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ZUR ELEMENTAREN DREIECKSGEOMETRIE

IN DER KOMPLEXEN EBENE

von Jos. E. Hofmann (Ichenhausen)

(Reçu le 17 juillet 19-58.)

Einige Fragen der elementaren Dreiecksgeometrie lassen

sich besonders einfach in Vektorform behandeln, wenn der

Umkreismittelpunkt des Dreiecks als Bezugspunkt verwendet

wird. Machen wir den Umkreishalbmesser zur Einheit, dann

sind die Ortsvektoren a, b,c der gleichbenannten Ecken

Einheitsvektoren, die wir zweckmäßig als komplexe Zahlen schreiben.

Wird ein Punkt auf dem Einheitskreis durch die komplexe

Zahl z dargestellt, dann wird sein Spiegelpunkt i an der reellen

Achse durch j wiedergegeben. Die nachfolgenden Beispiele

sollen zeigen, wie sich die vektorielle Auffassung und die

Beziehung i «= j vereinfachend und nutzbringend verwenden

lassen.

1. Vom Höhenschnittpunkt, vom Feuerbach-Kreis
UND VERWANDTEN PROBLEMEN.

(1,1) Es seien a, b, c die Ortsvektoren der Ecken eines

Sehnendreiecks im Einheitskreis (Abb. 1). Dann ist (a + b) der

Spiegelpunkt des Umkreismittelpunktes 0 an der Sehne (ß, b),

also steht der Ortsvektor (a + b) auf der Sehne senkrecht.

Ergänzen wir nunmehr (ß + b) und c hinsichtlich 0 zum

Parallelogramm, dann ist

a + b -\- c d

der Ortsvektor, der auf der Diagonalen dieses Parallelogramms

aus 0 liegt. Folglich fällt die Gerade (c, d) auf die Dreieckshöhe
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aus c auf die Gegenseite (a, b). Da die Vektoraddition kommu-

tativ und assoziativ ist, befindet sich auch auf den Höhen aus

a auf (b,c) und aus b auf (c, a). Damit ist gezeigt, daß sich die

drei Höhen des Dreiecks genau in einem Punkt schneiden,

nämlich im Höhenschnittpunkt d a + b + c. Sehen wir für

den Augenblick vom Umkreis ab, dann sind die vier Punkte a,

b c, d völlig gleichberechtigt; jeder von ihnen ist Höhenschnittpunkt

des aus den drei anderen Punkten bestimmten Dreiecks.

Wir reden deshalb zweckmäßig von vier orthogonal verbundenen

Punkten.

Abb. 1.

Umkreis, Höhenschnittpunkt und Feuerbach-Kreis.

(1, 2) Nun ist Mittelpunkt der Sehne (a, b) und des

Ortsvektors (a + b). Die Parallele durch zum Ortsvektor c

trifft auf den Höhenabschnitt (c, d) in dessen Mittelpunkt ——

und ist der Mittelpunkt des durch (0, + c) bestimmten
1

Parallelogramms. Folglich geht der Kreis des Halbmessers um

~, den Mittelpunkt des Ortsvektors d, durch die Seitenmittelpunkte

UU' »
durch die Mittelpunkte _

t±Ä,



180 JOS. E. HOFMANN
C | (J,

• »

—-— der „oberen Höhenabschnitte" und durch die Höhenfuß-

punkte u, c, w des Dreiecks, ist also dessen FEUERBACH-Kreis x).

Etwas anders ausgedrückt:
die vier Punkte a, b, c, d orthogonal verbunden, dann

haben die vier aus je dreien dieser Punkte bestimmten Dreiecke den
nämlichen Feuerbach-ifras. Er geht einerseits durch die sechs

Seitenmitten des aus diesen Punkten bestimmten vollständigen
Vierecks, andererseits durch dessen Nebenecken.

(1, 3) Fügen wir zu den Ecken a, è, c, d der Abb. 1 noch
die Punkte (b + c), (c + a), (a + b) hinzu (Abb. 2), dann liegen
diese Punkte auf dem Einheitskreis um d. Sie sind die Ecken

eines neuen Dreiecks, das zum ursprünglichen hinsichtlich ^
symmetrisch liegt und 0 zum Höhenschnittpunkt hat. Auch die

Abb. 2.

Ein Paar zugeordneter Dreiecke.

i) K. W. Feuerbach, Eigenschaften einiger merkwürdiger Punkte des geradlinigen
Dreiecks und mehrerer durch sie bestimmter Linien und Figuren. Nürnberg 1822. Zur
Literatur vgl. J. S. Mackay, Proceedings Edinburgh Math. Soc. 11, 1893, 19 ff. und
J. Lange, Geschichte des Feuerbachschen Kreises, Programm Berlin 1894; ferner
M. Simon, Über die Entwicklung der Elementargeometrie im XIX. Jh., Jahresbericht d.
Deutschen Math.-Vereinigg., Ergänzungsband I, Leipzig 1906, 124/30 und M. Zacharias

in der Encyklopädie der math. Wiss., III AB 9, Leipzig 1914.
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Punkte 0, (b -f- c), (c -f- ß), {a -j- b) sind orthogonal verbunden,

die Seitenmitten des Dreiecks (a, è, c) sind die Mittelpunkte der

oberen Höhenabschnitte des Dreiecks (b + c, c + a> a + b) und

umgekehrt. Wir haben also acht Dreiecke mit dem nämlichen

FEUERBACH-Kreis und zwölf auf diesem liegende Punkte. Die

Zentrale (0, d) der beiden kongruenten Kreise ist die EuLERSche

Gerade 2) der beiden Dreiecke. Auf ihr liegen auch die Schwerpunkte

^ des ursprünglichen und des zugeordneten Dreiecks.

(1, 4) Sind zwei der fünf Punkte 0, d bekannt,

dann sind die anderen mitbestimmt. Kennen wir außerdem noch

den Halbmesser des FEUERBACH-Kreises oder eines der beiden

Umkreise, dann sind uns diese drei Kreise nebst ihren

Mittelpunkten bekannt. Es gibt unter einer nachher zu besprechenden

Einschränkung qo1 Dreiecke (a, è,- c), die dem Kreis um 0
einbeschrieben sind und d zum Höhenschnittpunkt haben.

Wählen wir z.B. die Ecke c auf dem Kreis um 0, dann ist die

Gegenecke (a + b) auf dem Kreis um d als Spiegelbild an -
bestimmt. Die Parallelen (c, d) bzw. (0, a + b) treffen den

FEUERBACH-Kreis in den Ecken eines Rechtecks, dessen andere

Seiten die anderen Ecken a, b bzw. (b + c), (c + a) der
zugeordneten Dreiecke tragen.

Ist Dreieck (a, 6, c) spitzwinklig, dann liegt d innerhalb des

Umkreises um 0. Ist das Dreieck rechtwinklig, dann befindet
sich d auf dem Umkreis. In diesem Fall berühren sich der

FEUERBACH-Kreis und der Umkreis in d, und der Ortsvektor d

ist der Durchmesser des FEUERBACH-Kreises. Ist Dreieck (a, 6, c)

stumpfwinklig, dann liegt d außerhalb des Kreises um 0, jedoch

so, daß der FEUERBACH-Kreis den Umkreis schneidet. Abb. 3

zeigt, wie die Verhältnisse nunmehr liegen.
(1, 5) Weil die aus orthogonal verbundenen Punkten a, 6,

c, d entstehenden Dreiecke (è, c, d), (c, a, d), (a, 6, d) und (a, 6, c)

den nämlichen FEUERBACH-Kreis haben, sind ihre Umkreise
kongruent. Die Mittelpunkte dieser Umkreise sind die zuge-

2) L. Euler, Solutio facilis problematum quorundam geometricorum difficillimorum,
Novi commentarii Ac. sc. Petrop., 11 (1765), 1767, 103/23, insbes. 114; Opera omnia,
XXVI, ed. Andr. Speiser, Zürich 1953, 139/57, insbesondere 149. Die Abhandlung
wurde der Petersburger Akademie am 21.XII.1763 alten Stiles vorgelegt.
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ordneten Punkte (b + c), (c + a), (a + b), 0, die ihrerseits
ebenfalls orthogonal verbunden sind und vier Dreiecke erzeugen,
deren Umkreise ebenfalls zu den bisherigen kongruent sind und
die Mittelpunkte a, b, c, d haben. Die so entstandenen acht
Kreise durchschneiden sich je zu dritt in den Ecken der beiden

zusammengehörigen orthogonal verbundenen Punktequadrupel.

Die Gleichwertigkeit von vier orthogonal verbundenen
Punkten a, b, c, d zeigt sich besonders schön am HoLZschen

Dreiecksatz 3)
:

Die drei von einer Ecke ausgehenden Pfeile zu den anderen

Ecken hin, lassen sich stets durch Ansetzen eines dieser Pfeile an
der Spitze eines der^ beiden anderen in entgegengesetzter Richtung
zu einem dreiteiligen Sehnenzug im Einheitskreis vereinigen, dessen

Endpunkte entgegengesetzte Punkte des Einheitskreises sind.

3) K. B. Holz, Das ebene obere Dreieck, Hagen i.W. 1944. Vgl. auch L. Bieberbach,

Theorie der geometrischen Konstruktionen, Basel 1952, 114/15 und 156.

d

Abb. 3.

Das erzeugende Dreieck ist stumpfwinklig.
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Soll das orthogonal verbundene Quadrupel aus den Längen
der Pfeile bestimmt werden, dann entsteht eine kubische

Gleichung für den Durchmesser des Kreises, in den der Streckenzug

eingepaßt werden kann 4). Diese Gleichung hat drei reelle

Lösungen; die Anordnung der (in ihrer Reihenfolge vertauschbaren)

Pfeile in diesen Kreisen wird genau durch die drei Arten
der Abb. 4 veranschaulicht5).

Abb. 4.

Der Holzsche Satz.

2. Von der Bogengleichheit.

(2, 1) Sind (a, b) und (c, d) zwei Parallelsehnen im Einheitskreis

(Abb. 5), dann sind die Kreisbögen zwischen den Parallelen
gleich groß. Prägen wir ihnen den positiven Gegenuhrzeigersinn

4) Das Einpassungsproblem wird heute allgemein nach I. Newton, Arithmetica
universalis, Kap. XIII, 8./10. Vorlesung von 1675/76, ed. W. Whiston, Cambridge
1707, 97/113 gennant, so z.B. bei H. Dörrie, Mathematische Miniaturen, Breslau 1943,
31. Es stammt jedoch nicht von Newton, sondern von Fr. van Schooten, De organica
conicarum sectionum in piano descriptione tractatus..., cui subnexa est appendix de cubi-
carum aequationum resolutione, Leiden 1646, 102/08 und 111/17, in verbesserter Form
wiederabgedruckt in R. Descartes, Geometrie ed. Fr. van Schooten, I, Amsterdam
1659, 354/59 und 361/67. Dies wird die Vorlage für Newton gewesen sein, der diese
Ausgabe der Geometria besaß.

Setzen wir z.B. \ b, c \ u, \ c, a | v, | a, b | w, dann heißt die (bereits bei
Schooten auftretende) kubische Gleichung

x3 (u2 + v2 + w2) x + 2uvw
5) Diese drei Fälle treten auch bei Schooten 4) und Newton 4) auf. Auch die

elegante kinematische Lösung bei Biererrach 3), 115/16 vermittels eines transparenten
Blattes und des Stechzirkels erweist sich bei genauerem Zusehen als Variante der
Lösung von Schooten. Dieser arbeitet im Anschluß an Fr. Viète, Supplementum
geometriae, Tours 1593, Wiederdruck in den Opera, ed. Fr. van Schooten, Leiden 1646,
vermittels einer Einschiebung, die mit der Winkeldreiteilung zusammenhängt.
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auf, dann ist gemäß den in der Abbildung gewählten Bezeichnungen

y y ; also

ab cd

Fällen wir z.B. das Lot aus c auf (a, 6), dann trifft es in — d

— — — auf dem Kreis ein.
c

Abb. 5.

Bogengleichheit.

(2, 2) Haben wir nunmehr die Punkte a, è, c auf dem

Umfang des Einheitskreises (Abb. 6), dann wird der Kreis von
bc

den Höhen des Dreiecks (a, è, c) bezw. in den Punkten p — —,

q — — y, r — y- geschnitten. Nun ist aber z.B. — y
~. Daraus folgt, daß der Pfeil (r, c) die innere Halbierende

des Winkels (/?, r, q) ist.
Also sind die Höhen des Sehnendreiecks (a, b, c), die inneren

Winkelhalbierenden, des zugeordneten Gegendreiecks (p, q, r) und
der Höhenschnittpunkt des Ausgangsdreiecks ist zugleich der

Inkreismittelpunkt des neuen 6).

6) Vgl. Pb. Naudé in den Miscellanea Berolinensia 5, 1737, 17 bzw. Feuerbach *),
§ 24.
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Weiterhin ist w(vgl.1, 2) Mittelpunkt zwischen d und r,
* r nh\ (a + c) (b + d)

also w Ua + b + c—-J usw. und d — w=
USW.

(2, 3) Jetzt ergänzen wir noch die Gegenpunkte (— a), (—

(— c)zu ß, b,c. bez. 0. Dann ist z.B. die Gerade c, r) die äußere

Halbierende des Winkels (p, r,q).Fügen wir auch die anderen

äußeren Winkelhalbierenden (— a, p), (— b, q) des Dreiecks

(p, q, r)hinzu, dann entsteht ein Dreieck, das zum Dreieck

(a, b, c) aus d ähnlich und im Maßstab 2: 1 vergrößert ist. Jetzt

tritt z.B. an Stelle von c die Ecke (— a — b + c); denn c ist

Mittelpunkt zwischen (— a — b+ und d. Der Ausgangskreis

ist der FEUERBACH-Kreis dieses vergrößerten Dreiecks, dessen

Umkreis den Halbmesser 2 hat. Damit sind wir in etwas anderer

Form zu den früheren Ergebnissen zurückgekommen.

Wir können die Ergebnisse auch bruchfrei ausdrücken,

indem wir nämlich p durch p2, q durch q2 und r durch r2 ersetzen.

Dann müssen wir a durch — qr, b durch — rp und c durch — pq

ersetzen und erhalten den Inkreismittelpunkt in der Form

—. (gr _|_ rppq)^die Ankreismittelpunkte in der Form

(— qr+ rp+ pq), (qr — rp+ pq), (qr + rp — pq).
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3. Vom Richtungsmass und von der Geradengleichung.

(3, 1) Wir geben die Punkte a, b auf dem Einheitskreis und

legen durch den Kreismittelpunkt 0 den parallelen Durchmesser

zur Sehne (a, è), dessen Endpunkte x und —x seien. Jetzt ist
also — x2 ab. Das Produkt ab wollen wir das Richtungsmaß
der Sehne (a, b) nennen. Sehnen mit dem nämlichen Richtungsmaß
sind parallel.

Als Anwendungsbeispiel behandeln wir den Satz von der

WALLACE-Geraden 7): Geben wir auf dem Einheitskreis die vier
Punkte a, b, c, d, dann treffen die Lote aus d auf. die Seiten

(6, c), (c, à), (a, b) des Dreiecks (a, 6, c) bez. in den Punkten

a !b

ab
~ d

Abb. 7.

Zum Satz von der Wallace-Geraden.

ein. Wir behaupten:

7) W. Wallace in Tb. Leybourne, Mathematical repository (old series) 2, 1798, 411.
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Die Punkte u, v, w liegen in einer und der nämlichen Oeraden,

der Wallace-Geraden des Dreiecks (a, b, c) hinsichtlich des

Punktes d auf dem Umkreis des Dreiecks.

Z.B. ist (a, (v, e, d!) ein Sehnenviereck, jedoch nicht im
Einheitskreis. Folglich ist

<) (d, a, v) <) (d, w, p)

Die Parallele durch c zu (e, w) schneidet die verlängerte (d, w)

unter dem nämlichen Winkel. Dieser Schnittpunkt liegt auf dem
Einheitskreis. Da aber (a, b) und (d, w) auf einander senkrecht

stehen, wird der Schnittpunkt durch ^dargestellt. Das

Richtungsmaß der Geraden (e, w) ist also ^. Dieser

Ausdruck ist in a, 6, c symmetrisch. Also haben die drei Geraden

(c, (v), ((V, h), (k, c) das nämliche Richtungsmaß; folglich fallen
sie zusammen.

(3, 2) Wir geben zwei Umfangspunkte a, b auf dem Einheitskreis

und einen Punkt 2, der nicht auf der Geraden (a, b) liegt
(Abb. 8). Dann ergänzen wir a, 0, b durch (a + b) zur Raute
und spiegeln 2 an der Rautendiagonale (0, a + b) in s. Indem

wir die Einheitsvektoren h-r und r^1-, bilden, erhalten wir dieM hl
Schnittpunkte der Ortsvektoren 5 und z (oder ihrer
Verlängerungen über die Spitze hinaus) mit dem Einheitskreis. Die
Verbindungsstrecke dieser Einheitsvektoren ist parallel zur
Sehne (a. b) ; also ist ,s, - ab. Nun ist aber | s | « \z I ; also

V 7
I S I \ z I II II'

\sJ J2j n; somit

s abz

Jetzt spiegeln wir z am Sehnenmittelpunkt ^ in er

a+ b — 2 und s am nämlichen Punkt in

£ a + b — abz •

Nun ist Ç gleichzeitig Spiegelpunkt von z an der Sehne
(a, b). Wenn wir einen Punkt z auf der Sehne vor uns haben,
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dann und nur dann ist Ç z. Folglich ist

z + abz — a + b

die Gleichung der Geraden (a, b). Die linke Seite z + abz nennen

wir den Richtungsteil;er ist durch das Richtungsmaß eindeutig
bestimmt. Die rechte Seite nennen wir das konstante Glied. Es

Geradengleichung.

wird durch Einsetzen der Endpunkte der Sehnen (oder
allgemeiner: eines bekannten Punktes der Geraden) in die Gleichung

bestimmt. Das liefert — da wir z sowohl durch a wie durch b

ersetzen können — eine Probe.

(3, 3) Nun kehren wir zur WALLACE-Geraden (3, 1) zurück.

Der Richtungsteil ihrer Gleichung ist z — ^ z ; das konstante

Glied ergibt sich z.R. durch Einsetzen von z u. Wir erhalten

nach leichter Umformung

z _ J i (a +b + c + d)(a + b + c +d)a à a

Diese Gleichung ist in a, b, c symmetrisch; deshalb geht die durch

sie dargestellte Gerade nicht nur durch u, sondern auch durch c
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und w. Natürlich läßt sich das auch durch Einsetzen nachprüfen.

Außerdem hegt auch der Punkt £ r(a + ^> + c + cö auf der

WALLACE-Geraden. Hier ist j(a+ b+ c) der Mittelpunkt des

zum Dreieck (a, b,c) gehörigen FEUERBACH-Kreises; an ihn ist

noch der Vektor | der Länge | angesetzt. Folglich hegt t auf

diesem Feüerbach-Kreis, aber nicht nur auf ihm, sondern auch

auf den FEUERBACH-Kreisen der Dreiecke (b, c, d), (c, d),

(a, è, d).
Wird in einem Sehnenviereck zu jeder Ecke die Wallace-

Gerade hinsichtlich des Dreiecks der drei anderen Ecken bestimmt,

dann gehen die vier so entstehenden Geraden durch einen und den

nämlichen Punkt, nämlich durch den gemeinsamen Schnittpunkt
der Feuerbach-Kreise dieser vier Dreiecke

4. Weitere Anwendungsbeispiele.

(4, 1) Wir behaupten:
Die bez. Parallelen zu den inneren Winkelhalbierenden eines

Dreiecks durch dessen Seitenmitten schneiden sich in einem Punkt.

Wie am Ende von (2, 2) bezeichnen wir die Ecken des

Dreiecks im Einheitskreis mit p2, q2, r2. Folglich sind die Mitten
der Gegenbögen zu den Ecken auf dem Einheitskreis (— qr),

(— r/?), (— pq) zu nennen. Die innere Halbierende des Winkels
(<q2, p2, r2) geht durch p2 und (— qr) ; sie hat also den Richtungsteil

2 — p2 qrz. Die Parallele zu dieser Winkelhalbierenden

durch den Seitenmittelpunkt ~ (q2 + r2) hat die Gleichung

2 — ^2 qr~ _ ^2 r2 — p2 L — p2 !Ly Entsprechend :

z — pq2rz ^ (^p2 + r2 — q2 ' J — q2 ' '

Indem wir die mit q multiplizierte erste Gleichung von der mit p
multiplizierten zweiten subtrahieren und mit p — q dividieren,
erhalten wir

* J (P2 + q2 + r2 + qr + rp + pq)

8) Aufgabe von É. Lemoine in den Nouv. annal. (2). 8, 1867, 47.

L'Enseignement mathém., t. IV, fasc. 3. 13



190 JOS. E. HOFMANN

Dieser Ausdruck ist in g, r symmetrisch aufgebaut; folglich
liegt z auf allen drei Parallelen zu den Winkelhalbierenden.

Für die Konstruktion spiegeln wir den Inkreismittelpunkt
i — {qr + rp + pq) am Umkreismittelpunkt 0 in j — — i;
dann liegt 2 in der Mitte zwischen / und dem Höhenschnittpunkt
d p2 + q2 + r2 des Dreiecks. Ähnliche Beziehungen gelten
auch im Zusammenspiel mit äußeren Winkelhalbierenden.

Abb. 9.

Drei Gerade, die durch einen Punkt gehen.

(4, 2) In einer erst seit 1927 wieder in arabischer Bearbeitung
zugänglich gewordenen ARCHiMEDischen Abhandlung 9) findet
sich der folgende Satz, der mit dem Additionstheorem der

trigonometrischen Funktionen gleichwertig ist:

Auf dem Einheitskreis befinden sich vier Punkte a, b, c, d

dergestalt, daß d die Mitte des Bogens abc ist. Dann halbiert das

9) C. Schoy, Die trigonometrischen Lehren des persischen Astronomen al-Bîrûnî...,
ed. J. Ruska/H. Wieleitner, Hannover 1927, 3. Zur Bedeutung der ARCHiMEDischen
Prämisse vgl. J. Tropfke im Archiv /. Geschichte d. Math., d. Nat. u. d. Technik 10,

1928, 430/62, insbesondere 433/36.
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Lot aus d auf die längere der Sehnen (a, b) und (b, c) die Länge
der Sehnensumme | a, b \ + | ô, c | (Abb. 10).

Es sei etwa | a, b | > | ô, c |, Weil d den Bogen abc halbiert,
d2

ist c —. Verlängern wir die Sehne (a, è) über b hinaus um
die Sehne (è, c) bis 2, dann ist (z, c) parallel zur inneren Halbierenden

(b, — d) des Winkels (a, J, c). Das Lot aus d auf (a, è)

Abb. 10. - '

Zur Archimedischen Prämisse.

trifft den Kreis nochmals in (— Weil die Sehnen (b, c) und

— — ~j) zw^scl"ien Parallelsehnen des Kreises liegen, sind

sie gleichlang. Weil ferner (—^t — d,b, z) ein Parallelogramm

ist, ist z b -r--d;also z — Folglich ist

Y j(a + b + d — y) der Mittelpunkt der Strecke
(a, z) (a, b) + (6, z) (a, b) + (b, c). Dieser Punkt ist nach
(2, 2) auch der Fußpunkt des Lotes aus d auf (a, b). Damit ist
der Satz, die sog. ARCHiMEDische Prämisse, bewiesen.
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(4, 3) Sind a, è, c die Ecken eines gleichseitigen Dreiecks
im Einheitskreis und wird das Dreieck im Gegenuhrzeigersinn

umlaufen, dann ist b as, c as2, wobei s (— 1 + V— 3),

^ _
s2 — (— 1 — y7— 3) e die dritten Einheitswurzeln sind.

Sind nun a, v zwei beliebige Punkte der komplexen Ebene, dann

b'

Abb. 11.

Vom isoptischen Punkt des Dreiecks.

werden sie durch jenen Punkt w zu einem im Gegenuhrzeigersinn
umlaufenen gleichseitigen Dreieck ergänzt, für den

u ZV Z2W 0

ist.
Wir geben ein im Uhrzeigersinn umlaufenes Dreieck (a, è, c)

im Einheitskreis und errichten über seinen Seiten nach außen

gleichseitige Dreiecke (Abb. 11). Deren freie Ecken a\ b', c'

müssen bezw. mit (c, è), (a, c), (ô, a) zusammengenommen
werden, damit wir im Gegenuhrzeigersinn umlaufene gleich-
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seitige Dreiecke erhalten, auf die wir die obige Formel anwenden

können. Es ergibt sich

a' — £2 b — zc
bf £2 C £ GL

[ c — £2 a — zb

Daraus folgt, daß die Vektoren (a — a'), (b — è'), (c — c')

gleichlang sind und je zu zweit den Winkel ^ einschließen.

Die Parallele zur Geraden (a, a!) durch den Ursprung

schneidet den Einheitskreis in den Punkten und — ; also

t'2 t
ist das Richtungsmaß dieser Geraden gleich — yy-p — und

die Gleichung der Geraden

(a, a') gleich t (z — a) t (z — a) ;

entsprechend die Gleichung von

(b, b') gleich z2t (z — b) zt (z — b)

und die Gleichung von

(c, c') gleich zt (z — c) — z21 (z — c)

Werden diese drei Gleichungen addiert, dann ergibt sich auf
beiden Seiten Null; also ist die dritte Gleichung eine Folge der
beiden vorhergehenden, und somit gehen die drei Geraden durch
den nämlichen Punkt 2, den sog. isoptischen Punkt des
Dreiecks10). Er liegt innerhalb des Dreiecks, wenn jeder der drei

Winkel kleiner als ^ ist.

(4, 4) Wenn wir die inneren Winkeldrittelnden eines Dreiecks
nächst den Seiten zum Schnitt bringen, dann erhalten wir die
Ecken eines gleichseitigen Dreiecks.

Um diesen interessanten Satz zu erweisen, der eine ganze
Literatur hervorgebracht hatu), bezeichnen wir die Ecken des

10) Der isoptische Punkt ist im Zusammenhang mit der Aufgabe Fermats für
Torricelli (P. de Fermât, Œuvres I, ed. P. Tannery-Ch. Henry, Paris 1891, 153 ;
vgl. Œuvres V, ed. C. de Waard, Paris 1922, 127/28 und E. Torricelli, Opere III,
ed. G-. Vassura, Faenza 1919, 425/31) von Torricelli entdeckt worden.

n) Der Satz wurde 1904 von Fr. Morley brieflich an Freunde in England gegeben.
Er findet sich erstmals gedruckt in W. L. Muir, Morley's Trisections Theorem,
Proceedings Edinburgh Math. Soc. 32, 1913.

f a — a' a z2b zc t

also «j
b — b' b + £2 c -f za tz

[ c — c' c z2 a zb tz2
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Dreiecks im Einheitskreis mit a3, 63, c3 und die Drittelnden des

Bogens (è3, c3), der a3 nicht enthält, mit b2 c und èc2, ferner die

Drittelnden des Bogens (c3, a3), der è3 nicht enthält, mit c2 a

und ca2 (Abb. 12). Ist t der Drittelpunkt des dritten Bogens
nächst a3, dann ist

t b2 c c2 a
az b3 c3

Abb. 12.

Zum Morleyschen Satz.

also t z a2b. Der andere bogendrittelnde Punkt ist also z2 ab2.

Der Schnittpunkt w der Winkeldrittelnden nächst (a3, bz) ergibt
sich aus dem Gleichungspaar

w + b2 cw a3 + b2 c

w + a2 è3 cw bz + a2 c •

Wir entfernen w und kürzen mit a — b. So finden wir

w — ab (a + b) + c (a2 + ab + b2) und entsprechend

u — zbc(zb + c) + a (z2 b2 + zbc + c2) •

v sa — eca (zc + a) -\- zb (z2 c2 + zac + a2) •

Jetzt ist u+ e v + e2 w abc(1+ s + e2) 0; also ist (u, c, w)

wirklich ein gleichseitiges Dreieck.
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5. Von der Pfeillänge.

(5, 1) Sind p und q zwei Punkte auf dem Umfang des

Einheitskreises, dann ist das Quadrat ihres Abstandes bestimmt aus

— — (q — vY
\q — p\2=(q — p)(z — p)=

Folglich ist

-P I

V- pq
\p>q\

das mit Vorzeichen behaftete reelle Längenmaß der Sehne (p, q).

Es ändert sein Zeichen, wenn p und q vertauscht werden.

5, 2) Ordnen wir nunmehr den Ecken eines Sehnendreiecks

im Einheitskreis wie am Ende von (2, 3) die Zahlen a2, ö2, c2 zu,

dann ist der Mittelpunkt des FEUERBACH-Kreises bestimmt aus

d _
a2 + b2 + c2

2
~~

2

und der Inkreismittelpunkt aus i — {bc + ca + ab). Also ist

d (a H-bp- c)2

2 ~ 1 ~~
2

d
~2~

1 _ (a + b + c) (bc -f- ca ab)

2 abc

Um das Längenmaß des Inkreishalbmessers zu^ bestimmen,

fällen wir auf die Sehne (a2, b2), nämlich + — + b2

(vgl. 3, 2), das Lot aus i. Seine Gleichung hat den Richtungsteil

z — a2b2zund das absolute Glied — a? b2 i — Q ^—-

Indem wir 5 durch Addieren aus den beiden Geradengleichungen

entfernen, erhalten wir nach leichter Umformung

(b + c) (c + «) (a + b)

2c
und P ±

< -f- c) (c -j- a) (a -f- b)

2 abc

Außerdem ist r 1. Andererseits ist

(a + b + c) (bc + ca + ab)

abc
1 +

(b -}- c) (c a) (a 4~ b)

abc
— r2 ±2rp
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Da aber der Inkreismittelpunkt vom Umkreismittelpunkt nicht

weiter als höchstens um r abstehen kann, trifft das Zeichen -f- für

p nicht zu. Es verbleibt die Beziehung von Chapple-Euler 12)

| i I2 - r2 — 2rp •

Wird jedoch aus dem Inkreis einer der Ankreise, dann ist 2rpft

mit dem positiven Zeichen zu nehmen. Weiterhin erhalten wir

p ^ o

Somit berührt der Inkreis den FEUERBACH-Kreis von innen und

wird ganz von diesem umschlossen. Entsprechend: Die Ankreise

berühren den FEUERBACH-Kreis von außen 13).

(5, 3) Außerdem ergibt sich ähnlich wie vorhin

(b + c) (fr — a) (c — a)

2 abc

Daraus folgt nach einfacher Rechnung die nach Steiner 14)

benannte Beziehung

Pa "k Pfc> Pc p —

Der Mittelpunkt der Dreieckseite (a2, b2) ist y
h

Folglich

ist der mit Vorzeichen behaftete Abstand des Umkreismittelpunktes

von dieser Seite gleich ± —Yäb~ ' Also Abstandsumme

des Umkreismittelpunktes von den drei Seiten des

Dreiecks gleich

(a2 + fr2) c + (fr2 + c2) a + (ca + a2) b

^ 2 abc

(fr + c) (c + o) (a + fr) 'labe _ „j, -f p)
2 abc

12) W. Chapple in den Miscellanea curiosa mathematica, 1, 1746, 123 (zitiert nach

SlMi3) e'uler 2) hat zwar die Berechnung yon | i |2, aber noch nicht die Form r2 2rp.

14) Der Satz stammt in Wirklichkeit von Feuerbach i), 4, wird jedoch in der

neueren Literatur stets nach Steiner benannt, so z.B. bei Dörrie 3), 59/60. Dort fehlt

jedoch der Hinweis darauf, daß die algebraische Summe zu nehmen ist.



ZUR DREIECKSGEOMETRIE 197

Also ist die Abstandsumme des Umkreismittelpunktes von den

Dreieckseiten gleich r + p, wenn das Dreieck spitzwinklig oder

rechtwinklig ist. Im stumpfwinkligen Dreieck muß der Abstand

von der längsten Dreieckseite von der Abstandsumme der beiden

anderen abgezogen werden. Also ist r + p gleich der algebraischen

Abstandsumme des Umkreismittelpunktes von den Dreieck-

Seiten.

(5, 4) Ist 31 der Umkreis und $ der Inkreis eines Dreiecks,

so gibt es oo1 weitere Dreiecke, die 31 zum Umkreis und % zum

Inkreis haben. Die FEUERBACH-Kreise dieser Dreiecke haben

stets den festen Halbmesser j ; sie berühren den Inkreis

umschließend von innen. Während sich das Dreieck in 31 um %

bewegt, rollt der Fe'uerbach-Kreis um den festen Inkreis

herum. Sein Mittelpunkt hat von i den festen Abstand p,

wandert also auf einem zum Inkreis konzentrischen. Auch der

Höhenschnittpunkt des Dreiecks wandert auf einem Kreis;

dessen Mittelpunkt ist der Spiegelpunkt 2 i des Umkreismittelpunktes

0 an i, sein Halbmesser gleich r — 2p.

Entsprechendes gilt auch für die FEUERBACH-Kreise und die

Höhenschnittpunkte jener Dreiecke im Umkreis 31, die außerdem

einen passenden Kreis zum Ankreis haben.

Ähnliches gilt auch für die Beziehungen der co1 Inkreise bzw.

Ankreise der Dreiecke, die wie in (1, 4) den nämlichen Umkreis

und FEUERBACH-Kreis haben; allerdings ändert diesmal p

fortwährend seine Grösse.

(5, 5) Die Fußpunkte der Lote aus den Ecken eines Dreiecks

auf dessen äußere Winkelhalbierenden liegen auf einem Kreis 15)

(Abb. 13).
Diese Behauptung hängt mit jener von (4, 1) zusammen.

Sie ist nämlich gleichwertig mit der folgenden: Die fraglichen

sechs Punkte sind vom Schnittpunkt
_|_ qrrp-|_ pq) der Parallelen zu den inneren Winkelhalbierenden

des Dreiecks durch dessen Seitenmitten gleichweit
entfernt.

15) Satz von Eutaris (Pseudonym für Restiau) in H. Vuibert, Journ Math.
Elément. (Brüssel), November 1877, zitiert nach Simon i), 135.
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Zum Nachweis schneiden wir die äußere Winkelhalbierende

z + p2 qrz p2 + qr

mit dem Lot aus q2auf sie, nämlich

- p2 r
z — p2 qrz q2 — •

Abb. 13.

Ein Sechspunktekreis.

Wir erhalten

* |(p2 + ?2 + r-p2-^).
also

pq2 + qr2 + rp2 + pqr
m — z= Yq

und
{pq2 + qr2 + rp2 + pqr) (p2 q + <72 r + r2 p + pgr)

#

| m z I - 4 p2 q2 r2

Dieser Ausdruck ist in p, q, r symmetrisch. Damit ist alles

bewiesen. Natürlich lässt sich auch dieser Satz unter Hinzunahme

äußerer und innerer Winkelhalbierenden zweckmäßig

variieren.
(5, 6) Etwas schwieriger und auf andere Weise schwerlich

einer einfachen Behandlung zugänglich ist die folgende Frage

16) Problem von Euler3), Opera a.a.O., 150/51. Vgl- Dörrie 3), 20/26.
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Von welcher Art ist das Problem,Dreieck aus dem

mittelpunkt, dem Umkreismittelpunkt und dem Höhenschnittpunkt

zu bestimmen
Machen wir den Umkreismittelpunkt zum Ursprung, so is

der Inkreismittelpunkt aus i,derHöhenschnittpunkt aus a

bestimmt. Wir ermitteln 2 iundkennen | |2 r — 2 p und

I d_ 2i| r —2p, also auch r und p, beides mit Zirkel und

Linea] konstruierbar. Machen wir r zur Längeneinheit, dann ist

a + b + c \/d 2 i

bc + ca + ab — i

(a + b + c) (bc + ca + ab) Vj-IZ 2 1

abG — —
| i |2 i

und

a2 + 62 _|_ C2 d

2(d — 2i)
b2 c2 + c2 a2 + a2 &2 t2 H

Es liegt ein Problem dritten Grades vor; die Ecken des Dreiecks

auf dem Umkreis ergeben sich als die Lösungen der kubischen

Gleichung

r, 2 (d — 2 £)"1 d — 2i _23 — dz2 + I I + " I z — -^2

Da die Koeffizienten dieser Gleichung aus d und i rational

hergestellt werden können, ist das Dreieck eindeutig bestimmt.

6. Yon ben Tangenten.

6, 1) Lassen wir in der Geradengleichung von (3, 2) den

Punkt b auf dem Einheitskreis gegen a hinrücken, dann erhalten

wir die Gleichung der Tangente an den Einheitskreis in a in der

Form:

z + a2 js 2 a -
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Darnach schneiden sich die Tangenten an den Einheitskreis in

dessen Umfangspunkten a und b im Punkt z — ' Außerdem

ist z das inverse Bild des Sehnenmittelpunktes
a h

•

Hieraus geht durch Division mit a die Polarengleichung

az + clz 2 hinsichtlich des Einheitskreises hervor. Ist a ein

beliebiger Punkt der Ebene, dann stellt diese Gleichung die

Polare des Punktes a hinsichtlich des Einheitskreises dar.

Ist umgekehrt pz + qz r die Gleichung einer Geraden, die

nicht durch den Ursprung geht (r ^ 0), dann wird sie nach

Multiplikation mit — zur Polarengleichung. Da rechts etwas

Reelles herauskommt, müssen die Faktoren bei z und 2 konjugiert

komplex sein ; der Faktor ~ a kennzeichnet den Pol

der Geraden. Auf diesem Wege sind sämtliche Polareigenschaften
hinsichtlich des Einheitskreises sogleich herleitbar. Indem wir
auf der rechten Seite der Polarengleichüng + 2 durch — 2

ersetzen, erhalten wir auch die Antipolarengleichung und alle

Eigenschaften der Antipolarität.
(6, 2) Wir beweisen zunächst den nach Newton benannten

Satz 17)
:

Die Verbindungsgeraden der Diagonalmitten eines Tangenten-
vierecks gehen durch den Inkreismittelpunkt.

Die Berührpunkte der vier Tangenten mit dem als Einheitskreis

angesehenen Inkreis seien a, 6, c, d; also ist der Mittelpunkt

einer der Diagonalen gleich

ab cd
__

S abc
m + c~Ä~d ~ (a b) (c + d)

'

Folglich ist m: ~mhabe: ha. Nun ist aber m kennzeichnend

für die Richtung des Ortsvektors m und ersichtlich aus a, b, c, d

symmetrisch aufgebaut. Folglich haben die zwei Ortsvektoren

aus dem Mittelpunkt des Inkreises zu den Diagonalschnittpunkten

hin die nämliche Richtung; also liegen sie in
Geraden durch den Inkreismittelpunkt.

17) Vgl. Simon i), 162 und Dörrie 3), 52/54. Die Aufgabe soll mit der Bestimmung
des Mittelpunktortes aller Ellipsen zusammenhängen, die einem konvexen Viereck
einbeschrieben sind. Ich habe die Stelle bei Newton nicht finden können.
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(6, 3) Die zu den Ecken a, b, c eines Dreiecks im Einheitskreis

gehörenden Tangenten schneiden sich in den Punkten

Der Umkreismittelpunkt u dieses Tangenten-2 bc 2ca 2 ab

b + c* c + a a + b
^ ^

dreiecks liegt z.B. auf dem Mittellot zu ——, a ^ b'
^essen

Richtungsteil ist z — a2 z\ das konstante Glied ist

ca ab
2 / 1 1

+ r-r— ° T-TT +
c + ß a b + a b

Das Mittellot hat also die Gleichung

- 2 a (bc — a2)
Z Cb Z j T V / j \

(a + b) (c + a)

Entsprechend
- 2b(ca-b>)

Daraus

u
2 abc {a + h + c) — 2 (bc -h ca 4- ab)

(b + c) (c + a) (a + .b)
* U

(b -U c) (c + a) (a + b)

und z.B.

2 bc 2 b2c2
u

(b + c) (c + .a) (a + b)

2 abc

mit dem absoluten Betrag

(b + c) (c + a) (a + b)

Das ist der Ausdruck für den Umkreishalbmesser r des

Tangentendreiecks. Er genügt noch der Relation von Chapple-Euler
(5, 2). Aus ihr geht hervor, dass r das negative Vorzeichen
erhalten muß. Also ist

a + b + c — — •

r

Folglich teilt 0, der Inkreismittelpunkt des Tangentendreiecks
und zugleich Umkreismittelpunkt des Ausgangsdreiecks, die
Strecke zwischen dem Umkreismittelpunkt u des Tangentendreiecks

und dem Höhenschnittpunkt h a + b + c des

Ausgangsdreiecks im Verhältnis r: p von u ab. Vgl. Abb. 14.

Ist nun a' der Schnittpunkt des zum Vektor a gleichgerichteten

Pfeils durch u mit dem Umkreis, dann ist a! — u —,
p
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also a' -, a,c usw. Die Umkreisradien des Dreiecks
(c + a) {a + b)

(a', V, c') aus den Ecken bis zu u hin sind parallel zu den

Umkreisradien des Ausgangsdreiecks (a, è, c) aus den Ecken bis zu

0 hin; also sind diese Dreiecke ähnlich und ähnlich gelegen. Das

lineare Maßstabsverhältnis zwischen entsprechenden Strecken
•• P

beider Figuren ist r: p, der Ähnlichkeitspunkt z — u -

Abb. 14.

Dreiecksbeziehungen.

Also teilt z die über 0 hinaus verlängerte Strecke uO von außen

im Verhältnis r: p von u ab.

Die Punkte h und z sind fest, wenn 0 und u fest sind, d.h. für

alle Dreiecke, die dem Kreis um u einbeschrieben und dem Kreis

um 0 umbeschrieben sind. Die Sehnendreiecke aus ihren

Berührpunkten im Inkreis haben einen und den nämlichen
Feuerbach-Kreis.

• (6, 4) Wann ist ein Tangentenviereck gleichzeitig Sehnenviereck,

also bizentrisch

Wir gehen aus von vier Punkten a, b, c, d auf dem Umfang

des als Einheitskreis angesehenen Inkreises des Tangenten-
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Vierecks. Dabei nehmen wir an, daß sich die Sehnen (a, c) und

(ô, d) innerhalb des Kreises schneiden (Abb. 15). Sollen die

zugehörigen Tangenten gleichzeitig ein Sehnenviereck abgrenzen,

dann müssen sich z.B. die Winkel in den Gegenecken
a ^ b

und

zu zwei Rechten ergänzen, also die Bögen (a, b) und (c, d)
c + a

Abb. 15.

Bizentrisches Viereck.

auf dem Einheitskreis zu einem Halbkreis. Folglich sind die

Bögen (ö, — a) und (c, d) gleich, also — J ~ 0(^er

ac + bd 0

Das besagt: Das Tangentenviereck ist gleichzeitig Sehnenviereck,
wenn sich die Diagonalen des aus den Berührpunkten gebildeten
Vierecks im Inkreis senkrecht schneiden.

Die Gleichungen dieser Diagonalen sind z + acz a + c;
2 + bdz b + d\ folglich ist s

a + & + <? + ^ ^er
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Schnittpunkt und gleichzeitig (vgl. 3, 3) gemeinsamer Punkt
der Feuerbach-Kreise, die zu den vier Sehnendreiecken im

Inkreis gehören, die sich aus den Punkten a, è, c, d bilden lassen.

Ersichtlich gilt auch die Umkehrung:
Wenn der Diagonalschnittpunkt eines Sehnenvierecks auf

jedem der Feuerbach-Kreise liegt, die zu den vier Sehnendreiecken

aus je drei der vier Eckpunkte des Sehnenvierecks gehören, dann

stehen die Diagonalen des Sehnenvierecks auf einander senkrecht.

(6, 5) Nun kehren wir zu unserem bizentrischen Viereck

zurück und bestimmen den Mittelpunkt m des Umkreises : dieser

befindet sich z.B. auf den Mittelloten (vgl. 6, 3)

_ _ 2 a(bd — a2)
Z er Z 7J— r~i :—TT

(d + a) (a + b)

und
_ 2 c (bd — c2)

z~c z
(b (c +

'

Wir erhalten unter Berücksichtigung von ac -{-.bd 0

2 abcd H a
m

(a + b) (b + c) (c H- d) (d + a)

Nun ist aber

(a -f b) (b + c) (c + d) (d+ a) (ac + bd)2 + Sa2 (bc + cd + db)

und
Sa Habe 4abcd Sa2 (bc + cd + db)

also im vorliegenden Falle

(a + b) (b + c) (c + d) (d + a) — kabcd + Sa Habe

Außerdem ist

abc abcd — — labeds ;

also nach kurzer Rechnung m s: (s.s — 1). Somit liegen der

Inkreismittelpunkt 0, der Umkreismittelpunkt m und der

Diagonalschnittpunkt s in einer Geraden; 0 liegt zwischen,m

und 5 und die Längen der Pfeile (m, 0) und (m, s) verhalten

sich wie p2 zu s2.
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Weiterhin ist

ss kabcd Tid Zabc _ i ^ 12

mm
(Ss 1)2

~~
(Sa Saèc — 4abed)2

Zur Bestimmung des Umkreishalbmessers r bilden wir

2 ab 2 ab (— bdc — aed + abd + a^c)

(a + b) (b + c) |i + d) (d + a)

und den dazu konjugiert komplexen Wert. Dann ergibt sich

nach kurzer Rechnung

kabcd (Sabcd — Sa Zabc)
r2 (LäTTLÖbc^TäbcEf'

Somit ist
• r kabcd l2

r2 + | to |2 2 [Sa ; Saöc — 4a&cdj

und
kabcd

r2 — I TO I2 — 2 2^7 £a&c_4a&cd '

also 18)

(r2 — I TO |2)2 2 p2 (r2 + I TO |2)

Daraus folgt der bekannte Schließungssatz:
Besteht zwischen den Halbmessern r und p zweier Kreise und

ihrem Mittelpunktabstand | m | die soeben hergeleitete

dann gibt es oo1 bizentrische Vier,die den. Kreis des

Halbmessers p berühren und im Kreis des Halbmessers r liegen, die

Verbindungssehnen ihrer Berührpunkte im Inkreis schneiden sich

dortselbst stets im nämlichen Punkt s, und zwar unter rechtem

W inkel.

7. Vom Flächeninhalt.

(7, 1) Um den Flächeninhalt Ä des Dreiecks zu bestimmen,

dessen Seiten den Einheitskreis in den Punkten a, b, c berühren,

berechnen wir zunächst das gerichtete Längenmaß der Dreiecksseiten

(vgl. Abb. 14): Wir bilden nämlich

2 ab 2ac
__

2 a2 (b — c)
_

a + b a + c (a + b) (a + c)

18) N. Fuss, Nova Acta Petrop. 13, für 1795/96, ausgeg. 1802, 166.

L'Enseignement matliéin., t. IV, fasc. 4. 14
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Diese gerichtete Strecke hat den absoluten Betrag

2 a (b — g) V— 1

(a + b) (a + c) '

also das Dreieck die Fläche

A
(fr — c) (° — a) (a — b) /—7
(b + c) (c + a) (a-\-b)

Auch dieser Ausdruck ist mit einem Vorzeichen behaftet und
abhängig vom Umlaufssinn, der sich aus der gewählten Reihenfolge

der Ecken ergibt. Sind die beiden Bestandteile der
komplexen Einheitsvektoren a, è, c rational, dann sind auch die
Seitenlängen und die Fläche des Dreiecks rational; wir haben
also ein heronisches Dreieck vor uns.

(7, 2) Als Sehnendreieck wird das Dreieck dann heronisch,
wenn wir ihm die Ecken a2, &2, c2 geben wie am Ende von (2, 2).
Jetzt haben die Seiten gemäß (5, 1) die gerichteten Längenmaße

fr2 — c2 /—,r—7 V— 1 usw. ;
bc

also ist die halbe Seitensumme

(b — c) (c — g) (g — b) \J— 1

2 abc

Unter Mitverwendung der Formel für p aus (5, 2) erhält die
Dreiecksfläche nunmehr die Form

A
(&2 — c2) (c2 — a2) (a2 — b2)

4 a2 b2 c2 \/— 1

(7, 3) Die Dreiecksformel dient zur Bestimmung des
Flächeninhaltes F eines Sehnenvierecks, dem wir die Ecken
a2, è2, c2, d2 geben. Indem wir den Umlaufsinn der Teildreiecke
(a2, è2, c2) und (a2, c2, d2) beachten, erhalten wir als Fläche

F
(a2 — b2) (b2 — c2) (c2 — q2) (q« — c«) (c2 — d*) (d2 — a2) _4a2è2c2v/Zrï 4a2 c2 cZ2

__
(a2 — c2) (62 — d!2) (a2 c2 — 6*

4 a2 62 c2 d2 \/— 1
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g2 — b2

ab v— i ; bc cd
V~1 ;

g2 — d2

ad V-i
Dann erhalten wir der Reihe nach als Halbsumme der Seiten,

vermindert um je eine der Seiten:

(ac — bd) (g -j- c) {b d)

— 2 abed */— 1

(ac — bd) (a — c) (b + d)

— 2 abed — 1

(ac + bd) (a + c) (b -f d)

— 2abcd 's/— 1

(ac -j- bd) (a c) (b d)

2 abcd s/-— 1

Wir kommen vom ersten (direkt berechneten) Ausdruck zum

zweiten, indem wir b durch — b ersetzen, von diesem zum

nächsten, indem wir c durch —- c ersetzen, und schliesslich von
diesem zum letzten, indem wir d durch — d ersetzen. Nach

Multiplikation der letzten vier Ausdrücke erhalten wir das Quadrat

von F; damit ist die bekannte Inhaltsformel für das Sehnenviereck

gefunden 19).

(7, 4) Der Flächeninhalt des Sehnendreiecks (w, e, w) im
Einheitskreis kann auch in der Form

u2 1 u 1
U ~ü 1

o2 1 a Iil 0 ~v 1

w2 1 w w w 1
;

Vorgeschrieben werden. Diese Formel bleibt auch dann noch richtig,
wenn b, e, w drei beliebige Punkte sind, die nicht mehr auf dem

Umfang des Einheitskreises liegen. Wir verwenden sie zum
Beweis des PASCALschen Lehrsatzes 20)

:

Die Gegenseiten eines Sehnensechsecks im Kreis schneiden sich
in den Punkten einer Geraden (Abb. 16).

19) Die Flächeninhaltsformel tritt erstmals bei den Indern auf, dann unter deren
Einfluß bei den Arabern. Im Abendland findet sie sieb unabhängig von diesen
Vorgängern in der von W. Snell besorgten und mit dessen Zusätzen ausgestatteten
lateinischen Ausgabe von Ludolf van Ceulen, De arithmetische en geometrische Fon-
damenten, Leiden 1615, 21619. Vgl. auch J. Tropfke, Geschichte der Elementarmathematik,

IV3, Berlin 1940, 150/68.
20) Der Satz erscheint bereits in Essay -pour les coniques von 1640 (Vorform), dann

in der heutigen Fassung in den 1654 abgeschlossenen und auf Grund eines LEiBNizschen
Gutachtens 1676 zum Druck beförderten Conica, die beim Setzer zu Verlust gegangen
und nicht an die Öffentlichkeit gekommen sind. Vgl. ferner Tropfke i9>, 231/32.
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Die Ecken des Sehnensechsecks seien a, è, c, d, e, /; die

Schnittpunkte der Gegenseiten seien

u (b, c) X (e, /) ; p (c, d) X (/, a) ; w (d, e) X (a, è)

Die Gleichungen der Seiten (6, c) bzw. (e, /) sind

2 + bcz b -j- c bzw. 2 + e/S e + / •

Abb. 16.

Pascalscher Lehrsatz.

Folglich ist ihr Schnittpunkt & gekennzeichnet durch

M (ôc — ef) bc [e + /) — e/ (ô + c)' ; ü (ôc — ef) [b + c) — (e + /).

Also ist die Fläche des Dreiecks (k, p, pp>) proportional zu

bc (e + /) — e/ (6- + c) (6 + c) — (e + /) bc — ef

cd (/ + a) — /« (c -f- d) (c -f d) — (/ + a) cd — fa
de (a + b) — ab (d -f- e) (d + c) — (a + b) de — ab

be, ef, da

111
6 / d

(c~f)
0

— (a — d)

(& — c) 0

(a-d) (c —/)
0 —(b — e)
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Die zweite Determinante dieser Produktdarstellung verschwindet

identisch; also hat das Dreieck (», c, w) die Fläche Null.
Somit liegen die Punkte », c, w wirklich in einer Geraden, wie

behauptet.
Indem wir diese Kreisfigur aus einem Punkt, der nicht in

der Kreisebene liegt, auf eine zur Kreisebene nicht parallele
Ebene projizieren, erhalten wir daraus den allgemeinen Pascal-
schen Lehrsatz für Kegelschnitte.

(7, 5) Fassen wir etwa die Punkte e, c, a bzw. 6, /, d als

zusammengehörige Elemente einer Projektivität auf dem

Kreisumfang auf, dann ist die PASCALsche Gerade (», c, w) der

Abb. 16 die Achse dieser Projektivität; ihre Schnittpunkte

x, y mit dem Einheitskreis sind die Doppelelemente der Projektivität.

Diese Eigenschaft verwenden wir z.B. zur Lösung der sog.

ÜTTOJANOSchen Aufgabe 21):

Gegeben sind ein Kreis und drei nicht auf seinem Umfang gelegene

Punkte. Ein Sehnendreieck durch diese Punkte zu bestimmen.

Der Kreis sei der Einheitskreis, die von einander verschiedenen

Punkte seien p, q, r, die gesuchten Ecken des Dreiecks
seien x, y, z. Es geht also um die Auflösung der drei Gleichungen

p + yzp y + z q + zxq z + x r + xyr x + y •

Vermöge der beiden ersten Gleichungen lässt sich x und y als

linear-gebrochene Funktion von z ausdrücken; durch Einsetzen
in die dritte Gleichung erhalten wir also eine quadratische
Gleichung in 2, die nach Division mit z auf die Form z + mz n
gebracht werden kann und also eine Gerade darstellt. Deren

Schnittpunkte mit dem Einheitskreis liefern die beiden gesuchten
Werte % und z2.

Im vorliegenden Fall konstruieren wir am zweckmäßigsten
drei zusammengehörige Punktepaare der durch die Anordnung

2i) Das Problem stammt (für drei Punkte, die in einer Geraden liegen) von Apol-
lonios aus den verlorenen Tactiones, über die wir Näheres aus Pappos, Collectiones, VII,
prop. 117 wissen. Das allgemeinere Problem wurde von G. Cramer gestellt, dessen
Schüler G. F. M. M. Salvemini de Castillon seit 1742 an der Lösung arbeitete und
1776 eine elementargeometrische veröffentlichte. Das Problem für n-Ecke wurde
von dem 16-jährigen A. Giordano aus Ottojano im Anschluß an Pappos gelöst. Vgl.
M. Brückner, Das Ottojanosche Problem, Programm, Zwickau 1892 und Tropfke i9),
125.
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zii Pi Vi G xi J-, H auf dem Kreisumfang bestimmten Projektivi-
tät. Die zusammengehörigen Punkte % und z2 bezeichnen wir
bzw. mit e, c, a und è, /, d. Die Achse dieser Projektivität ist die
oben erwähnte Gerade. Die Ausführung ist in Abb. 17 nur
angedeutet, weil wohlbekannt.

Abb. 17.

Ottojanos Problem.

Der rechnerische Ansatz zeigt, daß das Problem im Kreis
vom Dreieck auf ein ft-Eck übertragen werden kann und
wiederum auf eine quadratische Gleichung führt. Durch passende
Projektion läßt es sich allgemein für Kegelschnitte aussprechen
und behandeln.

** *
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Dies waren einige Proben, an denen gezeigt werden sollte,

wie sich der zu Anfang erwähnte Gedanke, komplexe Zahlen im

Zusammenhang mit dem Einheitskreis zu verwenden,
nutzbringend verwenden läßt. Es gibt sehr viele weitere einfache

Anwendungen; da es nur um die Fixierung der Gedanken geht,
soll nicht weiter auf sie eingegangen werden.

SUR LES NOMBRES PREMIERS DE LA FORME nn + 1

par W. Sierpinski (Varsovie).

(Reçu le 11 décembre 1957.)

Le but de cette Note est de démontrer le théorème suivant:
Parmi les nombres ayant au plus trois cent milles chiffres

(en système décimal) il n'y en a que trois, 2, 5 et 257 qui sont des

nombres premiers de la forme n11 + 1, °ù n est un nombre naturel.

Démonstration. — Le nombre l1 -f 1 — 2 est premier.
Soit maintenant n un nombre naturel > 1 et supposons que le

nombre nn + 1 est premier. Si n avait un diviseur premier
impair p, on aurait n — où k est un nombre naturel et le

nombre nu + 1 (nh)v + 1 serait divisible par le nombre
naturel nk 1 qui est > 1 et < nn + 1 (puisque k < kp — ri),
ce qui est impossible. Donc n n'a aucun diviseur premier impair
et, comme n > 1, on a n 2S, où s est un nombre naturel.
Si s avait un diviseur premier q impair, on aurait s — kq, où k
est un nombre naturel, et le nombre nu 1 2sn + 1

(2knY -j- 1 serait divisible par le nombre naturel 2hn + 1

qui est > 1 et < nn l (puisque 2kn < 2knq nn), ce qui
est impossible. Le nombre «9 n'a donc aucun diviseur premier
impair, donc s 2m, où m est un entier > 0.
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