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186 JOS. E. HOFMANN

3. VoM RICHTUNGSMASS UND VON DER GERADENGLEICHUNG.

(3, 1) Wir geben die Punkte a, b auf dem Einheitskreis und
legen durch den Kreismittelpunkt O den parallelen Durchmesser
zur Sehne (a, b), dessen Endpunkte z und — z seien. Jetzt ist
also — 22 = ab. Das Produkt ab wollen wir das Richtungsmaf
der Sehne (a, b) nennen. Sehnen mit dem namlichen Richtungsmaf
sind parallel.

Abb. 7.
Zum Satz von der Wallace-Geraden.

Als Anwendungsbeispiel behandeln wir den Satz von der
WaLLace-Geraden ?: Geben wir auf dem Einheitskreis die vier
Punkte a, b, ¢, d, dann treffen die Lote aus d auf die Seiten
(b, ¢), (¢, a), (a, b) des Dreiecks (a, b, ¢) bez. in den Punkten

1 be

I

po| = o =

¢

(c—{—’a—|~d—%),

w = (a+b—}—d——a§)

ein. Wir behaupten:

7) W. WALLACE in Th. LEYBOURNE, Mathematical repository (old series) 2, 1798, 111.
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Die Punkte u, v, w liegen in einer und der nimlichen Geraden,
der WALLACE-Geraden des Dreiecks (a, b, ¢) hinsichtlich des
Punktes d auf dem Umbkrets des Dretecks.

Z.B. ist (a, w, ¢, d) ein Sehnenviereck, jedoch nicht im Ein-
heitskreis. Folglich ist

4 (d, a, 0) = < (d7 w, ) .

Die Parallele durch ¢ zu (¢, w) schneidet die verlangerte (d, w)
unter dem nédmlichen Winkel. Dieser Schnittpunkt liegt auf dem
Einheitskreis. Da aber (a, ) und (d, w) auf einander senkrecht

stehen, wird der Schnittpunkt durch (~— %9 dargestellt. Das

abe

Richtungsmal} der Geraden (¢, w) 1st also (—- ~d—> Dieser Aus-

druck ist in a, b, ¢ symmetrisch. Also haben die drei Geraden
(v, w), (w, u), (u, ¢) das ndmliche RichtungsmaBl; folglich fallen
sle zusamrinen.

(3, 2) Wir geben zwei Umfangspunkte a, b auf dem Einheits-
kreis und einen Punkt z, der nicht auf der Geraden (a, b) liegt
(Abb. 8). Dann ergénzen wir a, O, b durch (a + b) zur Raute
und spiegeln z an der Rautendiagonale (O, a 4+ b) in s. Indem

wir die Einheitsvektoren % und lz‘l bilden, erhalten wir die

Schnittpunkte der Ortsvektoren s und z (oder ihrer Verlédn-
gerungen {iiber die Spitze hinaus) mit dem KEinheitskreis. Die
Verbindungsstrecke dieser Einheitsvektoren ist parallel zur
Sehne (a, b); also ist ﬁé’ = ab. Nun ist aber |s| = |z]; also

Sf fz! = z z; somit

s = abz

Jetzt spiegeln wir z am Séhnenmittelpunkt In ¢ =

a -+ b
2

= a + b— z und s am namlichen Punkt in

C =a-+ b— abz

Nun 1st { gleichzeitig Spiegelpunkt von z an der Sehne
(a, b). Wenn wir einen Punkt z auf der Sehne vor uns haben,
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dann und nur dann ist { = z. Folglich ist

z—l—abzza—{—b

die Gleichung der Geraden (a, b). Die linke Seite z + abz nennen
wir den Richtungsteil; er ist durch das RichtungsmaB eindeutig
bestimmt. Die rechte Seite nennen wir das konstante Glied. Es

a+b

Abb; 8.
Geradengleichung.

wird durch Einsetzen der Endpunkte der Sehnen (oder allge-
meiner: eines bekannten Punktes der Geraden) in die Gleichung
bestimmt. Das liefert — da wir z sowohl durch a wie durch b
ersetzen konnen — eine Probe. '

(3,3) Nun kehren wir zur WaLLAcE-Geraden (3, 1) zuriick.

Der Richtungsteil ihrer Gleichung ist z — C%c— z; das konstante

Glied ergibt sich z.B. durch Einsetzen von z = u. Wir erhalten
nach leichter Umformung

‘z_%“z:%(wbﬂw)_%‘f(ﬂz+5+3)

Diese Gleichung ist in a, b, ¢ symmetrisch; deshalb geht die durch
sie dargestellte Gerade nicht nur durch z, sondern auch durch ¢
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und w. Natiirlich 148t sich das auch durch Einsetzen nachpriifen.
AuBerdem liegt auch der Punkt ¢ = % (@ + b + ¢ + d) auf der

WarrLace-Geraden. Hier ist —;— (@ 4+ b - ¢) der Mittelpunkt des
zum Dreieck (a, b, c)‘geht')rigen.FEUERBACH—Kreises; an ihn ist
noch der Vektor % der Linge —;— angesetzt. Folglich liegt ¢ auf

diesem FruersacH-Kreis, aber nicht nur auf ihm, sondern auch
auf den Frurrsacu-Kreisen der Dreiecke (b, ¢, d), (¢, a, d),
(a, b, d).

Wird in einem Sehnenviereck zu jeder Ecke die WALLACE-
Gerade hinsichilich des Dreiecks der drei anderen Ecken bestimmi,
dann gehen die vier so entsiehenden Geraden durch einen und den
namlichen Punkt, nimlich durch den gemeinsamen Schnittpunkt
der FEuERBACH-Kreise dieser vier Dreiecke®.

4. WEITERE ANWENDUNGSBEISPIELE.

(4, 1) Wir behaupten:

Die bez. Parallelen zu den inneren Winkelhalbierenden eines
Dreiecks durch dessen Seitenmitten schneiden sich in etnem Punkt.

Wie am Ende von (2, 2) bezeichnen wir die Ecken des
Dreiecks im Einheitskreis mit p2, ¢2, r2. Folglich sind die Mitten
der Gegenbdgen zu den Ecken auf dem Einheitskreis (— gr),
(— rp), (— pg) zu nennen. Die innere Halbierende des Winkels
(¢2, p?, %) geht durch p? und (— ¢r); sie hat also den Richtungs- .
teil z — p2 grz. Die Parallele zu dieser Winkelhalbierenden

durch den Seitenmittelpunkt % (¢*> + r?) hat die Gleichung

i pParz =5 (g2 + r2 — p?. S—— p?. %) Entsprechend:
‘ - 1 r p
—_ 2 = — 2 2 e w2 0 e i
z2— pgrrE = 3 (p T g* r)

Indem wir die mit ¢ multiplizierte erste Gleichung von der mit p
multiplizierten zweiten subtrahieren und mit p — ¢ dividieren,
erhalten wir

1
z=5 P+ ¢+t +rp+opg .

8) Aufgabe von E. LEMOINE in den Nouv. annal. (2). 8, 1867, 47.

L’Enseignement mathém., t. IV, fasc. 3. L;)
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