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EXEMPLES 173

Par suite

II. Si Vordre p est inférieur 0 correspond un

nombre k tel que V inégalité(21)a lieu pour des r appartenant à

une suite d'intervallesRm,&Rm, Rm tendant vers l infini avec m,

ces r formant des intervalles dont la somme des longueurs entre Rm

et kRm est au moins L (s, p) Rm. Pour ces r, on a

limi^ÄM>0 um=^»,u M

P (r) étant un ordre précisé de la fonction considérée17).

En suivant une méthode analogue, on montre que, pour une

fonction / (z),d'ordre p < 1, il existe des r aussi grands que l'on

veut pour lesquels

log | f(z)|> (rep cot (irp) — e) N (r, 0) | z

et des r aussi grands que l'on veut, tels que

N (r, 0) > (SinJpp) - s) log M (r,

s étant donné arbitrairement petit positif, et on a des compléments

analogues à l'énoncé II.

V. Exemples de fonctions d'ordre nul.

27. Fonctions solutions d'équations différentielles.

Wiman a montré que les fonctions entières, ou plus généralement

les fonctions de la forme y(z), où / (z) est une fonction

entière, qui vérifient une équation différentielle algébrique
du premier ordre, 3> (z, y, y') 0 où ® est un polynôme à trois

variables, sont nécessairement d'ordre fini positif, d'ordre précisé

p _|_ et parfaitement régulières par rapport à cet ordre 18).

Mais il existe des fonctions d'ordre nul vérifiant des équations
d'ordre supérieur au premier. Partons de la fonction de Jacobi,

+ 00 00 / 2ïl+1\
s (z) 2 AIId + zî2n+1) l1 + -7-) >

— 00 0

L'Enseignement mathém., t. IV, fasc. 3.

i \ < i

12
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(A est une constante) et posons

Z(z)=zï^' pw lZ'W>

nous avons

*2 P' (s)2 4 (P + c)*- G2 (P + c) — G3

c, Ga, G3 étant des constantes qui dépendent de q. Il s'ensuit

que S (z) est solution d'une équation différentielle du troisième
ordre, algébrique. Mais, si l'on pose

z + - u,S(z) F

F (u) est une fonction entière d'ordre nul,

+ 1241

qui est solution d'une équation différentielle algébrique du
troisième ordre. Pour cette fonction F (w), on a

log M (r,F)r-
(log r)3

r2n+l

4 log I q I

On peut déduire de là d'autres fonctions d'ordre nul vérifiant
des équations différentielles algébriques. Tout d'abord en faisant
le changement de variables u 0 (z) où 0 est un polynôme; les

fonctions obtenues satisferont encore à la condition (22) du n° 21.

On obtiendra des fonctions à croissance plus rapide en prenant

G (z) =* F (F (z))

D'après la condition (24), il existe une courbe fermée TR entourant

l'origine sur laquelle
(log R)2

log I F (2) I

— 4 log I q I

si grand que soit R donné, et les valeurs de r | z | vérifiant la
condition

log r (1 + o (1)) log R

La courbe TR étant courbe de module constant de F (z), l'argument

de F (z) varie de 27t^r, nR étant le nombre de zéros de F (z)
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intérieurs à TR, lorsqu'on fait un tour sur rR dans le sens direct,
il existe donc sur TR des points en lesquels l'argument de u F (z)

est tel que

| F (m) ] M (| u\,F) log | Fu|

Il s'ensuit que

i iv/r / n\ (l°g I u I)2 (log ^)4
log M (r, G) ' & i—L. no — & 7

— 4 log q (—4 log g)3

La fonction G vérifie une équation différentielle du sixième ordre
déduite de celle de F y. On a ® (y, y', y", y"f z) 0, de

G' y' (F) y' G" y" (F) y'» + y> {F) y» %
G/// y- (F) y'3 +

on tire y777 (F), y" (F), yr (F) et en portant dans O (G, y' (F),
y" (F), y"\F), F) - 0, on obtient T (G, G', G", G"\ F, F', F77,

F'") 0 avec <I> (F, F7, F77, F7 7 7

z) 0. On peut éliminer F'"
ce qui donne p. (G, G7, G77, G7'', F, F7, F77, z) 0; on dérive et
on élimine F7 7 7

; et on recommence deux fois; on a trois équations

p 0, v 0, p 0 contenant F, F7, F77 qu'on élimine.
On peut évidemment continuer ce procédé.
Existe-il des fonctions entières d'ordre nul vérifiant des

équations différentielles algébriques du second ordre Il n'en
existe pas pour lesquelles

log M (r) 1 19) - - •

(log r) (log2 r) log 4

Mais cette borne est-elle bonne

28. Fonctions entières d'ordre nul vérifiant des équations
fonctionnelles.

Considérons l'équation de Poincaré

/ (zs) P0 (z) f (z) + P, (Z) I * I > 1

où P0 (z) et P1 (z) sont des polynômes. Elle admet une solution

entière sous la seule réserve que le calcul formel des coefficients

du développement taylorien soit possible. Si l'on pose
Pq (z) — co zQ • • •

I co I C, on a
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M (r S, /) (l + A M (r, /) S | 1 |

En itérant, on obtient

log M (Snr0, /) q- —~ ^ log S + log (Ar0^ + O (1) ;

il s'ensuit que

log M (r, /) ~ 2 g
(log r)2

De même, la méthode des fonctions majorantes montre que

l'équation
/' (zs) P (z,f(z))M > 1

admet une solution entière prenant une valeur donnée à

l'origine; lorsque le second membre est du premier degré en / (z), ces

fonctions entières sont d'ordre nul.
Dans d'autres cas, les solutions d'équations fonctionnelles,

si elles existent, ne peuvent être que des fonctions d'ordre nul.

Par exemple, si l'équation

[/'(Q

où Q (z) est un polynôme de degré q et R une fraction rationnelle

de degré ppar rapport à / (z), ne peut avoir de solution

méromorphe que si p^ mq; et si une telle solution existe, c est

une fonction méromorphe d'ordre nul (quotient de deux
fonctions entières d'ordre nul)20).

Soit encore la fonction entière

F(*;a) =n(1-4i). M >4 >

71=0 \ a /

qui vérifie l'équation fonctionnelle

9 {z2) (1 — ^ M 9 (— »

et qui est à croissance très lente. La recherche de la solution

méromorphe générale de cette équation fonctionnelle est ramenée

à la résolution de

9 [z2) 9 M 9 (— z) • 21)

(A suivre).
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