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ZUR DREIECKSGEOMETRIE 205

Weiterhin ist

ss kabcd Tid Zabc _ i ^ 12

mm
(Ss 1)2

~~
(Sa Saèc — 4abed)2

Zur Bestimmung des Umkreishalbmessers r bilden wir

2 ab 2 ab (— bdc — aed + abd + a^c)

(a + b) (b + c) |i + d) (d + a)

und den dazu konjugiert komplexen Wert. Dann ergibt sich

nach kurzer Rechnung

kabcd (Sabcd — Sa Zabc)
r2 (LäTTLÖbc^TäbcEf'

Somit ist
• r kabcd l2

r2 + | to |2 2 [Sa ; Saöc — 4a&cdj

und
kabcd

r2 — I TO I2 — 2 2^7 £a&c_4a&cd '

also 18)

(r2 — I TO |2)2 2 p2 (r2 + I TO |2)

Daraus folgt der bekannte Schließungssatz:
Besteht zwischen den Halbmessern r und p zweier Kreise und

ihrem Mittelpunktabstand | m | die soeben hergeleitete

dann gibt es oo1 bizentrische Vier,die den. Kreis des

Halbmessers p berühren und im Kreis des Halbmessers r liegen, die

Verbindungssehnen ihrer Berührpunkte im Inkreis schneiden sich

dortselbst stets im nämlichen Punkt s, und zwar unter rechtem

W inkel.

7. Vom Flächeninhalt.

(7, 1) Um den Flächeninhalt Ä des Dreiecks zu bestimmen,

dessen Seiten den Einheitskreis in den Punkten a, b, c berühren,

berechnen wir zunächst das gerichtete Längenmaß der Dreiecksseiten

(vgl. Abb. 14): Wir bilden nämlich

2 ab 2ac
__

2 a2 (b — c)
_

a + b a + c (a + b) (a + c)

18) N. Fuss, Nova Acta Petrop. 13, für 1795/96, ausgeg. 1802, 166.

L'Enseignement matliéin., t. IV, fasc. 4. 14



206 JOS. E. HOFMANN

Diese gerichtete Strecke hat den absoluten Betrag

2 a (b — g) V— 1

(a + b) (a + c) '

also das Dreieck die Fläche

A
(fr — c) (° — a) (a — b) /—7
(b + c) (c + a) (a-\-b)

Auch dieser Ausdruck ist mit einem Vorzeichen behaftet und
abhängig vom Umlaufssinn, der sich aus der gewählten Reihenfolge

der Ecken ergibt. Sind die beiden Bestandteile der
komplexen Einheitsvektoren a, è, c rational, dann sind auch die
Seitenlängen und die Fläche des Dreiecks rational; wir haben
also ein heronisches Dreieck vor uns.

(7, 2) Als Sehnendreieck wird das Dreieck dann heronisch,
wenn wir ihm die Ecken a2, &2, c2 geben wie am Ende von (2, 2).
Jetzt haben die Seiten gemäß (5, 1) die gerichteten Längenmaße

fr2 — c2 /—,r—7 V— 1 usw. ;
bc

also ist die halbe Seitensumme

(b — c) (c — g) (g — b) \J— 1

2 abc

Unter Mitverwendung der Formel für p aus (5, 2) erhält die
Dreiecksfläche nunmehr die Form

A
(&2 — c2) (c2 — a2) (a2 — b2)

4 a2 b2 c2 \/— 1

(7, 3) Die Dreiecksformel dient zur Bestimmung des
Flächeninhaltes F eines Sehnenvierecks, dem wir die Ecken
a2, è2, c2, d2 geben. Indem wir den Umlaufsinn der Teildreiecke
(a2, è2, c2) und (a2, c2, d2) beachten, erhalten wir als Fläche

F
(a2 — b2) (b2 — c2) (c2 — q2) (q« — c«) (c2 — d*) (d2 — a2) _4a2è2c2v/Zrï 4a2 c2 cZ2

__
(a2 — c2) (62 — d!2) (a2 c2 — 6*

4 a2 62 c2 d2 \/— 1
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Die Vierecksseiten müssen so orientiert werden:

207

g2 — b2

ab v— i ; bc cd
V~1 ;

g2 — d2

ad V-i
Dann erhalten wir der Reihe nach als Halbsumme der Seiten,

vermindert um je eine der Seiten:

(ac — bd) (g -j- c) {b d)

— 2 abed */— 1

(ac — bd) (a — c) (b + d)

— 2 abed — 1

(ac + bd) (a + c) (b -f d)

— 2abcd 's/— 1

(ac -j- bd) (a c) (b d)

2 abcd s/-— 1

Wir kommen vom ersten (direkt berechneten) Ausdruck zum

zweiten, indem wir b durch — b ersetzen, von diesem zum

nächsten, indem wir c durch —- c ersetzen, und schliesslich von
diesem zum letzten, indem wir d durch — d ersetzen. Nach

Multiplikation der letzten vier Ausdrücke erhalten wir das Quadrat

von F; damit ist die bekannte Inhaltsformel für das Sehnenviereck

gefunden 19).

(7, 4) Der Flächeninhalt des Sehnendreiecks (w, e, w) im
Einheitskreis kann auch in der Form

u2 1 u 1
U ~ü 1

o2 1 a Iil 0 ~v 1

w2 1 w w w 1
;

Vorgeschrieben werden. Diese Formel bleibt auch dann noch richtig,
wenn b, e, w drei beliebige Punkte sind, die nicht mehr auf dem

Umfang des Einheitskreises liegen. Wir verwenden sie zum
Beweis des PASCALschen Lehrsatzes 20)

:

Die Gegenseiten eines Sehnensechsecks im Kreis schneiden sich
in den Punkten einer Geraden (Abb. 16).

19) Die Flächeninhaltsformel tritt erstmals bei den Indern auf, dann unter deren
Einfluß bei den Arabern. Im Abendland findet sie sieb unabhängig von diesen
Vorgängern in der von W. Snell besorgten und mit dessen Zusätzen ausgestatteten
lateinischen Ausgabe von Ludolf van Ceulen, De arithmetische en geometrische Fon-
damenten, Leiden 1615, 21619. Vgl. auch J. Tropfke, Geschichte der Elementarmathematik,

IV3, Berlin 1940, 150/68.
20) Der Satz erscheint bereits in Essay -pour les coniques von 1640 (Vorform), dann

in der heutigen Fassung in den 1654 abgeschlossenen und auf Grund eines LEiBNizschen
Gutachtens 1676 zum Druck beförderten Conica, die beim Setzer zu Verlust gegangen
und nicht an die Öffentlichkeit gekommen sind. Vgl. ferner Tropfke i9>, 231/32.
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Die Ecken des Sehnensechsecks seien a, è, c, d, e, /; die

Schnittpunkte der Gegenseiten seien

u (b, c) X (e, /) ; p (c, d) X (/, a) ; w (d, e) X (a, è)

Die Gleichungen der Seiten (6, c) bzw. (e, /) sind

2 + bcz b -j- c bzw. 2 + e/S e + / •

Abb. 16.

Pascalscher Lehrsatz.

Folglich ist ihr Schnittpunkt & gekennzeichnet durch

M (ôc — ef) bc [e + /) — e/ (ô + c)' ; ü (ôc — ef) [b + c) — (e + /).

Also ist die Fläche des Dreiecks (k, p, pp>) proportional zu

bc (e + /) — e/ (6- + c) (6 + c) — (e + /) bc — ef

cd (/ + a) — /« (c -f- d) (c -f d) — (/ + a) cd — fa
de (a + b) — ab (d -f- e) (d + c) — (a + b) de — ab

be, ef, da

111
6 / d

(c~f)
0

— (a — d)

(& — c) 0

(a-d) (c —/)
0 —(b — e)
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Die zweite Determinante dieser Produktdarstellung verschwindet

identisch; also hat das Dreieck (», c, w) die Fläche Null.
Somit liegen die Punkte », c, w wirklich in einer Geraden, wie

behauptet.
Indem wir diese Kreisfigur aus einem Punkt, der nicht in

der Kreisebene liegt, auf eine zur Kreisebene nicht parallele
Ebene projizieren, erhalten wir daraus den allgemeinen Pascal-
schen Lehrsatz für Kegelschnitte.

(7, 5) Fassen wir etwa die Punkte e, c, a bzw. 6, /, d als

zusammengehörige Elemente einer Projektivität auf dem

Kreisumfang auf, dann ist die PASCALsche Gerade (», c, w) der

Abb. 16 die Achse dieser Projektivität; ihre Schnittpunkte

x, y mit dem Einheitskreis sind die Doppelelemente der Projektivität.

Diese Eigenschaft verwenden wir z.B. zur Lösung der sog.

ÜTTOJANOSchen Aufgabe 21):

Gegeben sind ein Kreis und drei nicht auf seinem Umfang gelegene

Punkte. Ein Sehnendreieck durch diese Punkte zu bestimmen.

Der Kreis sei der Einheitskreis, die von einander verschiedenen

Punkte seien p, q, r, die gesuchten Ecken des Dreiecks
seien x, y, z. Es geht also um die Auflösung der drei Gleichungen

p + yzp y + z q + zxq z + x r + xyr x + y •

Vermöge der beiden ersten Gleichungen lässt sich x und y als

linear-gebrochene Funktion von z ausdrücken; durch Einsetzen
in die dritte Gleichung erhalten wir also eine quadratische
Gleichung in 2, die nach Division mit z auf die Form z + mz n
gebracht werden kann und also eine Gerade darstellt. Deren

Schnittpunkte mit dem Einheitskreis liefern die beiden gesuchten
Werte % und z2.

Im vorliegenden Fall konstruieren wir am zweckmäßigsten
drei zusammengehörige Punktepaare der durch die Anordnung

2i) Das Problem stammt (für drei Punkte, die in einer Geraden liegen) von Apol-
lonios aus den verlorenen Tactiones, über die wir Näheres aus Pappos, Collectiones, VII,
prop. 117 wissen. Das allgemeinere Problem wurde von G. Cramer gestellt, dessen
Schüler G. F. M. M. Salvemini de Castillon seit 1742 an der Lösung arbeitete und
1776 eine elementargeometrische veröffentlichte. Das Problem für n-Ecke wurde
von dem 16-jährigen A. Giordano aus Ottojano im Anschluß an Pappos gelöst. Vgl.
M. Brückner, Das Ottojanosche Problem, Programm, Zwickau 1892 und Tropfke i9),
125.
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zii Pi Vi G xi J-, H auf dem Kreisumfang bestimmten Projektivi-
tät. Die zusammengehörigen Punkte % und z2 bezeichnen wir
bzw. mit e, c, a und è, /, d. Die Achse dieser Projektivität ist die
oben erwähnte Gerade. Die Ausführung ist in Abb. 17 nur
angedeutet, weil wohlbekannt.

Abb. 17.

Ottojanos Problem.

Der rechnerische Ansatz zeigt, daß das Problem im Kreis
vom Dreieck auf ein ft-Eck übertragen werden kann und
wiederum auf eine quadratische Gleichung führt. Durch passende
Projektion läßt es sich allgemein für Kegelschnitte aussprechen
und behandeln.

** *
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Dies waren einige Proben, an denen gezeigt werden sollte,

wie sich der zu Anfang erwähnte Gedanke, komplexe Zahlen im

Zusammenhang mit dem Einheitskreis zu verwenden,
nutzbringend verwenden läßt. Es gibt sehr viele weitere einfache

Anwendungen; da es nur um die Fixierung der Gedanken geht,
soll nicht weiter auf sie eingegangen werden.

SUR LES NOMBRES PREMIERS DE LA FORME nn + 1

par W. Sierpinski (Varsovie).

(Reçu le 11 décembre 1957.)

Le but de cette Note est de démontrer le théorème suivant:
Parmi les nombres ayant au plus trois cent milles chiffres

(en système décimal) il n'y en a que trois, 2, 5 et 257 qui sont des

nombres premiers de la forme n11 + 1, °ù n est un nombre naturel.

Démonstration. — Le nombre l1 -f 1 — 2 est premier.
Soit maintenant n un nombre naturel > 1 et supposons que le

nombre nn + 1 est premier. Si n avait un diviseur premier
impair p, on aurait n — où k est un nombre naturel et le

nombre nu + 1 (nh)v + 1 serait divisible par le nombre
naturel nk 1 qui est > 1 et < nn + 1 (puisque k < kp — ri),
ce qui est impossible. Donc n n'a aucun diviseur premier impair
et, comme n > 1, on a n 2S, où s est un nombre naturel.
Si s avait un diviseur premier q impair, on aurait s — kq, où k
est un nombre naturel, et le nombre nu 1 2sn + 1

(2knY -j- 1 serait divisible par le nombre naturel 2hn + 1

qui est > 1 et < nn l (puisque 2kn < 2knq nn), ce qui
est impossible. Le nombre «9 n'a donc aucun diviseur premier
impair, donc s 2m, où m est un entier > 0.
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