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EXEMPLES 173

Par suite

I1. Si Uordre o est inférieur a %, a ¢ > 0 correspond un
nombre k tel que inégalité (21) a liew pour des T appartenant @
une suite dintervalles R, kR, Ry, tendant vers Uinfini avec m,

ces T formant des intervalles dont la somme des longueurs enire Ry,
et kR est au moins L (s, p) R, Pour ces v, on a

>0, Ul(r) = ro(r) )

o (r) étant un ordre précisé de la fonction considérée 17

En suivant une méthode analogue, on montre que, pour une
fonction f (z), d’ordre p < 1, il existe des r aussi grands que 'on
veut pour lesquels

log | f () | > (mp cot (mp) —e) N (r, 0) ,  [z]=7
et des r aussi grands que I'on veut, tels que

sin (7 p)
TP

N(r,0)>< —e>logM(r,f),

¢ étant donné arbitrairement petit positif, et on a des comple-
ments analogues a I’énoncé II.

V. EXEMPLES DE FONCTIONS D’ORDRE NUL.

97. Fonctions solutions d équations différentielles.

Wiman a montré que les fonctions entieres, ou plus générale-
ment les fonctions de la forme y = z* f (), ou f (z) est une fone-
tion entiére, qui vérifient une équation différentielle algébrique
du premier ordre, @ (z, ¥, ¥') = 0 ot @ est un polyndme & trois
variables, sont nécessairement d’ordre fini positif, d’ordre précise

o + Eﬁ;—; et parfaitement réguliéres par rapport a cet ordre 18),

Mais il existe des fonctions d’ordre nul vérifiant des équations
d’ordre supérieur au premier. Partons de la fonction de Jacobi,

+ 1) n+1
S(z)—_—Zgngzn:A]lM—l-zqan)(i+QT>, lgl < 1,
-5 0

1’Enseignement mathém., t. IV, fasc. 3. 12
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(A est une constante) et posons

7 (e) = Z,’SS,((ZZ))

nous avons
2P (5)2 =4 (P 4 ¢) — Gy (P + ¢) — Gy ,

¢, Gy, G, 6tant des constantes qui dépendent de g. Il s’ensuit
que S (z) est solution d’une équation différentielle du troisiéme
ordre, algébrique. Mais, si 'on pose '

1
5 =
z

—u, Sl =F,

F (u) est une fonction entiere d’ordre nul,

o u q2n+1
P = o[ (1 + {2 ) 24
qui est solution d’une équation différentielle algébrique' du
troisieme ordre. Pour cette fonction F (u), on a

(log r)2

logM(r, F) o —2 1.
g Ml )N~410g1q|

On peut déduire de la d’autres fonctions d’ordre nul vérifiant
des équations différentielles algébriques. Tout d’abord en faisant
le changement de variables u = 0 (z) ou 6 est un polynome; les
~ fonctions obtenues satisferont encore a la condition (22) du n° 21.
On obtiendra des fonctions a croissance plus rapide en prenant

G(z) = F (F (2)) .

D’aprés la condition (24), il existe une courbe fermée I'y entou-
rant Porigine sur laquelle

__ (log 'R)z
~si grand que soit R donné, et les valeurs de r = | z | vérifiant la

condition
logr=(1+ o0(1)) log R .

La courbe I'y étant courbe de module constant de F (z), 'argu-
ment de F (z) varie de 2nng, ny étant le nombre de zéros de F (z)




EXEMPLES 175

intérieurs a 'y, lorsqu’on fait un tour sur I'y dans le sens direct,
il existe donc sur I'y des points en lesquels ’'argument de u = F (2)
est tel que
log R)?
Pl | =M(ul, ), log|Ful= g
Il s’ensuit que
log | u)® (log r)*

08 M G ™ iTog g Y s logal |

La fonction G vérifie une équation différentielle du sixiéme ordre
déduite de celle de F = y. On a @ (y, vy, ", y'"’, z2) = 0, de

G/ — yl (F) yl , GII — y// (F) y/2 + y/ (F) y// , G//l —_ y//l (F) yl3 —I— .

on tire y"’ (F), ¥y (F), ¥y’ (F) et en portant dans @ (G, y' (F),
y'" (F), ¥y (F), F) = 0, on obtient ¥ (G, G', G", G'", F, F', F",
F'"y = 0 avec @ (F, F', F"") F'’, z2) = 0. On peut éliminer F’"’
ce qui donne u (G, G', G, G'', F, F’, F”’, z) = 0; on dérive et
on élimine F'"'; et on recommence deux fois; on a trois équa-
tions w = 0, v= 0, o = 0 contenant F, F’, F"" qu’on élimine.

On peut évidemment continuer ce procédé.

Existe-il des fonctions entiéres d’ordre nul vérifiant des
équations différentielles algébriques du second ordre ? Il n’en
existe pas pour lesquelles

log M (r) 1 1)
(log r) (logy r) ~ log 4

Mais cette borne est-elle bonne ?

28. Fonctions entiéres d’ordre nul vérifiant des équations
fonctionnelles.

Considérons I’équation de Poincaré

flzs) = Pola) f(a) + P1(a), [|s|>1,

ou P, (z) et P;(z) sont des polyndémes. Elle admet une solu-
tion entiére sous la seule réserve que le calcul formel des coeffi-
cients du développement taylorien soit possible. Si Ion pose
Py(z) = ¢cp22+ ..., | ¢o| = C, on a
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O (1)

M(rS, f) = <1—[———;—-—>Ar‘1M(r,f), S = [1].

En itérant, on obtient

nn—1)

—log S + nlog (Arg?) + O (1) ;

log M (S"ro, f) = ¢

il s’ensuit que

q
log M (r, f) ~ 5 Tog S (log r)% .
De méme, la méthode des fonctions majorantes montre que
I’équation
[ () =Pz fla), [s|>1,

admet une solution entiére prenant une valeur donnée & lori-
gine; lorsque le second membre est du premier degré en f (z), ces
fonctions entiéres sont d’ordre nul.

Dans d’autres cas, les solutions d’équations fonctionnelles,
si elles existent, ne peuvent &tre que des fonctions d’ordre nul.
Par exemple, si I’équation

T QEN™ =R (5 f(2)

ot Q (z) est un polyndme de degré q et R une fraction ration-
nelle de degré p par rapport a f (z), ne peut avoir de solution
méromorphe que si p > mg; et si une telle solution existe, c’est
une fonction méromorphe d’ordre nul (quotient de deux fonc-
tions entiéres d’ordre nul) 2.

Soit encore la fonction entiere

[¢0)

F(z;a):H(i—-a—%), ]a|>1,"

n=0

qui vérifie ’équation fonctionnelle

ot = (1—2)eldel—2),

a

et qui est & croissance trés lente. La recherche de la solution
méromorphe générale de cette équation fonctionnelle est ramenee
a la résolution de "
9 (z*) = ¢ (2) @ (—2) . %)
(A suivre).
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