et n’est pas une cons-
tante, le mazimum de | f (z) | est atteint sur la frontiére.

Car | f (2) | est continue dans D + F, donc a un maximum M
qui est atteint en un point au moins de D + F. Si en un point z,
de D on avait | f (z9) | = M, [ (2) serait constant dans le cercle G
de centre z, tangent & la frontiére F et |/ (z)| = M. En un
point z, de C on aurait encore | f (2) | = M, donc f(2) serait
encore constant dans le cercle de centre z; tangent a F, cette
constante étant la méme que dans C, et ainsi de suite.

COROLLAIRE. — Si { (z) est une fonction entiére, donc

0

fla) = S aya"
0

la série étant convergente quel que soit z et st M (r) = max
| £ (rei®) |, M (r) est une fonction continue et croissante de T.

En outre, si f (z) n’est pas un polyndme, ce que nous suppose-
rons toujours lorsque nous parlerons de fonction entiére, I'iné-

1 : :
_Qig_l\f_(’i n’est pas borné et dépasse tout
ogr

nombre donné dés que r est assez grand.

galité (2) montre que

9. Théoréme d'Hadamard sur la convexité de log M (r).
Si I'on pose
X =logr, V(X)=IlogM(r).

la fonection V (X) est continue et croissante. adamard a moniré
que c’est une fonction convexe. Pour le montrer, il suffit de prouver
que X;, X, X, étant trois valeurs telles que X; < X < X,,
on a

V(X) —rX < V(X;) — kX, (3)

si h est défini par

V(Xy) — hX, = V (Xy) — hX, (4)

Or, h étant ainsi défini, considérons la fonction

fla)z™
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qui, en général, n’est pas holomorphe dans la couronue
e*r < |z| < €*2, mais qui est analytique et de module uniforme.
Cette fonction n’est pas constante sans quoi f (z) serait un mo-
néme, le maximum de son module est donc atteint sur la fron-
tiére. Donc, comme le module a la méme valeur sur les deux
cercles frontiéres:

exp (V (X;) — hX,) = exp (V (X, — hX,) ,

le module en un point intérieur est inférieur au module sur la
frontiére, ce qui donne I'inégalité (3), moyennant (4).

Conséquence. — D’apres les propriétés des fonctions convexes,
V (X) a une dérivée & gauche et une dérivée a droite en chaque
point X, ces dérivées étant croissantes. Prenons, par exemple,
la dérivée a gauche de V (X)), soit w (X), fonction qui peut avoir
des discontinuités. On a

V (X) = log |1 (0 1+jw

(en supposant f (0) % 0). En revenant a la fonction log M (r),
ce qui se fait dans I'intégrale en posant u = logt, on obtient

log M {#) = log 11 (0) | + [ v (0

0

la fonction v (t) = w (u) étant croissante. Si [ (0) = 0, on peut
prendre

log M () =logM(1) + [ T 0®
1

Remarques. — 1. Ces égalités impliquent la convexité, puisque
¢ (t) est supposée croissante. Elles valent pourvu que f (z) soit
holomorphe pour | z| < r.

I1. La fonction ¢ (¢) est indéfiniment croissante lorsque f (z)
est une fonction entiere.

I1I. Blumenthal a montré que log M (r) est analytique par
intervalles. |
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3. Définition de Uordre.

Si f (z) est une fonction entiére, on définit son ordre (qui est
un ordre de croissance) par

(log, U = log (log U)) .

o est un nombre non négatif, qui peut étre nul, fini positif ou
infini. Par exemple, Pordre de ¢*® ou P (z) est un polynome est
égal au degré de ce polyndme, 'ordre de exp (¢*) est infini.

On voit aisément que les fonctions

i, i@z, 1@ +P@

ol f (z) est donnée et ou P (z) est un polyndme arbitraire donné,
ont le méme ordre.

4. Comparaison de Pordre d’une fonction et de Uordre de sa dérivée.

Si f (2) est donnée, si M () est le maximum de son module,
et M! (r) le maximum du module de sa dérivée f'(z), nous allons
comparer les fonctions M (r) et M* (r). |

Soit z, un point du cercle | z| = Renlequel| f (z) | = M (R),
et soit z, un point pris sur le rayon joignant l'origine au point
7,- On a, en intégrant le long du rayon,

fla) = Fler) + [ 1 ) du
done, sir = |z |, o
M (R) < M () + (R— 1) M (R) ,

car M! (r) est croissant. Par suite

w (r) > LRI M0,

Si r tend vers R, on obtient

dM (R)

1
M (R) > S

la dérivée étant la dérivée a gauche. D’ailleurs M! (R) étant
continue, on peut aussi prendre la dérivée & droite. On a,
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d’apres (6),
1

d

et, puisque ¢ (R) croit,
log M (R) —log M (1) < ¢ (R) log R,

ce qui conduit aux inégalités

o(r) ' (7)

et

M (r) log M (r) — log M (1)
r log r

M (r) > 1), (8)
Pour obtenir une inégalité de sens contraire, nous utilisons
Pintégrale de Cauchy. On a

2iw) (u—2)
c

Prenons z, de module r, tel que | /' (z) | = M (), et pour C
un cercle de centre z et rayon R — r, (R > r), donc | u — z | =
R — r. Nous obtenons I'inégalité

M (R)

M () < gt - (9)

qui n’est pas trés précise puisque nous remplacons sur tout C,
| f (») | par M (R). D’apres (6), on a

R
logM(R)zlogM(r)—}—fo o &
donc

log M (r) < log M (r) 4 log

R —I—f R>r. (10)

Le second membre est une fonction de R dont le minimum

correspond a
¢ (R) 1

,R R——r
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ou

R = 1 - (1)

¢ (R)

1 —
Le second membre de I'inégalité (11) est d’ailleurs inférieur &

= r(1 + o(t)).

De (10) on déduit

log M (r) < log M (r) + log

v (R) R
-+ ¢ ®)log T

donc, comme d’apreés (11)

o(R)logI;-z—o(R)log(l—a—(lﬁ) =1-+0(1),

on arrive finalement a l'inégalite

ey (R)

M (r) < M (r) (4 +0(), R =g g=rit+ol) (12)
La présence du nombre e dans cette inégalité semble étre
imputable & la méthode, est-a-dire a Pemploi de I'inégalité (9)
qui est trop grossiére.
Les inégalités (7) et (9) fournissent ce premier résultat:

TutoriME. — Llordre de la dérivée d’une fonction entiére est
égal a Dordre de cetle fonction.

Car, puisque ¢ (r) est indéfiniment croissant, (7) entraine

M (r) > , sir>ry,

et si 'on prend R = 2r dans (9), on a

M(@2r)

r

M (r) <

Ainsi
log M (r) — log r < log M* (r) < logM (2r) —log 7,

et puisque le quotient log M (r): log r finit par dépasser tout
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nombre donné, on a

(1— 0 (1)) log M () < log M* () < log M (27) ,

— — 1 .
im log, M (r) < Tm log, M1 (r) < Tm log, M (2 r) '
r=w lOgr r—w lOgr rew log 27

(puisque (log 2r): log r tend vers un). Ceci démontre le théoréme.

5. Cas des fonctions d’ordre fini.
Si f (z) est d’ordre fini p, on a, d’aprés la définition de ’ordre,
s1 petit que soit ¢ > 0,

log M (r) < rf*e sir>rle,
et si p > 0,

log M (rp) > rp"""’ pour r,y >r,, limr, = « .

On déduit de 1a des inégalités analogues pour la dérivée ¢ ().
En effet, si R > r,

R
o 17] log$<fo(t)(£;<logM(R) < RP*
T

et en prenant R = 2r, et r assez grand,

(2 r)Pte

o+2¢
log 2 i

o(r) <

et puisque ¢ est arbitrairement petit, on a encore
0 (r) < rete ' r>r (e .

D’autre part, si p > 0, il existe une suite de valeurs r;, r;,
rq', ... tendant vers l'infini, pour lesquelles ¢ (r) > r*=. Car si, a
.partir d’une valeur de r, soit 7, on avait ¢ (r) < r°, on aurait

p-¢ __ . 'p-¢
r 7‘0

r
log M (r) < log M (ry) +fzp+=dt = log M (r,) -+

Ty

Pp—e

L’ordre serait au plus ¢ — e. Ainsi, si l'ordre est p, Pordre de
v (r) est aussi p, ce qu'on peut écrire

T log el _ o pmlog M)
r=w lOgr e lOg P
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Inversement, on voit de suite que, s ¢ (r) est d’ordre p, f (2)
est aussi d’ordre p, et le résultat vaut aussi pour p infinl.

Utilisons alors les inégalités (7) et (12). Si petit que soit
¢ positif, on aura pour r = Iy

M (r) > M () o
et pour r > r' (¢),
M () < M (r) P e (1 4 0 (1)) < M () 772 (13)
si r est assez grand. On déduit de ces deux inégalités que

Tim log M, (r) — log M (r) _
rew log r

o—1 . (1%)

D’autre part, (7) et (13) donnent a fortiorti,

<
. x . log r
dés que r est assez grand. Par suite, puisque j5—yrr; tend vers
zéro,
1
I log M (r) 1 (s

N0 e M (1)

Pour toute fonction entiére d’ordre fini, log M () et log M* (r)
sont asymptotiqguement équivalents.

Ordre inférieur. __ L’ordre inférieur A d’'une fonction entiére
est défini par
logy M (r)

A V:: lim
log r

r=w

D’aprés (15), Uordre inférieur d’une fonction d’ordre fini est le
méme que celui de sa dérivée. D’apres (7), et (9) ou l'on prend
R = 2r, il en est encore de méme si Pordre est infini.

L’inégalité (13) montre que, si f(z) est d’ordre p inférieur
3 1, on a, & partir d’une valeur de 7, M! (r) < M (r) puisque
o + 2¢ — 1 est négatif si ¢ est pris assez petit. Donc, puisque
Pordre se conserve dans la dérivation, on a, si m est donné et s
Mm (r) désigne le maximum de | f™ (z) | pour | z| =,

M(r) >M(r) > .. >M"(r) ~sip<1 et r>ry(m,f) .
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De méme, I'inégalité (8) et la conservation de 'ordre inférieur
dans la dérivation, montrent que, pour une fonction d’ordre
inférieur A supérieur a 1, on a

M(r) < ML(r) < . < M™(r)  sir>nr(mf) .2

6. Notion d’ordre précisé L.

On a cherché a préciser la notion d’ordre afin d’obtenir des
résultats plus serrés. Lindel6f a employé comme fonctions de
comparaison de log M (r) les fonctions r®, r° (log r)®, r° (log r)*
(log, 7)°2, ete., ou p est positif. Mais ces fonctions ne permettent
pas d’approcher de fagon également précise de toute fonction
jouissant des propriétés de croissance de log M (r). Pour obtenir
dans tous les cas d’ordre fini des résultats comparables, on peut
introduire la notion d’ordre précisé L.

Si f (z) est une fonction entiére d’ordre fini positif o, M (r) son
module maximum, on peut définir une fonction p (r) jouissant
des propriétés suivantes: p (r) définie pour r > 0 est continue,
dérivable a droite et a gauche de chaque point et I’on a

Jme(r) =9, limp' (r)rlogr=20,
—log M (r) o)
llzlg I 1 avec Uf(r)=r

o (r) sera un ordre précisé L.

Les deux premiéres propriétés permettent de calculer asymp-
totiquement les intégrales portant sur U (r) et ses puissances
comme si p (r) était constant et égal a p. C’est une conséquence
du fait que

= p(r) 4+ o’ (r)rlogr—op . (16)

dong, si £ > 1 est donné

Y ke kr
log U (ir) —10g U (1) = [ i dz = [ (o -+ 0 ) 5 = (o + o (1) log ,
ou |
lim T e
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Il suffit de montrer qu’on peut construire o (r). A cet effet,
Jdéfinissons une suite de nombres 7, tels que ry > 25, puis

1
log M (r,) = log M (r,1) <1 - —[3>, p=2,3,.. - (17)

| Onalimr, = . Soit # un nombre compris entre 0 et p. Pour

pP=x
- r < r; DOUS prenons p (r) = ¢ (r,). Pour r > r, DOUS prenons

. pour p (r) le plus grand des nombres § et

log, M (7
8120 (p)+1og3r—10g3rp sir, =1,
g7y
yp(r}:‘log M(r)
2 ol .
L Tog 7, — logy r + logs 1y sir, <T.

1,es seconds de ces nombres sont en nombre fini; il y aune infinite
de nomb.res de la premiére ligne, mais puisque [log, M (rp)]: log T,
a pour limite superieure o et puisque — logs 7, tend vers — o,
il n’y a qu'un nombre fini de ces nombres qui sont supérieurs ou
égaux a P. Le maximum existe donc. En outre, sip(r) =y (rp)
avecr, >, on a encore o (r) = Y, (1) entreretr,;sip (‘r) = ({*p)
avec r, < .r, on a encqre o (1) = Y, (r) entre r, 4 et . Par suite
o (r) coincide successivement avec des y, (r) ou avec B, et
o (1)) = Yp (rp) pour une suite infinie de valeurs r . Ces considé-
rations peuvent étre rendues intuitives si on représente gé0-
métriquement les fonctions y, (r).

On a donc
’(r)-L————i—1 ou =0
d ~ ~rlogrlog,r v

done ro’ (r) log r tend bien vers 0. En outre, d’aprés (16), il suffit

de prendre r; tel que
1

— > 0
log,

B

pour que U’ (r) soit toujours positif, done U (r) croissant. Pour
tout r, on a '
log, M ()

° (") Z “Togr,

ou .
U (rp) > log M (rp) ,
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I’égalité valant pour une suite infinie de valeurs p. Pour
r, <r <r,. ona, puisque U (r) croit

log M (r,,,4) - log M (r)
/1_|_1 1..}_1
p p

U(r) > U(ry) =>1log M(r,)) =

il s’ensuit bien que
= log M (r)
}1:2 U{r) L.

Toutes les conditions imposées a p (r) sont ainsi vérifiées
sauf une seule. La fonction p (r) ainsi construite ne tend pas
nécessairement vers p. Si p (r) ne tend pas vers p, on la rem-
place pour chaque r par la plus grande des valeurs de p (r)
et d’une fonction croissante constante par intervalles tendant
vers p (par valeurs inférieures & p) et assez lentement pour que

logs M) o our une suite infinie de valeurs r..
log r g

Ceci montre aussi, en utilisant aussi une fonction décroissante
constante par intervalles et tendant vers p, lorsque p (r) primi-
tivement construite reste supérieure a p dans une infinité d’in-
tervalles, que 1'on peut obtenir un ordre précisé p (r) qui soit
monotone (au sens large) a partir d’'une valeur de r.

o (r) reste égal a

7. Emploi de Uordre précisé dans Uétude de la relation
‘entre M (r) et M! (r).

Si p (r) est un ordre précisé L pour f (z), ¢c’est aussi un ordre
précisé L pour f (z) et inversement. C’est une conséquence
immédiate de I’équivalence asymptotique

log M, (r) ~ log M (r) .

Si ¢ (r) est ordre précisé L de f (z) et ¢ (r) la dérivée définie par
la formule (6), si petit que soit ¢ positif, il existe une suite de
valeurs r,, tendant vers I'infini telles que

o(r) > (1 —eg) pr*™ | r=ry- (18)

Sinon, on aurait a partir d’une valeur r, de r
) 0 b)

o () < (t—g) pr*®
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donc, pour r > g
.
log M (r) < log M (ro) + [ (1 —¢) ott® gt
, To

Or

U'(z)NU(t)-‘:-,

done, si r, est assez grand, on a

ofWt = (1 4 U (), Inl<z3

et par suite

r

fsz“H at < [U() — 0 (ro)]('l + —2—> ,

To
ce qui donnerait

log M (r) <10gM(r0)—(1—s)<1 +52—>U(r0) + ('1—5)(1 +—€2—>U(r)

et entrainerait

— log M (r)

q e

Ainsi (18) est vérifiée et I'inégalité (7) montre que, pour une
suite infinie de valeurs tendant vers l'infini, on a,

M (r) > M (r) (1 —¢) pre™t .

Autrement dit,
—  M!(r)
lim

r=o M (7‘) pl‘p(r)—1 - (19)

La limitation obtenue dans l'autre sens est moins bonne.
Tout d’abord, on a

Rr
o(r)log k < [ o (1) % < log M (kr) < (1 + ¢)r*@

d’apres les propriétés de p (r). Donc

k® .
()(7‘) < (/1 —l— E)mf'p(r) .
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Comme le minimum de k°: log k est pe, on voit que
o)< (1 +¢epeUr), Ul)=rm, (20)

Cette inégalité, ou ¢ est arbitrairement petit, vaut & partir d’une
valeur de 7. On a d’ailleurs aussi pour une suite de valeurs r,
tendant vers l'infini

p(rf< (1 4+ pU(r.

Car, s1 T'on avait ¢ (r) > (1 +€)pU(r) ~ (1 4+¢)rU'(r) a
partir d’une valeur de r, 'intégration immédiate de (6) montrerait
que p (r) n’est pas un ordre précisé L.

Portant la valeur (20) dans l'inégalité (12) et utilisant la
propriété de U (kr), on voit que

ML (r) < M (r) e2 o™ (1 4 0 (1)) . (21)

La présence du facteur e? introduit par la méthode ne semble pas
s’lmposer.

8. Cas des fonctions a croissance réguliére de Borel.

Les fonctions d’ordre fini p positif, réguliéres au sens de
Borel, sont les fonctions pour lesquelles 'ordre inférieur A est
égal a I'ordre p. On a donc

log, M (r)

logr e~

I’inégalité (8) donne alors, si petit que soit ¢ > 0, si r est assez
grand,

En rapprochant ce résultat de I'inégalité (13), on voit que, pour
ces fonctions, '
lim log M1 () — log M (r) _

—w -~ logr p—1. - (22)

On peut observer que, dans ce cas, la fonction ¢ (r) est aussi
a croissance réguliére. Car on a

log M (r) —logM (1) < ¢ (r) logr ,
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donc, pour r assez grand,

En rapprochant du résultat du n° 5, on obtient

im logo(r) _
o lOg T

9. Fonctions a croissance parfaitement réguliére par rapport

a un ordre précisé L.

On dira que la. fonction f (z) est a croissance parfaitement
réguliére par rapport & un ordre précisé p (r) lorsque

lim log M (r)

im == =1, U (r) = re™ (23)

Dans ces conditions, on a 1’égalité asvmptotique
) g ymp q

r

f(, (t) % ~O ,,p(r) -,

0

Cette égalité peut étre dérivée comme si p (r) était constant et
~ remplacé par =. C’est-a-dire que I'on a
p(r) cop e (24)
En effet, en prenant £ fini, on a

Rr
- d
o (r) 10gk<./0(t)£=logM(kr)—logM(r) < o (kr) log k

r

et le membre intermédiaire est égal &

(1 4+ ) P ke — (1 4 o) o™

| m| et | n"| étant moindres que e arbitrairement petit positif
sir est assez grand. Cette différence peut s'écrire

1+ 0D —1) 470, ) < ac
On obtient ainsi

)kp__,l 72”

e(r
ofr) < (14 7)r e T +10gk

e < (kr) .
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Sik =1+ §etsidtend vers zéro

—1 (1 8P —1
logk = log (1 + 3)

=p+0(1)3

tend vers p. Prenons donc cette valeur 1 - § pour k, 3 étant
treés petit, puis r tel que ¢ < §2. Nous aurons

o(r) <erf™ (4 o0(1))<o(r(t +o0(1)),

ce qui démontre (24).
- L’inégalité (7) donne alors

Mi(r) > M(r)pr*™t (1 —0(1)) (25)
tandis que l'inégalité (12) conduit seulement a
M (r) < M (r) per*™1 (1 4 o (1)) . (26)

On peut tenter d’améliorer ce dernier résultat en remplacant (9)
par une inégalité plus précise. La formule de Cauchy du n° 4
donne en réalité

M () < Qn—(l;___r)fM(rju (R — r) cos 6) d 0

et 'on a
r+(R-r)coso

log M (r + (R — 7) cos 6) — log M (r +f UL

t

En prenant
r

R——-r—pU()

et utilisant (24) et les propriétés de U (r) on trouveralt que dans
(26) on peut remplacer e par

2

1 £COS6
2 th a9
0

ce qui est encore insuffisant. En réalité, la méthode basée sur
I'étude de f(z) et f' (z) dans le voisinage des points de module
maximum (voir Lectures on the general theory of integral functions,
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chapter 1V) montre que
M () o M (r) p r?™!

sauf sur une suite de segments exceptionnels dans lesquels la
variation totale de log r est finie. On peut présumer que cette
égalité asymptotique vaut sans restrictions.

10. Le cas des fonctions d’ordre nul.

La comparaison de log M (r) a une fonction croissant moins
vite que r¢, si petit que soit e, conduit & distinguer une infinité
de classes de fonctions d’ordre nul si on veut obtenir la méme
approximation que pour les fonctions d’ordre fini d’ordre pre-
cisé o (r) donné. Mais on pourrait se borner & chercher des fonc-
tions de comparaison, soient r°™ avec lim p (r) = 0 qui per-
mettraient de résoudre & un facteur fini pres et non plus & un
facteur prés tendant vers un les égalités asymptotiques

r

fv (t) %E o 10

0

On pourra se reporter pour ce sujet & mon article « Sur les direc-
tions de Borel des fonctions entiéres d’ordre nul» (Bull. sciences
math., 1935).

Nous nous bornerons & considérer ici la classe des fonctions
entiéres pour lesquelles R

-k, 1<k<ox. o (27)

On peut comparer ici la fonction log M (r) a (log r)k, ou en
posant log r = X, log M (r) = V (X), comparer V(X) a X~
On pourra définir un ordre précisé. Comme la convexité de V (X)
n’a pas été utilisée, on peut transposer ce qui a été fait au n° 6.
On peut trouver k (X) telle que

}1{1m kE(X) =k, lim & (X)X log X =0,
=00 X =0

— V(X)

2R

L’Enseignement mathém., t. I'V, fasc. 1.

[
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On a
X

V(X) =log M (r) = C + [w (u) du
1

C étant une constante et w (u) = ¢ (¢) si u = log t. L’intégrale

peut s’écrire
' X
f du
u
1

et uw (u) sera croissante. On aura

Xw(X) <[14+ 0(1)]ke X
donc
w(X) =90 (r) <[1+4+ 0(1)]keX X1

Il existe d’ailleurs une suite de valeurs indéfiniment croissantes
de X pour lesquelles

w (X) >[1—0 (1)]k XEx-1
Sil y a croissance parfaitement réguliére, donc si

V (X) ~ X
on a
w (X) ~o k XRE-L

'On déduira de 1a des inégalités entre M (r) et M! (r) analogues
a celles relatives a 'ordre positif.

NOTES

1) Voir VIJAYARAGHAVAN, T., On derivatives of integral functions. J. London Math.
Soc., 10, pp. 116-117 (1935).

2) Voir Bosg, S. K., On the derivatives of integral functions. Indian math. Soc., 10,
nouvelle série, pp. 77-80 (1946), et VaLiRON, G., Sur le théoréme de M. Picard. L’En-
seignement mathématique, 28, pp. 55-59 (1929).
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