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ZUR ELEMENTAREN DREIECKSGEOMETRIE
IN DER KOMPLEXEN EBENE

von Jos. E. Hormann (Ichenhausen)

(Recu le 17 juillet 1958.)

Einige Fragen der elementaren Dreiecksgeometrie lassen
sich besonders einfach in Vektorform behandeln, wenn der
Umkreismittelpunkt des Dreiecks als Bezugspunkt verwendet
wird. Machen wir den Umkreishalbmesser zur Einheit, dann
sind die Ortsvektoren a, b, ¢ der gleichbenannten Ecken Ein-
heitsvektoren, die wir zweckméBig als komplexe Zahlen schrei-
ben. Wird ein Punkt auf dem Einheitskreis durch die komplexe
Zahl z dargestellt, dann wird sein Spiegelpunkt z an der reellen

Achse durch —1Z— wiedergegeben. Die nachfolgenden Beispiele
sollen zeigen, wie sich die vektorielle Auffassung und die Be-
ziehung z = % vereinfachend und nutzbringend verwenden

lassen.

1. Vom HOHENSCHNITTPUNKT, vOM FEUERBACH-KREIS
UND VERWANDTEN PROBLEMEN.

(1, 1) Es seien a, b, ¢ die Ortsvektoren der Ecken eines
Sehnendreiecks im Einheitskreis (Abb. 1). Dann ist (a + b) der
Spiegelpunkt des Umkreisthittelpunktes O an der Sehne (a, b);
also steht der Ortsvektor (a 4+ b) auf der Sehne senkrecht.
Erginzen wir nunmehr (¢ + b) und ¢ hinsichtlich O zum
Parallelogramm, dann ist

a+b+c=d

der Ortsvektor, der auf der Diagonalen dieses Parallelogramms
aus O liegt. Folglich fallt die Gerade (c, d) auf die Dreieckshohe
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aus ¢ auf die Gegenseite (a, b). Da die Vektoraddition kommu-
tativ und assoziativ ist, befindet sich d auch auf den Hohen aus
a auf (b, ¢) und aus b auf (¢, a). Damit ist gezeigt, dal sich die
drei Hohen des Dreiecks genau in einem Punkt schneiden,
némlich im Hohenschnittpunkt d = a + b + ¢. Sehen wir fiir
den Augenblick vom Umbkreis ab, dann sind die vier Punkte a,
b, ¢, d vollig gleichberechtigt; jeder von ihnen ist Hohenschnitt-
punkt des aus den drei anderen Punkten bestimmten Dreiecks.
Wir reden deshalb zweckmiBig von vier orthogonal verbundenen

Punkten.

Abb. 1.
Umkreis, Hohenschnittpunkt und Feuerbach-Kreis.

(1, 2) Nun ist 2 _; b Mittelpunkt der Sehne (e, b) und des
Ortsvektors (a -+ b). Die Parallele durch q—%——b zum Ortsvektor c

c+d
2 ;|

triftt auf den Hohenabschnitt (¢, d) in dessen Mittelpunkt
d . .
und 5 Ist der Mittelpunkt des durch (O, a + b, d, ¢) bestimmten

Parallelogramms. Folglich geht der Kreis des Halbmessers % um
d : |

7 den Mittelpunkt des Ortsvektors d, durch die Seitenmittel-
+¢c ¢c+a a-+b a+d bt+d

2T 2 , durch die Mittelpunkte ——, —

punkte b
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¢ _*2— ¢ der ,,oberen Hohenabschnitte“ und durch die HohenfuB3-

punkte u, ¢, w des Dreiecks, ist also dessen FEUERBACH-Kreis V.
Etwas anders ausgedriickt:

Sind die vier Punkte a, b, ¢, d orthogonal verbunden, dann
haben die vier aus je dreien dieser Punkte bestimmien Dreiecke den
ndmlichen FEUERBACH-Krets. Er geht einerseits durch die sechs
Seitenmiiten des aus diesen Punkten bestimmten vollstandigen
Vierecks, andererseits durch dessen Nebenecken.

(1, 3) Figen wir zu den Ecken a, b, ¢, d der Abb. 1 noch
die Punkte (b 4 ¢), (¢ + @), (¢ + b) hinzu (Abb. 2), dann liegen
diese Punkte auf dem Einheitskreis um d. Sie sind die Ecken

: : . e d
eines neuen Dreiecks, das zum urspriinglichen hinsichtlich 3

symmetrisch liegt und O zum Ho6henschnittpunkt hat. Auch die

Abb. 2.
Ein Paar zugeordneter Dreiecke.

LY

1) K. W. FEUERBACH, Eigenschaften einiger merkwiirdiger Punkte des geradlinigen
Dreiecks und mehrerer durch sie bestimmier Linien und Figuren. Nirnberg 1822. Zur
Literatur vgl. J. S. MAckAY, Proceedings Edinburgh Math. Soc. 11, 1893, 19 ff. und
J. LANGE, Geschichte des Feuerbachschen Kreises, Programm Berlin 1894; ferner
M. SiMON, Uber die Entwicklung der Elementargeometrie im XI1X. Jh., Jahresbericht d.
Deutschen Math.-Vereinigg., Erganzungsband I, Leipzig 1906, 124/30 und M. ZACHA-
RIAS in der Encyklopddie der math. Wiss., II1 AB 9, Leipzig 1914.
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Punkte O, (b -+ ¢), (¢ + a), (a + b) sind orthogonal verbunden;
die Seitenmitten des Dreiecks (a, b, ¢) sind die Mittelpunkte der
oberen Hoéhenabschnitte des Dreiecks (b -+ ¢, ¢ + @, @ - b) und
umgekehrt. Wir haben also acht Dreiecke mit dem némlichen
FrurrBACH-Kreis und zwolf auf diesem liegende Punkte. Die
Zentrale (O, d) der beiden kongruenten Kreise ist die EvLERsche
Gerade ? der beiden Dreiecke. Auf ihr liegen auch die Schwer-

punkte % des urspriinglichen und 2—3d des zugeordneten Dreiecks.

(1, 4) Sind zwei der fiinf Punkte O, % % %d, d bekannt,
dann sind die anderen mitbestimmt. Kennen wir auBerdem noch
den Halbmesser des FeuerBacH-Kreises oder eines der beiden
Umkreise, dann sind uns diese drei Kreise nebst ihren Mittel-
punkten bekannt. Es gibt unter einer nachher zu besprechenden
Einschrinkung oo! Dreiecke (a, b; ¢), die dem Kreis um O
einbeschrieben sind und d zum Hohenschnittpunkt haben.

Wihlen wir z.B. die Ecke ¢ auf dem Kreis um O, dann ist die

Gegenecke (a 4 b) auf dem Kreis um d als Spiegelbild an %

bestimmt. Die Parallelen (¢, d) bzw. (O, a + b) treffen den
FruerBacH-Kreis in den Ecken eines Rechtecks, dessen andere
Seiten die anderen Ecken a, b bzw. (b + ¢), (¢ + a) der zuge-
ordneten Dreiecke tragen. '

Ist Dreieck (a, b, ¢) spitzwinklig, dann liegt d innerhalb des
Umkreises um O. Ist das Dreieck rechiwinklig, dann befindet.
sich d auf dem Umkreis. In diesem Fall bertihren sich der
FruerBacH-Kreis und der Umkreis in d, und der Ortsvektor d
ist der Durchmesser des FEuErBACH-Kreises. Ist Dreieck (a, b, ¢)
stumpfwinklig, dann liegt d auflerhalb des Kreises um O, jedoch
so, daB der FruerBacH-Kreis den Umkreis schneidet. Abb. 3
zeigt, wie die Verhaltnisse nunmehr liegen.

(1, 5) Weil die aus orthogonal verbundenen Punkten a, b,
¢, d entstehenden Dreiecke (b, ¢, d), (¢, a, d), (@, b, d) und (a, b, c)
den namlichen FruerBAcH-Kreis haben, sind ihre Umkreise
kongruent. Die Mittelpunkte dieser Umkreise sind die zuge-

2) L. EULER, Solutio facilis problematum quorundam geometricorum difficillimorum,
Novi commentarii Ac. sc. Petrop., 11 (1765}, 1767, 103/23, insbes. 114; Opera omnia,
XXVI, ed. Andr. Speiser, Zurich 1953, 139/57, insbesondere 149. Die Abhandlung
wurde der Petersburger Akademie am 21.XII.1763 alten Stiles vorgelegt.
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ordneten Punkte (b + ¢), (¢ + a), (a + b), O, die ihrerseits
ebenfalls orthogonal verbunden sind und vier Dreiecke erzeugen,
deren Umkreise ebenfalls zu den bisherigen kongruent sind und
die Mittelpunkte a, b, ¢, d haben. Die so entstandenen acht
Kreise durchschneiden sich je zu dritt in den Ecken der beiden
zusammengehorigen orthogonal verbundenen Punktequadrupel.

Abb. 3.
Das erzeugende Dreieck ist stumpfwinklig.

Die Gleichwertigkeit wvon vier orthogonal verbundenen
Punkten a, b, ¢, d zeigt sich besonders schon am Hovrzschen
Dreiecksatz ¥:

Die dret von etner Ecke ausgehenden Pfeile zu den anderen
Ecken hin, lassen sich stets durch Ansetzen eines dieser Pfeile an
der Spiize eines der beiden anderen in entgegengesetzter Richtung
zu einem dreitetligen Sehnenzug im Einheitskreis vereinigen, dessen
Endpunkte enigegengesetzte Punkte des Einheilskreises sind. -

8) K. B. HoLz, Das ebene obere Dreieck, Hagen i.W. 1944. Vgl. auch L. BIEBER-
BACH, Theorie der geometrischen Konsiruktionen, Basel 1952, 114/15 und 156.
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Soll das orthogonal verbundene Quadrupel aus den Léngen
der Pfeile bestimmt werden, dann entsteht eine kubische
Gleichung fiir den Durchmesser des Kreises, in den der Strecken-
zug eingepaBt werden kann ¥. Diese Gleichung hat drei reelle
Losungen; die Anordnung der (in ihrer Reihenfolge vertausch-
baren) Pfeile in diesen Kreisen wird genau durch die drei Arten
der Abb. 4 veranschaulicht 9.

Abb. 4.
Der Holzsche Satz.

2. VON DER BOGENGLEICHHEIT.

(2, 1) Sind (a, b) und (¢, d) zwei Parallelsehnen im Einheits-
kreis (Abb. 5), dann sind die Kreisbogen zwischen den Parallelen
gleich groB. Prégen wir ihnen den positiven Gegenuhrzeigersinn

4) Das Einpassungsproblem wird heute allgemein nach I. NEwTON, Arithimetica
universalis, Kap. XIII, 8./10. Vorlesung von 1675/76, ed. W. WHISTON, Cambridge
1707, 97/113 gennant, so z.B. bei H. DORRIE, Mathematische Miniaturen, Breslau 1943,
31. Es stammt jedoch nicht von NEwToN, sondern von Fr. van SCHOOTEN, De organica
conicarum sectionum in plano descriptione tractatus..., cui subnexa est appendix de cubi-
carum aequationum resolutione, Leiden 1646, 102/08 und 111/17, in verbesserter Form
wiederabgedruckt in R. DESCARTES, Geometrie ed. Fr. van Schooten, I, Amsterdam
1659, 354/59 und 361/67. Dies wird die Vorlage fiir Newton gewesen sein, der diese
Ausgabe der Geometria besaB.

Setzen wir z.B. |b,c| =u, |¢c,a| =, |a, b| = w, dann heiBt die (bereits bei ,

Schooten auftretende) kubische Gleichung
x3 = (u2 + 2 + w2)x + uow .

5) Diese drei Fille treten auch bei ScHOOTEN 4) und NEWTON 4) auf. Auch die
elegante kinematische L.osung bei BIEBERBACH 8), 115/16 vermittels eines transparenten
Blattes und des Stechzirkels erweist sich bei genauerem Zusehen als Variante der
Losung von ScHooTEN. Dieser arbeitet im Anschlu8 an Fr. VigTE, Supplementum
geometriae, Tours 1593, Wiederdruck in den Opera, ed. Fr. van Schooten, Leiden 1646,
vermittels einer Einschiebung, die mit der Winkeldreiteilung zusammenhingt.
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auf, dann ist gem&B den in der Abbildung gewidhlten Bezeich-
c a
b d’

nungen also

ab = cd

Fallen wir z.B. das Lot aus ¢ auf (a, b), dann trifft es in — d =

ab . .
= —— auf dem Kreis ein.

Abb. 5.
Bogengleichheit.

(2, 2) Haben wir nunmehr die Punkte a, b, ¢ auf dem
Umfang des Einheitskreises (Abb. 6), dann wird der Kreis von

den Hohen des Dreiecks (a, b, ¢) bezw. in den Punkten p — b—;-,
qg=— fbﬁ, r=— a—cb geschnitten. Nun ist aber z.B. % = — %

== g—. Daraus folgt, daB der Pfeil (r, ¢) die innere Halbierende

des Winkels (p, r, q) ist.

Also sind die Hohen des Sehnendreiecks (a, b, ¢), die inneren
Winkelhalbierenden. des zugeordneten Gegendreiecks (p, q, r) und
der Hohenschnitipunkt des Ausgangsdreiecks st zugleich der
Inkreismittelpunkt des neuen ®. -

6) Vgl. Ph. NAUDE in den Miscellanea Berolinensia &, 1737, 17 bzw. FEUERBACH 1),
§ 24.
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Weiterhin ist w (vgl. 1, 2) Mittelpunkt zwischen d und r;

’ b+ d
also“’:%(d—l-b—i—c——g(?)usw.und d— p = (a+0)2((: +4)

Usw.

ADbb. 6.
Dreieck und Gegendreieck.

(2,3) Jetzt ergéinzen wir noch die Gegenpunkte (— a), (— 0),
(—¢) zua, b, c. bez. O. Dann ist z.B. die Gerade (—z¢, r) die dullere
Halbierende des Winkels (p, r, ¢). Fiigen wir auch die anderen
suBeren Winkelhalbierenden (— a, p), (— b, ¢) des Dreiecks
(p, ¢, r) hinzu, dann entsteht ein Dreieck, das zum Dreieck
(a, b, ¢) aus d dhnlich und im MaBstab 2: 1 vergrofert ist. Jetzt
tritt z.B. an Stelle von ¢ die Ecke (— a — b + ¢); denn c ist
Mittelpunkt zwischen (— a — b + ¢) und d. Der Ausgangskreis
ist der FEUERBACH-Kreis dieses vergroBerten Dreiecks, dessen
Umkreis den Halbmesser 2 hat. Damit sind wir in etwas anderer
Form zu den fritheren Ergebnissen zurtickgekommen.

Wir konnen die Ergebnisse auch bruchfrei ausdriicken,
indem wir namlich p durch p?, ¢ durch ¢? und r durch r? ersetzen.
Dann miissen wir ¢ durch — gr, b durch — rp und ¢ durch — pg
ersetzen und erhalten den Inkreismittelpunkt in der Form
— (gr + rp + pg), die Ankreismittelpunkte in der Form

(— gr + rp + pg), (gr — rp + pg), (gr + rp — pg).
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3. VoM RICHTUNGSMASS UND VON DER GERADENGLEICHUNG.

(3, 1) Wir geben die Punkte a, b auf dem Einheitskreis und
legen durch den Kreismittelpunkt O den parallelen Durchmesser
zur Sehne (a, b), dessen Endpunkte z und — z seien. Jetzt ist
also — 22 = ab. Das Produkt ab wollen wir das Richtungsmaf
der Sehne (a, b) nennen. Sehnen mit dem namlichen Richtungsmaf
sind parallel.

Abb. 7.
Zum Satz von der Wallace-Geraden.

Als Anwendungsbeispiel behandeln wir den Satz von der
WaLLace-Geraden ?: Geben wir auf dem Einheitskreis die vier
Punkte a, b, ¢, d, dann treffen die Lote aus d auf die Seiten
(b, ¢), (¢, a), (a, b) des Dreiecks (a, b, ¢) bez. in den Punkten

1 be

I

po| = o =

¢

(c—{—’a—|~d—%),

w = (a+b—}—d——a§)

ein. Wir behaupten:

7) W. WALLACE in Th. LEYBOURNE, Mathematical repository (old series) 2, 1798, 111.
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Die Punkte u, v, w liegen in einer und der nimlichen Geraden,
der WALLACE-Geraden des Dreiecks (a, b, ¢) hinsichtlich des
Punktes d auf dem Umbkrets des Dretecks.

Z.B. ist (a, w, ¢, d) ein Sehnenviereck, jedoch nicht im Ein-
heitskreis. Folglich ist

4 (d, a, 0) = < (d7 w, ) .

Die Parallele durch ¢ zu (¢, w) schneidet die verlangerte (d, w)
unter dem nédmlichen Winkel. Dieser Schnittpunkt liegt auf dem
Einheitskreis. Da aber (a, ) und (d, w) auf einander senkrecht

stehen, wird der Schnittpunkt durch (~— %9 dargestellt. Das

abe

Richtungsmal} der Geraden (¢, w) 1st also (—- ~d—> Dieser Aus-

druck ist in a, b, ¢ symmetrisch. Also haben die drei Geraden
(v, w), (w, u), (u, ¢) das ndmliche RichtungsmaBl; folglich fallen
sle zusamrinen.

(3, 2) Wir geben zwei Umfangspunkte a, b auf dem Einheits-
kreis und einen Punkt z, der nicht auf der Geraden (a, b) liegt
(Abb. 8). Dann ergénzen wir a, O, b durch (a + b) zur Raute
und spiegeln z an der Rautendiagonale (O, a 4+ b) in s. Indem

wir die Einheitsvektoren % und lz‘l bilden, erhalten wir die

Schnittpunkte der Ortsvektoren s und z (oder ihrer Verlédn-
gerungen {iiber die Spitze hinaus) mit dem KEinheitskreis. Die
Verbindungsstrecke dieser Einheitsvektoren ist parallel zur
Sehne (a, b); also ist ﬁé’ = ab. Nun ist aber |s| = |z]; also

Sf fz! = z z; somit

s = abz

Jetzt spiegeln wir z am Séhnenmittelpunkt In ¢ =

a -+ b
2

= a + b— z und s am namlichen Punkt in

C =a-+ b— abz

Nun 1st { gleichzeitig Spiegelpunkt von z an der Sehne
(a, b). Wenn wir einen Punkt z auf der Sehne vor uns haben,
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dann und nur dann ist { = z. Folglich ist

z—l—abzza—{—b

die Gleichung der Geraden (a, b). Die linke Seite z + abz nennen
wir den Richtungsteil; er ist durch das RichtungsmaB eindeutig
bestimmt. Die rechte Seite nennen wir das konstante Glied. Es

a+b

Abb; 8.
Geradengleichung.

wird durch Einsetzen der Endpunkte der Sehnen (oder allge-
meiner: eines bekannten Punktes der Geraden) in die Gleichung
bestimmt. Das liefert — da wir z sowohl durch a wie durch b
ersetzen konnen — eine Probe. '

(3,3) Nun kehren wir zur WaLLAcE-Geraden (3, 1) zuriick.

Der Richtungsteil ihrer Gleichung ist z — C%c— z; das konstante

Glied ergibt sich z.B. durch Einsetzen von z = u. Wir erhalten
nach leichter Umformung

‘z_%“z:%(wbﬂw)_%‘f(ﬂz+5+3)

Diese Gleichung ist in a, b, ¢ symmetrisch; deshalb geht die durch
sie dargestellte Gerade nicht nur durch z, sondern auch durch ¢
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und w. Natiirlich 148t sich das auch durch Einsetzen nachpriifen.
AuBerdem liegt auch der Punkt ¢ = % (@ + b + ¢ + d) auf der

WarrLace-Geraden. Hier ist —;— (@ 4+ b - ¢) der Mittelpunkt des
zum Dreieck (a, b, c)‘geht')rigen.FEUERBACH—Kreises; an ihn ist
noch der Vektor % der Linge —;— angesetzt. Folglich liegt ¢ auf

diesem FruersacH-Kreis, aber nicht nur auf ihm, sondern auch
auf den Frurrsacu-Kreisen der Dreiecke (b, ¢, d), (¢, a, d),
(a, b, d).

Wird in einem Sehnenviereck zu jeder Ecke die WALLACE-
Gerade hinsichilich des Dreiecks der drei anderen Ecken bestimmi,
dann gehen die vier so entsiehenden Geraden durch einen und den
namlichen Punkt, nimlich durch den gemeinsamen Schnittpunkt
der FEuERBACH-Kreise dieser vier Dreiecke®.

4. WEITERE ANWENDUNGSBEISPIELE.

(4, 1) Wir behaupten:

Die bez. Parallelen zu den inneren Winkelhalbierenden eines
Dreiecks durch dessen Seitenmitten schneiden sich in etnem Punkt.

Wie am Ende von (2, 2) bezeichnen wir die Ecken des
Dreiecks im Einheitskreis mit p2, ¢2, r2. Folglich sind die Mitten
der Gegenbdgen zu den Ecken auf dem Einheitskreis (— gr),
(— rp), (— pg) zu nennen. Die innere Halbierende des Winkels
(¢2, p?, %) geht durch p? und (— ¢r); sie hat also den Richtungs- .
teil z — p2 grz. Die Parallele zu dieser Winkelhalbierenden

durch den Seitenmittelpunkt % (¢*> + r?) hat die Gleichung

i pParz =5 (g2 + r2 — p?. S—— p?. %) Entsprechend:
‘ - 1 r p
—_ 2 = — 2 2 e w2 0 e i
z2— pgrrE = 3 (p T g* r)

Indem wir die mit ¢ multiplizierte erste Gleichung von der mit p
multiplizierten zweiten subtrahieren und mit p — ¢ dividieren,
erhalten wir

1
z=5 P+ ¢+t +rp+opg .

8) Aufgabe von E. LEMOINE in den Nouv. annal. (2). 8, 1867, 47.

L’Enseignement mathém., t. IV, fasc. 3. L;)
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Dieser Ausdruck ist in p, ¢, r symmetrisch aufgebaut; folglich
liegt z auf allen drei Parallelen zu den Winkelhalbierenden.

Fir die Konstruktion spiegeln wir den Inkreismittelpunkt
i = — (gr + rp + pqg) am Umkreismittelpunkt O in j = — 1;
dann liegt z in der Mitte zwischen j und dem H&ohenschnittpunkt
d = p? + ¢® + r? des Dreiecks. Ahnliche Beziehungen gelten
auch im Zusammenspiel mit dufBeren Winkelhalbierenden.

-Pq

Abb. 9.
Drei Gerade, die durch einen Punkt gehen.

(4, 2) In einer erst seit 1927 wieder in arabischer Bearbeitung
zuginglich gewordenen ArcuiMEDischen Abhandlung ¥ findet
sich der folgende Satz, der mit dem Additionstheorem der tri-
gonometrischen Funktionen gleichwertig ist:

Auf dem Einheitskreis befinden sich vier Punkte a, b, ¢, d
dergestalt, daf3 d die Mitte des Bogens abc ist. Dann halbiert das

9) C. Scuoy, Die trigonometrischen Lehren des persischen Astronomen al-Birtni...,
ed. J. Ruska/H. Wieleitner, Hannover 1927, 3. Zur Bedeutung der ARCHIMEDischen
Pramisse vgl. J. TROPFKE im Archiv f. Geschichte d. Math., d. Nat. u. d. Technik 10,
1928, 430/62, insbesondere 433/36.
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Lot aus d auf die lingere der Sehnen (a, b) und (b, ¢) die Ldnge
der Sehnensumme | a, b |+ | b, c| (Abb. 10).

Es sei etwa | a, b| > | b, ¢|. Weil d den Bogen abe halbiert,
ist ¢ = %2. Verldngern wir die Sehne (@, b) iiber 4 hinaus um

die Sehne (b, ¢) bis z, dann ist (z, ¢) parallel zur inneren Halbie-
renden (b, — d) des Winkels (a, b, ¢). Das Lot aus d auf (a, b)

Abb. 10.
Zur Archimedischen Pramisse.

trifft den Kreis nochmals in (— %b>. Weil die Sehnen (b, ¢) und

(—— d, -—%b> zwischen Parallelsehnen des Kreises liegen, sind
sie gleichlang. Weil ferner <—— ﬁdll, —d, b, z) ein Parallelogramm
ist, ist z—b = —2 1 d; also z = b -+ d —%. Folglich ist

5 — 5\e+ b+ d— %) der Mittelpunkt der Strecke

(¢, 2) = (a, b) + (b, 2) = (a, b) + (b, ¢). Dieser Punkt ist nach
(2, 2) auch der FuBpunkt des Lotes aus d auf (@, b). Damit ist
der Satz, die sog. ARcHIMEDische Primisse, bewiesen.

a -+ z 1(
a
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(4, 3) Sind a, b, ¢ die Ecken eines gleichseitigen Dreiecks

im Einheitskreis und wird das Dreieck im Gegenuhrzeigersinn

umlaufen, dann ist b = ae, ¢ = ac? wobeie = %(— 1 +4/—3),

e = - (—1-—+/—3) =¢ die dritten Einheitswurzeln sind.

Sind nun u, ¢ zwel beliebige Punkte der komplexen Ebene, dann

CI

Abb. 11.
Vom isoptischen Punkt des Dreiecks.

werden sie durch jenen Punkt w zu einem im Gegenuhrzeigersinn
umlaufenen gleichseitigen Dreieck ergénzt, fiir den

U+ e+ 2w =20

1st.

Wir geben ein im Uhrzeigersinn umlaufenes Dreieck (a, b, ¢)
im Einheitskreis und errichten iiber seinen Seiten nach auflen
gleichseitige Dreiecke (Abb. 11). Deren freie Ecken a', 0', ¢
miissen bezw. mit (c, b), (a,c), (b, a) zusammengenommen
werden, damit wir im Gegenuhrzeigersinn umlaufene gleich-
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seitige Dreiecke erhalten, auf die wir die obige Formel anwenden
konnen. Es ergibt sich

a—a =a -+ 2bFec =1,

a = —¢e?b—c¢c, If
b = —¢e?c—cea, also i b—b =b -+ e¢c + ea = te ,
¢/ = —¢e2a—c¢b, L c—c¢ = c¢ + e*a + b= te?.

Daraus folgt, daB die Vektoren (¢ —a’), (b —0b), (¢ —¢)
gleichlang sind und je zu zweit den Winkel —2373 einschlieBen.
Die Parallele zur Geraden (a, a’) durch den Ursprung

schneidet den Einheitskreis in den Punkten — und — ltTi; also

2]

ist das Richtungsmal} dieser Geraden gleich — ]—22-‘—2 = — % und

die Gleichung der Geraden
(a, a’) gleich t (z—a) = t(z—a);

entsprechend die Gleichung von

(b, b’) gleich €%t (z — b) = et (z — b)

und die Gleichung von

(¢, ¢’) gleich et (z3—¢) = et (z—¢) .

Werden diese drei Gleichungen addiert, dann ergibt sich auf
beiden Seiten Null; also ist die dritte Gleichung eine Folge der
beiden vorhergehenden, und somit gehen die drei Geraden durch
den némlichen Punkt z, den sog. isoptischen Punkt des Drei-
ecks 10, Er liegt innerhalb des Dreiecks, wenn jeder der drei

Winkel kleiner als %t 1st.

(4, 4) Wenn wir die inneren Winkeldrittelnden eines Dreiecks
ndichst den Seiten zum Schnitt bringen, dann erhalten wir die
Ecken eines gleichseitigen Dretecks.

Um diesen interessanten Satz zu erweisen, der eine ganze
Literatur hervorgebracht hat ¥, bezeichnen wir die Ecken des

10) Der isoptische Punkt ist im Zusammenhang mit der Aufgabe FErMATS fir
TorrICELLI (P. DE FERMAT, (Euvres I, ed. P. Tannery-Ch. Henry, Paris 1891, 153;
vgl. Buvres V, ed. C. de Waard, Paris 1922, 127/28 und E. TORRICELLI, Opere I1I,
¢d. G. Vassura, Faenza 1919, 425/31) von TorRICELLI entdeckt worden.
~11) Der Satz wurde 1904 von Fr. MoRrLEY brieflich an Freunde in England gegeben.
Er findet sich erstmals gedruckt in W. L. MuIir, Morley’s Trisections Theorem, Pro-
ceedings Edinburgh Math. Soc. 32, 1913.
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Dreiecks im Einheitskreis mit a3, b3, ¢® und die Drittelnden des
Bogens (b3, ¢3), der a3 nicht enthilt, mit 4% ¢ und bc?, ferner die
Drittelnden des Bogens (3, a®), der 6% nicht enthalt, mit c? a
und ca? (Abb. 12). Ist ¢ der Drittelpunkt des dritten Bogens
nichst a3, dann ist

as b3 c3
c?g c?
be?
ca?
u b%
W
03 b3
\___/2
ea’b e“ab?
Abb. 12.

Zum Morleyschen Satz.

also ¢ = € a?b. Der andere bogendrittelnde Punkt ist also €2 ab?.
Der Schnittpunkt w der Winkeldrittelnden néchst (a3, b3) ergibt
sich aus dem Gleichungspaar

W+ adbew = a® + b2c
w -+ abdew = b3 + atc.
Wir entfernen w und kiirzen mit @ — b. So finden wir

w=—ab(a+ b -+ c(a® + ab 4+ b% und entsprechend
u = —ebc'(eb + ¢) + a(e*b* + ebe + ¢?) , -
9 = —eca (ec + a) + eb(e2c? 4 eac + a?) .

l

Jetztistu +cv + 2w = abc (1 + ¢ + ) = 0;alsoist (u, v, W)
wirklich ein gleichseitiges Dreieck.
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5. VoN DER PFEILLANGE.

(5,1) Sind p und ¢ zwei Punkte auf dem Umfang des Ein-
heitskreises, dann ist das Quadrat ihres Abstandes bestimmt aus

12— (g — ___—___iq—_i)_.
lg—pP=(¢g—p)lg—P) m—

Folglich ist

lg—p| = Vng—’pﬂ

—

das mit Vorzeichen behaftete reelle Lingenmaf der Sehne (p, q)-
Es &ndert sein Zeichen, wenn p und ¢ vertauscht werden.
5,2) Ordnen wir nunmehr den Ecken eines Sehnendreiecks
im Emheltskrels wie am Ende von (2, 3) die Zahlen a?, b?, ¢® zu,
dann ist der Mittelpunkt des FEUuERBACH-Kreises bestimmt aus

i a2+bz+cz
2

2
und der Inkreismittelpunkt aus i = — (be + ca + ab). Also ist
li—i‘(a+b+0)2. )i_,_(a+b+c)(bc+ca+ab)
2 - 2 ’ 2 T 2 abe .

Um das LingenmaB des Inkreishalbmessers zu bestimmen,
fallen wir auf die Sehne (a2, b%), ndmlich z + a? b? z = a?® + b?
(vgl. 3, 2), das Lot aus i. Seine Gleichung hat den Rmhtungstell

72— a2 b2z und das absolute Glied ¢ — a2 b2 = (ab—¢?) (e + 8)

c
Indem wir z durch Addieren aus den beiden Geradengleichungen

entfernen, erhalten wir nach leichter Umformung

(b +¢) (c+a)(a+0b)

. L (b+c)(cta)(a+0)|

B—§ == und —
= = 2 abe

AuBerdem ist r = 1. Andererseits ist

i2=(a+b+c)(bc+ca—{—ab)___1_{_

abe
+(b+c) (c +a) (a+d) 249
. abe
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Da aber der Inkreismittelpunkt vom Umkreismittelpunkt nicht
weiter als hchstens um r abstehen kann, trifft das Zeichen + fur
o nicht zu. Es verbleibt die Beziehung von CHAPPLE-KULER 2

|12 = r2— 2rp

Wird jedoch aus dem Inkreis einer der Ankreise, dann ist 2rp,
mit dem positiven Zeichen zu nehmen. Weiterhin erhalten wir

v
o

g—i-5—¢

Somit beriihrt der Inkreis den FEUERBACH-Kreis von innen und
wird ganz von diesem umschlossen. Entsprechend: Die Ankreise
berithren den FEuerBAcH-Kreis von aufen 1.

(5, 3) AuBerdem ergibt sich dhnlich wie vorhin

og = — b+ el (b2;)ca) e —al| yow.

Daraus folgt nach einfacher Rechnung die nach STEINER 19
benannte Beziehung

0g + 0p T Pc— 0 = &7

Der Mittelpunkt der Dreieckseite (a?, b?) ist azj i Folglich
ist der mit Vorzeichen behaftete Abstand des Udmkreismittel—
punktes von dieser Seite gleich + %4;_])_52. Also ist die Abstand-
summe des Umkreismittelpunktes von den drei Seiten des

Dreiecks gleich

(a2 + b2 c + (b 4 a+ (2 + a*)b

2 abce

(b -+ ¢) (¢ + a) (a + b) — 2abc
= 2abc =+ (r+e)-

-

12) W. CHAPPLE in den Miscellanea curiosa mathematica, 1, 1746, 123 (zitiert nach
SiMon 1), 140).

13) EULER 2) hat zwar die Berechnung von | i |2, aber noch nicht die Form r2 — 2rp.

14) Der Satz stammt in wirklichkeit von FEUERBACH 1), 4, wird jedoch in der
neueren Literatur stets nach STEINER benannt, so z.B. bei DORRIE 3), 59/60. Dort fehlt
jedoch der Hinweis darauf, daB die algebraische Summe zu nehmen ist.
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Also ist die Abstandsumme des Umkreismittelpunktes von den
Dreieckseiten gleich r + p, wenn das Dreieck spitzwinklig oder
rechtwinklig ist. Im stumpfwinkligen Dreieck mufB8 der Abstand
von der lingsten Dreieckseite von der Abstandsumme der beiden
anderen abgezogen werden. Also 1st 7 - ¢ gleich der algebraischen
Abstandsumme des Umkreismittelpunktes von den Dreleck-
selten.

(5, 4) Ist % der Umkreis und % der Inkreis eines Dreiecks,
so gibt es oot weitere Dreiecke, die % zum Umkreis und § zum
Inkreis haben. Die FruersacH-Kreise dieser Drelecke haben

stets den festen Halbmesser%; sie berithren den Inkreis um-

schlieBend von innen. Wahrend sich das Dreieck in % um T
bewegt, rollt der FruerBacH-Kreis um den festen Inkreis

herum. Sein Mittelpunkt hat von ; den festen Abstand % — 0,

wandert also auf einem zum Inkreis konzentrischen. Auch der
Hohenschnittpunkt des Dreiecks wandert auf einem Kreis;
dessen Mittelpunkt ist der Spiegelpunkt 27 des Umkreismittel-
punktes O an i, sein Halbmesser gleich r — 2p.

Entsprechendes gilt auch fiir die FruerBacH-Kreise und die
Hohenschnittpunkte jener Dreiecke im Umkreis %, die auBerdem
einen passenden Kreis zum Ankreis haben.

Ahnliches gilt auch fiir die Beziehungen der oo! Inkreise bzw.
Ankreise der Dreiecke, die wie in (1, 4) den némlichen Umkreis
und FeuersacH-Kreis haben; allerdings éndert diesmal p fort-
wihrend seine Grosse. s

(5, 5) Die FuBpunkte der Lote aus den Ecken eines Dretecks
auf dessen dufere Winkelkalbierenden liegen auf einem Kreis 19
(Abb. 13).

Diese Behauptung héngt mit jener von (4, 1) zusammen.

Sie ist ndmlich gleichwertig mit der folgenden: Die fraglichen
sechs Punkte sind vom Schnittpunkt m = % (p? + ¢® + r®
4+ gr + rp + pg) der Parallelen zu den inneren Winkelhalbie-
renden des Dreiecks durch dessen Seitenmitten gleichweit ent-

fernt.

‘15) Satz von Eurtaris (Pseudonym fur REesTIAU) in H. VuIBERT, Journ Math.
Elément. (Briissel), November 1877, zitiert nach Simon 1), 135.
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7um Nachweis schneiden wir die duBere Winkelhalbierende
z -+ ptqrz = p? + qr |

mit dem Lot aus ¢2 auf sie, namlich

_ 2
z — pqrz = qz—B——-
q
qr
&
p? v,
/ 2
/ I q
/I
Z L
\
Abb. 13.

Ein Sechspunktekreis.
Wir erhalten

1 r
Z:§<p2+q2+qr—~p2 ?>,
also
g e gt rP® A pgr
- .
und
[z 8 = (pg® + ¢* + rp* 4 pgr) (p*q + ¢*r + *p + par)

LpgPr?

Dieser Ausdruck ist in p, g, r symmetrisch. Damit ist alles
bewiesen. Natiirlich lasst sich auch dieser Satz unter Hinzu-
nahme #uBerer und innerer Winkelhalbierenden zweckméafig
variieren. . |

(5, 6) Etwas schwieriger und auf andere Weise schwerlich §
einer einfachen Behandlung zugénglich ist die folgende Frage 16). M

16) Problem von EULER 3), Opera a.a.0., 150/51. Vgl. DORRIE 8), 20/26.
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Von welcher Art ist das Problem, ein Dreieck aus dem Inkrets-
mittelpunkt, dem U mkreismittelpunkt und dem H ohenschnittpunkt
zu bestimmen ?

Machen wir den Umkreismittelpunkt zum Ursprung, so ist
der Inkreismittelpunkt aus i, der Hohenschnittpunkt aus d
bestimmt. Wir ermitteln 2¢ und kennen ] ilz — r(r— 2¢) und
|d—2i| = r— 2p, also auch r und p, beides mit Zirkel und
Lineal konstruierbar. Machen wir r zur Léngeneinheit, dann ist

a—l—b—l—c:\/d——Qi,
be + ca + ab=—1,
_(a+b—{—c)(bc+ca+ab) ___\/d——2i

[ B .

und

a2 + b2+ c2=4d,

b2c2 + c2a® + a?b® = iz—{—w
A A
a2b202: d—:z'2l, )

L l

Es liegt ein Problem dritten Grades vor: die Ecken des Dreiecks
auf dem Umkreis ergeben sich als die Losungen der kubischen
Gleichung

z3——dz2+[i2—l— 2—("1—?—2—‘1]2._01‘_;“ _ 0.
4 [4

Da die Koeffizienten dieser Gleichung aus d und { rational her-
gestellt werden konnen, ist das Dreieck eindeutig bestimmt.

6. VoN DEN TANGENTEN.

6, 1) Lassen wir in der Geradengleichung von (3, 2) den
Punkt b auf dem Einheitskreis gegen a hinrticken, dann erhalten
wir die Gleichung der Tangente an den Einheitskreis in a in der
Form:

z—}-az_z_:Za
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Darnach schneiden sich die Tangenten an den Einheitskreis in

i . AuBerdem
a +

b
ist z das inverse Bild des Sehnenmittelpunktes * JQF .

Hieraus geht durch Division mit a die "Polarengleichung
az + az = 2 hinsichtlich des Einheitskreises hervor. Ist a ein
beliebiger Punkt der Ebene, dann stellt diese Gleichung die
Polare des Punktes a hinsichtlich des Einheitskreises dar.
Ist umgekehrt pz + ¢z = r die Gléichung einer Geraden, die
nicht durch den Ursprung geht (r % 0), dann wird sie nach

dessen Umfangspunkten ¢ und b im Punkt z =

Multiplikation mit % zur Polarengleichung. Da rechts etwas

Reelles herauskommt, miissen die Faktoren bei z und z konju-
2
B
der Geraden. Auf diesem Wege sind sémtliche Polareigenschaften
hinsichtlich des Einheitskreises sogleich herleitbar. Indem wir
auf der rechten Seite der Polarengleiching + 2 durch — 2
ersetzen, erhalten wir auch die Antipolarengleichung und alle
Eigenschaften der Antipolaritét.

(6, 2) Wir beweisen zunéichst den nach NEwro~ benannten
Satz 17

Die Verbindungsgeraden der Diagonalmitten eines Tangenten-
vierecks gehen durch den Inkreismittelpunkt.

Die Beriithrpunkte der vier Tangenten mit dem als' Einheits-
kreis angesehenen Inkreis seien a, b, ¢, d; also ist der Mittel-
punkt einer der Diagonalen gleich

giert komplex sein; der Faktor = = a kennzeichnet den Pol

ab cd > abe

m= s T erd @¥b(crd

Folglich ist m: m = Zabc: Za. Nun ist aber m: m kennzeichnend
fiir die Richtung des Ortsvektors m und ersichtlich aus «a, b, ¢, d
symmetrisch aufgebaut. Folglich haben die zwei Ortsvektoren
aus dem Mittelpunkt des Inkreises zu den Diagonalschnitt-
punkten hin die ndmliche Richtung; also liegen sie in einer
Geraden durch den Inkreismittelpunkt. |

17) Vgl. Simon 1), 162 und DORRIE 3), 52/54. Die Aufgabe soll mit der Bestimmung
des Mittelpunktortes aller Ellipsen zusammenhingen, die einem konvexen Viereck
einbeschrieben sind. Ich habe die Stelle bei NEwron nicht finden konnen.




ZUR DREIECKSGEOMETRIE 201

(6, 3) Die zu den Ecken g, b, ¢ eines Dreiecks im Einheits-
kreis gehorenden Tangenten schneiden sich in den Punkten
2be 2ca 2ab

e : Taneenten-
Tl aath Der Umkreismittelpunkt u dieses Tangen

2ca 2ab

dreiecks liegt z.B. auf dem Mittellot zu - i Dessen
Richtungsteil ist z — a? z; das konstante Glied ist
ca ab 1 1
c+a+a+b_ag(c—l—a+a—{—b>.
Das Mittellot hat also die Gleichung
- _ 2a (be —a?)
: S P Y PR
Entsprechend
2 (ca — b?)
—__h2
A TR Y
Daraus
Y - 2abe (a + b + ¢ - _ 2 (be + ca + ab)
bt cleta)latb)’ b+ (c+a)la+b)
und z.B.
2bc I bE & .
T YT BT ot a @ty mit dem absoluten Betrag
2abc
i .

(b + ¢) (¢ + a) (a + b)

Das ist der Ausdruck fiir den Umkreishalbmesser r des Tangen-
tendreiecks. Er geniigt noch der Relation von CHAPPLE-EULER
(5, 2). Aus ihr geht hervor, dass r das negative Vorzeichen
erhalten muBl. Also ist

a+b+c=_%‘.

Folglich teilt O, der Inkreismittelpunkt des Tangentendreiecks
und zugleich Umkreismittelpunkt des Ausgangsdreiecks, die
Strecke zwischen dem Umkreismittelpunkt u des Tangenten-
dreiecks und dem Hohenschnittpunkt 2 = a 4+ b + ¢ des Aus-
gangsdreiecks 1m Verhéltnis r: p von u ab. Vgl. Abb. 14.

Ist nun a’ der Schnittpunkt des zum Vektor a gleichgerichte-

ten Pfeils durch z mit dem Umbkreis, dann ist ¢/ —u = Z,

P
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2abc
(¢ + a) (a + b) |
(a’, o', ¢') aus den Ecken bis zu u hin sind parallel zu den Um-
kreisradien des Ausgangsdreiecks (a, b, ¢) aus den Ecken bis zu
O hin; also sind diese Dreiecke dknlich und dhnlich gelegen. Das
lineare MaBstabsverhédltnis zwischen entsprechenden Strecken

p .
r—e

also ¢’ = usw. Die Umkreisradien des Dreiecks

beider Figuren ist r: p, der Ahnlichkeitspunkt z = —u .

'

a

Abb. 14.
Dreiecksbeziehungen.

Also teilt z die iiber O hinaus verlingerte Strecke zO von auflen
im Verhéltnis r: p von u ab. _ '

Die Punkte 4 und z sind fest, wenn O und u fest sind, d.h. fiir
alle Dreiecke, die dem Kreis um u einbeschrieben und dem Kreis
um O umbeschrieben sind. Die Sehnendreiecke aus ihren Beriihr-
punkten im Inkreis haben einen und den némlichen FEUER-
BACH-Kreis. .

(6, 4) Wann ist ein Tangentenviereck gleichzeitig Sehnen-
oiereck, also bizenirisch ? )

Wir gehen aus von vier Punkten a, b, ¢, d auf dem Umfang
des als Einheitskreis angesehenen Inkreises des Tangenten-
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vierecks. Dabei nehmen wir an, daB sich die Sehnen (a, ¢) und
(b, d) innerhalb des Kreises schneiden (Abb. 15). Sollen die

zugehorigen Tangenten gleichzeitig ein Sehnenviereck abgrenzen,

: . . . 2ab
dann miissen sich z.B. die Winkel in den Gegenecken — j 7 und

2cd
c+d

zu zwei Rechten erginzen, also die Bogen (a, b) und (c, d)

Abb. 15.
Bizentrisches Viereck.

auf dem Einheitskreis zu einem Halbkreis. Folglich sind die

a d

Bogen (b, — a) und (c, d) gleich, also — = oder

ac +bd = 0

Das besagt: Das Tangentenviereck ist gleichzeitig Sehnenyiereck,
wenn sich die Diagonalen des aus den Beriihrpunkten gebildeten
Vierecks im Inkreis senkrecht schneiden.

Die Gleichungen dieser Diagonalen sind z + acz = a -+ ¢;

2+ bdz = b+ d; folglich ist s = 2 ré t cT 4 fer fragliche
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" Schnittpunkt und gleichzeitig (vgl. 3, 3) gemeinsamer Punkt
der FrurrBacu-Kreise, die zu den vier Sehnendreiecken im
Inkreis gehoren, die sich aus den Punkten a, b, ¢, d bilden lassen.
Ersichtlich gilt auch die Umkehrung:

Wenn der Diagonalschnittpunkt eines Sehnenvierecks auf
jedem der FEurRBACH- Kreise liegt, die zu den vier Sehnendreiecken
aus je drei der vier Eckpunkte des Sehnenvierecks gehoren, dann
“stehen die Diagonalen des Sehnenvierecks auf einander senkrecht.

(6, 5) Nun kehren wir zu unserem bizentrischen Viereck
zuriick und bestimmen den Mittelpunkt m des Umkreises: dieser
befindet sich z.B. auf den Mittelloten (vgl. 6, 3)

gy 2a(bd—a?)
(d + a) (a + b)
und ,
. 27 — 2¢ (bd — ¢?) _
(b + ¢) (c + d)

Wir erhalten unter Beriicksichtigung von ac 4 bd = 0

2abed Xa .
(@ + b) (b + ¢) (¢ + d) (d + a)

m =
Nun ist aber
(@ 4+ b) (b + ¢) (¢ + d) (d + a) = (ac + bd)* + Y a? (be + cd + db)

und
Sa . Xabe = babed + Za? (be + cd + db)

also im vorliegenden Falle
(@ +b)(b+c)(c+d)(d+ a) =—kabed + Za . Tabe .

AuBerdem 1ist

abc = abed . 2 —i— = 2abcds ;

also nach kurzer Rechnung m = s: (ss — 1). Somit liegen der
Inkreismittelpunkt O, der Umkreismittelpunkt m und der
Diagonalschnittpunkt s in einer Geraden; O liegt zwischen m
und s und die Lingen der Pfeile (m, O) und (m, s) verhalten
sich wie p? zu s2
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Weiterhin ist
_ ss Labed . Ta . Zabe

mm = = :[m|2

(ss — 1)2 (Za . Tabc — Labed)?

Zur Bestimmung des Umkreishalbmessers r bilden wir

2a¢b  _ 2ab (— bdc — acd + abd + abc)
aib T et tole+ddTtal

und den dazu konjugiert komplexen Wert. Dann ergibt sich
nach kurzer Rechnung

_ habed (8abed — Za Zabe)

2 prsm—
! (Ta . Sabc — kabed)?
Somit ist '
‘ X L abed 2
2 o __
it m =2 [Za. Zabc—éabcd]
und '
& abed
2 _ 2 __
d lml 2'Za.Zozbc—l_wLbcd’
also 1®

(2 — |m )2 =20 (4 [m]) .

Daraus folgt der bekannte Schliefungssatz:

Besteht zwischen den Halbmessern v und o zweier Kreise und
ihrem Mittelpunktabstand | m | die soeben hergeleitete Beziehung,
dann gibt es oo bizentrische Vierecke, die den Kreis des Halb-
messers o berithren und im Kreis des H albmessers r liegen ; die
Verbindungssehnen threr Berihrpunkie um I nkreis schneiden sich

dortselbst stets im ndmlichen Punkt s, und zwar unter rechtem
Winkel.

7. VoM FLACHENINHALT.

(7,1) Um den Fldcheninhalt A des Dreiecks zu bestimmen,
dessen Seiten den Einheitskreis in den Punkten a, b, ¢ bertihren,

berechnen wir zunéchst das gerichtete Léngenmal der Drelecks-
seiten (vgl. Abb. 14): Wir bilden n&mlich

2ab 2ac 2a% (b — c)

c+b adtc (atbate

18) N. Fuss, Nova Acta Petrop. 13, fur 1795/96, ausgeg. 1802, 166.

L’Enseignement mathém., t. IV, fasc. 4. 14




206 JOS. E. HOFMANN

Diese gerichtete Strecke hat den absoluten Betrag

2a(b~c)\/—_1'
(@ +b)(a+c¢)

also das Dreieck die Fliche

_ (b—¢) (c—a) (a — b) — |
A——(b—l—c)(c—i—a)(a%—b)\/ !

Auch dieser Ausdruck ist mit einem Vorzeichen behaftet und
abhéngig vom Umlaufssinn, der sich aus der gewihlten Reihen-
folge der Ecken ergibt. Sind die beiden Bestandteile der kom-
plexen Einheitsvektoren a, b, ¢ rational, dann sind auch die
Seitenlingen und die Fldche des Dreiecks rational; wir haben
also ein heronisches Dreieck vor uns.

(7,2) Als Sehnendreieck wird das Dreieck dann heronisch,
wenn wir ihm die Ecken a2 62, ¢® geben wie am Ende von (2, 2).
Jetzt haben die Seiten gemif (5, 1) die gerichteten Langenmafe

’b“"—— 2
bcc '\/—1USW.;

also 1st die halbe Seitensumme

b—clle—a)la—4 V=T
2abc

Unter Mitverwendung der Formel fiir ¢ aus (5, 2) erhilt die
Dreiecksfliche nunmehr die Form

(b2 _ c2) (02 - 0,2) (a2 . bZ)

A = —
4a26202\/—1

(7,3) Die Dreiecksformel dient zur Bestimmung des
Flacheninhaltes F eines Sehnenvierecks, dem wir die Ecken
a?, b2, c2, d? geben. Indem wir den Umlaufsinn der Teildreiecke
(a2, b2, c?) und (a2 c% d?) beachten, erhalten wir als Fliche

(@2 —B) (B — &) (¢ —a) | (0" — ) (¢ — ) (& —a?) _
ha?b®c®\/— 1 ha?c2d?/—1 _
(a2 — %) (b — d?) (a? ® — b2 d?) .

Ga? b?c?d?\/— 1

F:
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Die Vierecksseiten miissen so orientiert werden:

a2_b2 _ b2_02 cZ___d2 - a2__d2 S
_ R D, B . - — . - R 1
ab V—1s be V—1; cd V—1; ad %
Dann erhalten wir der Reihe nach als Halbsumme der Seiten,
vermindert um je eine der Selten:

(ac — bd) (a + ¢) (b — d) (ac + bd) (a + ¢) (b +d)

— 2abed N/ — 1 ’ - —2abed/— 1 ’
(ac — bd) (a — ¢) (b + d) (ac + bd) (a —c) (b —d)
— 2abed A/ —1 ’ 2abed /— 1
Wir kommen vom ersten (direkt berechneten) Ausdruck zum
zweiten, indem wir b durch — b ersetzen, von diesem zum
nichsten, indem wir ¢ durch — ¢ ersetzen, und schliesslich von
diesem zum letzten, indem wir d durch — d ersetzen. Nach

Multiplikation der letzten vier Ausdriicke erhalten wir das Qua-
drat von F; damit ist die bekannte Inhaltsformel fiir das Sehnen-
viereck gefunden 9.

(7, 4) Der Flacheninhalt des Sehnendreiecks (u, ¢, w) 1m
Einheitskreis kann auch in der Form

uz 1 u u

1 .y 1 v
—— e e (Y ¢ == p— 0 ¢
L . —1 /; —1 .
—Lu()w\/ w2 1w :t\/ o

geschrieben werden. Diese Formel bleibt auch dann noch richtig,
wenn u, ¢, w drei beliebige Punkte sind, die nicht mehr auf dem
Umfang des Einheitskreises liegen. Wir verwenden sie zum
Beweis des Pascarschen Lehrsatzes 20:

Die Gegenseiten eines Sehnensechsecks im Kreis schneiden sich
in den Punkten einer Geraden (Abb. 16).

19) Die Flicheninhaltsformel tritt erstmals bei den Indern auf, dann unter deren
EinfluB bei den Arabern. Im Abendland findet sie sich unabhingig von diesen Vor-
giangern in der von W. S~NELL besorgten und mit dessen Zusitzen ausgestatteten
lateinischen Ausgabe von Ludolf vAN CEULEN, De arithmetische en geomelrische Fon-
damenten, Leiden 1615, 21619. Vgl. auch J. TROPFKE,. Geschichte der Elementarmathe-
matik, IV8, Berlin 1940, 150/68.

20) Der Satz erscheint bereits in Essay pour les coniques von 1640 (Vorform), dann
in der heutigen Fassung in den 1654 abgeschlossenen und auf Grund eines LEiBNIzschen
Gutachtens 1676 zum Druck beforderten Conica, die beim Setzer zu Verlust gegangen
und nicht an die Offentlichkeit gekommen sind. Vgl. ferner TROPFKE 19), 231/32.
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Die Ecken des Sehnensechsecks seien a, b, ¢, d, e, f; die
Schnittpunkte der Gegenseiten seien

u=(bc) X (e,f); o=1(cd) X (f,a); w=(d, e X (a,b) .
Die Gleichungen der Seiten (b, ¢) bzw. (e, f) sind

24+ bez=b+chzw. 24+ efz=¢e¢+ f.

Abb. 16.
Pascalscher Lehrsatz.

Folglich ist ihr Schnittpunkt u gekenhzeichnet durch
ulbc—ef) =bcle+f)l—ef(b+c); wlbc—ef)=(b+c)—(e+f).
Also ist die Flache des Dreiecks (u, ¢, w) proportional zu

bele +f) —ef b+c¢), (b+c) —(e+f, bc—ef
cd(f +a)—falc+d , (c+d—(+a), cd—fa
de(la + b) —ab(d+ e , (d+e—f{a+0b), de—ab

be, cf, da (c — ) (b—e) 0
=11 11 | 0 —(a—d) (e—1f) | .
b f d — (a — d) 0 —(b—e
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Die zweite Determinante dieser Produktdarstellung verschwindet
identisch; also hat das Dreieck (u, ¢, w) die Flache Null.
Somit liegen die Punkte u, ¢, w wirklich in einer Geraden, wie
behauptet.

Indem wir diese Kreisfigur aus einem Punkt, der nicht in
der Kreisebene liegt, auf eine zur Kreisebene nicht parallele
Ebene projizieren, erhalten wir daraus den allgemeinen PASCAL-
schen Lehrsatz fiir Kegelschnitte.

(7, 5) Fassen wir etwa die Punkte e, ¢, a bzw. b, f, d als
zusammengehorige Elemente einer Projektivitdt auf dem Kreis-
umfang auf, dann ist die Pascarsche Gerade (u, ¢, w) der
Abb. 16 die Achse dieser Projektivitdt; ihre Schnittpunkte
z, y mit dem Einheitskreis sind die Doppelelemente der Projek-
tivitat.

Diese Eigenschaft verwenden wir z.B. zur Losung der sog.
OrrosaNoschen Aufgabe 2V:

Gegeben sind ein Kreis und dret nicht auf seinem Umfang gele-
gene Punkte. Ein Sehnendreieck durch diese Punkte zu bestimmen.

Der Kreis sei der Einheitskreis, die von einander verschie-
denen Punkte seien p, g, r, die gesuchten Ecken des Dreiecks
seien z, ¥, z. Es geht also um die Auflosung der drei Gleichungen

!

p+yp =y+z, gtzmqg=z+z, rt+ayr=z-+y.

Vermoge der beiden ersten Gleichungen lasst sich x und y als
linear-gebrochene Funktion von z ausdriicken; durch Einsetzen
in die dritte Gleichung erhalten wir also eine quadratische Glei-
chung in z, die nach Division mit z auf die Form z 4+ mz = n
gebracht werden kann und also eine Gerade darstellt. Deren
Schnittpunkte mit dem Einheitskreis liefern die beiden gesuchten
Werte z; und z,. '
Im vorliegenden Fall konstruieren wir am zweckméBigsten
drei zusammengehorige Punktepaare der durch die Anordnung

21) Das Problem stammt (fir drei Punkte, die in einer Geraden liegen) von APoL-
LoN10s aus den verlorenen Tactiones, iiber die wir Naheres aus PAprpros, Collectiones, VII,
prop. 117 wissen. Das allgemeinere Problem wurde von G. CRaMER gestellt, dessen
Schuler G. F. M. M. SALVEMINI DE CASTILLON seit 1742 an der Losung arbeitete und
1776 eine elementargeometrische veroOffentlichte. Das Problem fiir n-Ecke wurde
von dem 16-jahrigen A. GIorRDANO aus Ottojano im AnschluB an Parpros gelost. Vgl.

M. BRUCKNER, Das Ottojanosche Problem, Programm, Zwickau 1892 und TROPFKE 19),
125.
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21, Dy Yy Ty %, q, 75 auf dem Kreisumfang bestimmten Projektivi-
tat. Die zusammengehorigen Punkte z, und z, bezeichnen wir
bzw. mit e, ¢, @ und b, f, d. Die Achse dieser Projektivitit ist die
oben erwihnte Gerade. Die Ausfithrung ist in Abb. 17 nur
angedeutet, weil wohlbekannt.

»

Abb. 17.
Ottojanos Problem.

Der rechnerische Ansatz zeigt, dall das Problem im Kreis
vom Dreieck auf ein n-Eck tibertragen werden kann und wie-
derum auf eine quadratische Gleichung fithrt. Durch passende

Projektion 148t es sich allgemein fiir Kegelschnitte aussprechen
und behandeln.
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Dies waren einige Proben, an denen gezeigt werden sollte,
wie sich der zu Anfang erwihnte Gedanke, komplexe Zahlen im
Zusammenhang mit dem Einheitskreis zu verwenden, nutz-
bringend verwenden 1aBt. Es gibt sehr viele weitere einfache
Anwendungen; da es nur um die Fixierung der Gedanken geht,
soll nicht weiter auf sie eingegangen werden.

SUR LES NOMBRES PREMIERS DE LA FORME n" + 1

‘par W. Sierrifsk1 (Varsovie).

(Recu le 11 décembre 1957.)

Le but de cette Note est de démontrer le théoréeme suivant:
Parmi les nombres ayant au plus trois cent milles chiffres
(en systéme décimal) il n’y en a que trois, 2, 5 et 257 qut sont des
nombres premiers de la forme n™ 4 1, ou n est un nombre naturel.

DEMoNSTRATION. — Le nombre 1! 4 1 = 2 est premier.
Soit maintenant n un nombre naturel > 1 et supposons que le
nombre n" + 1 est premier. S1 n avait un diviseur premier
impair p, on aurait n = kp, ou k est un nombre naturel et le
nombre n" + 1 = (n*)? + 1 serait divisible par le nombre
naturel n* -+ 1 qui est > 1 et < n® 4 1 (puisque k < kp = n),
ce qui est impossible. Donc n n’a aucun diviseur premier impair
et, comme n > 1, on a n = 25 ou s est un nombre naturel.
S1 s avait un diviseur premier ¢ impair, on aurait s = kg, ou k
est un nombre naturel, et le nombre n" 4+ 1 = 25" 4+ 1
= (2"")¢ + 1 serait divisible par le nombre naturel 2" 4+ 1
qui est > 1 et < n® + 1 (puisque 2" < 2" = p™) ce qui
est 1mpossible. Le nombre s n’a donc aucun diviseur premier
impair, donc s = 2™, ou m est un entier > 0.
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