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FONCTIONS ENTIERES D’ORDRE FINI
ET FONCTIONS MEROMORPHES *

par Georges VALIRON

FONCTIONS ENTIERES D’ORDRE FINI ET D’ORDRE NUL
(sutte)

IV. TurorEME DE WIMAN. EXTENSIONS ET APPLICATIONS.

22. Théoréeme de Boutroux-Cartan.

Ce théoreme est relatif au module minimum d’un polyndme
a Dlextérieur de domaines contenant les zéros. Obtenu par
Boutroux dans le cas des polynémes & variable et zéros réels
(Thése, 1903) il a été complété par H. CArTaN (Thése, 1928).
n

Etant donné un polynéme canonique P (z) = fil (z—1z), H

un nombre positif arbitraire et e la base des logarithmes, on a

P ()| > (E—)”

e

pourvu que l'on prenne z a Uextérieur de n cercles au plus dont la
somme des rayons est au plus 2H.
Il existe un entier A, supérieur ou égal a tous les autres, tel

qu’il existe un cercle C; de rayon )\II—I;I- qui contient exactement

A, points z, & son intérieur. En effet, si aucun cercle de rayon H
ne contient tous les zéros, on peut considérer les cercles de

H
rayon (n — 1)—’7,
considére les cercles correspondant a A, = n — 2, etc. Si I'on
arrive & A, = 1 sans avoir trouvé 2,, chacun des cercles de

si aucun d’eux ne contient n — 1 zéros, on

H . r
rayon —~ ayant pour centre les z, contient un seul zéro, donc
A, = 1. Car si 'un de ces cercles de centre z, contenait ¢ > 1
points z, le cercle concentrique de rayon ¢~ en contiendrait

g > ¢ (sinon on aurait eu A, = ¢), le cercle concentrique de

*) Seérie de cours et de conférences sur la théorie des fonctions entiéres, faits en
1948 au Caire et & Alexandrie, d’aprés le manuscrit revu et mis au point par le pro-
fesseur Henri MILLOUX. ' E

L’Enseignement mathém., t. IV, fasc. 3. 1
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JH . . , : C
rayon ¢’ — en contiendrait ¢" > ¢’, etc., ce qui conduirait & une
contradiction, il y aurait plus de n zéros. '

Ainsi, il existe un 2, et un cercle correspondant C,. Les points
contenus dans G, seront les points de rang ;. Considérons main-
tenant les n — 2, autres points. Il existe un plus grand entier Ay

et un cercle C, de rayon )\2% qui contient exactement 2, de ces
points. On a 2, < ;. Sinon, C, contiendrait ' > 2, points de
Iensemble total z,, un cercle concentrique de rayon 7\.”% con-

tiendrait 1" > 2; points de '’ensemble total, contrairement &
la définition de 2,. Les points, autres que ceux de rang A, déja
considérés, contenus dans C, sont les points de rang X, Ay < Ny).
Ne considérant plus que les n— A — 2, autres points, on
définit les points de rang 2;, (A3 < 2,), qui sont contenus dans

un cercle C; de rayon As—. Et ainsi de suite. La somme des
rayons des cercles Cy, Cy, ..., C, ainsi obtenus est

H
;()\1+)\2—!—...+7\p)=H.

Tout cercle S de rayon 7\%, ou A est entier, ‘qui contient au

moins A points z,, en contient un au moins de rang supérieur ou
égal & A; c’est une conséquence immédiate de la définition du
rang.

Marquons alors les cercles Ty, T, ..., I, respectivement
concentriques a C;, Cy ..., C, et de rayons respectivement
doubles et prenons z a 'extérieur de ces cercles I'. Un cercle S

de centre z et rayon 7\% , Ou A est entier, contient au plus A — 1

points z,. En effet, si z, est intérieur & S et si ; est son rang et
a; le centre du cercle C; correspondant, on a

H H H
27‘)‘“‘ < ]z—ajl <A—+ A—
n n n
done A; << 2; S contient A — 1 points z, au plus. Rangeons les
z, dans Pordre des distances non décroissantes & z, la distance
du ¢**™® point & z sera au moins ¢ —, on aura
n

1P (z) | > (E>”n1 > <E)n

n n
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ce qui démontre le théoréme puisque la somme des rayons des
cercles T' est 2H 13,

23. Etude du module d’une fonction d’ordre nul a Uextérieur
de certains cercles. |

Une fonction d’ordre nul, égale a 1 pour z = 0, est de la
forme

:oo 1———2—), 1 onvergent.
TL(t =) Sippeomen

Donnons-nous une fonction f (z) telle que lorsque z (réel) tend

vers 'infini, |
Bx)y 0,  zBl(z) > 1,

et considérons la suite de cercles de centre z = 0 et rayons
Ri, Ro={0+BR)Ry,..., Ry =(14+BRy)R,-

D’aprés la seconde hypothese sur 8, R, croit indéfiniment avec
m. Appelons D, la couronne R, < |z| <R, et D la
couronne définie par :

R, <lz| <R,,R_ =R, (1—8(R,), R, =R,(1+28(R,).

m m

Désignons par m’ et m’’ les nombres n (r) de zéros de f (z) pour
r= R, et r= R respectivement et appliquons au polynéme

- (%, — 2)
enlel = 1T (1= 2) = 122
m’+1 m'+1
le théoréme de Boutroux-Cartan. Nous aurons
'H m'’-m’ 1 m'’-m’
> | — -
8n ] > (%) &) ()

pourvu que z soit extérieur & m'’ — m’ cercles dont la somme
des rayons est au plus 2H. Nous prendrons

H = R;nB(Rm)27

I'inégalité (1) aura lieu dans toute la couronne D, sauf au plus
dans m"" — m' cercles dont la somme des rayons est au plus
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égale a

2R B (Rpn)” 2)
ces cercles pouvant couper les cercles limitant la couronne.
Appelons A, la portion de D,, extérieure & ces cercles. Dans A e
on a d’apres (1)

— hm

B (Rm)

log [ 8m (2) l > — 2m” log (3)

2
B (Rn)
dés que m est assez grand.
On a, dans D,_,

H(i ——) H (1 ~—) & (5) - (4)

m+1 %n

Dans le second produit |a«,| > R_(1 + 2p8) >
posant pour simplifier § — B(R,,), et |z]| = r, done

r l“ rl—{—QB.

log(i—i>>log(1-—L>>— ’ n > —
%n | % | I e LN
Le logarithme du module du second produit dans (4) est donc

supérieur &
oo
)
P

3 < r
Bm’Z’-HIa

n

3r < 1
>—__
B éggllan

pourvu que m soit assez grand.
On a d’ailleurs, si m est assez grand,

/'n(x)dx> 'n(x)dx>m S m ,
. i ./ 2 T R” 3r (6)
r 144

Rm

Le premier facteur de (4) peut s’écrire

My, )
0 Oy ocm,:[;[ (7 —1)

ou encore

Zn (04 .

aMNnWH nﬁ( ) n=nr. (7)
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Dans cette expression, le logarithme du module du premier
facteur est

r

f”(ﬁjd%; (8)

0

dans le second facteur, les | «; | sont supérieurs ou égaux a R,
et | z| moindre que R,_,, le logarlthme du module de ce facteur
est supérieur a

148

1__B>—_2n>—2m”

— n log

si m est assez grand. Enfin, le troisiéme facteur dans (7) dans
lequel |, —z| >r—|a,| >r—r (1l — B) = rp a son loga-
rithme supérieur a

m’log1>——m .
- B B

Le module du premier facteur de (4) est donc supérieur a 1’ex-
pression (8) diminuée de — m’ g En tenant compte de ce
(5

résultat et des megahtes (3),
I'inégalité

) et (6) on obtient, dans A _,

r 0

K n(x)d:c__ 2r n (z) dx
logm)l>6f : B(Rm)rf e

qui, rapprochée de I'égalité (21) du n° 21, montre que:
Pour toute fonction d’ordre nul f (z (meme st £(0) = 0), on a,
a extérieur des régions circulaires contenant les zéros,

r [2e)

log!f(z)l=fn(9;>dx+0(logr)+6’rf”(‘;)2d“, —B—I(%<e'<1,
0 r

(9)

K étant une constante numérique et B (v) tendant vers zéro lorsque
I~ oo. La fonction B (r) peut éire choisie arbitrairement telle que
B(r) | 0, eB(r). > 1 et les régions circulaires exclues dans la
couronner (1 — P (r)) < |z| <r(1 -+ B(r)) sont constituées par
moins de n[r (L + B (r)] cercles dont la somme des rayons est
motndre que r B (r)2 K', K’ étant une constante numérique.
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Pour toute fonction vérifiant la condition (28) du n° 21, on
pourra prendre pour @ (r) la racine carrée du rapport figurant
dans (28) ou plus exactement le maximum de cette racine carrée
entre r et oo . Dans les régions restantes, on aura

Jim o =1 (10)

24. Conséquences de Uétude précédente. Théoréme de Luttlewood
et fonctions de la classe normale. Fonctions de la classe W.

S1 f (z) est une fonction d’ordre nul quelconque, nous avons
vu que Pon a I'égalité (27). Comme la fonction

0

fn <Z) dx

r

décroit lorsque r croit, tandis que N (r, 0) croit, on déduit de (27)
qu’il existe une suite de couronnes R < | z| < kR, k > 1 dans
lesquelles le rapport de

[oe]

rfnT(::ldx, lz] =r,

r

a N (r) tend vers zéro lorsque R - . On pourra prendre pour
B (r) la racine- carrée de ce rapport et dans la portion de la
couronne exteérieure aux cercles d’exclusion, on aura I’égalité (10).
Comme la somme des rayons des cercles exclus dans une cou-
ronne d’épaisseur relative 28 (r) est Krf (r)2 il existera des
circonférences | z| = r appartenant a la région non’ exclue, ce
qui donne le théoréme de Littlewood:

I. Pour toute fonction d’ordre nul, existe une suite de circon-
férences | z | = r, de rayons indéfiniment croissants, sur lesquelles
log |f (z) | ~ log M (r, 1).

Nous appellerons fonction d’ordre nul de la classe normale,
toute fonction f (z) pour laquelle I’égalité (28) du no 21 est véri-
fiée. Le théoreme du n° 23 s’applique quel que soit r en choisissant
B (r) comme il a été dit & la fin du n° 23. Dans la couronne
r(l—B@M) <r=|z|<r( + B(r), les régions exclues
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appartiennent & un nombre fini de couronnes dont la somme des
épaisseurs est KrB (r)?, infiniment petite par rapport & P'épais-
seur totale 2rB (r). Si deux cercles d’exclusion se coupent, on peut
les remplacer par un seul, ce qui n’augmente pas la somme des
rayons. On peut donc supposer ces cercles extérieurs les uns aux
autres. Chaque cercle d’exclusion est vu de l'origine sous un
angle qui tend vers zéro lorsque le centre du cercle tend vers
'infini; il contient au moins un zéro. Ainsi, compte tenu de
Pégalité (26) du no 21:

I1. Pour une fonction entiére d’ordre nul de la classe normale,
on a '

log | f(z) | ~>log M (r,f) , |z]=7r, (11)

a la condition d’exclure des cercles contenant les zéros, extérieurs
les uns aux autres, la somme des rayons des cercles exclus dont le
centre est @ une distance de l'origine comprise entre R et 2R étant
o (R). En conséquence, les cercles exclus sont vus de l'origine sous
un angle qui tend vers zéro lorsque le cenire s’éloigne indéfini-
ment.

D’apres 1’égalité (10), les régions du plan ou |f(z) | < A,
A étant fixe et arbitrairement grand, sont intérieures aux cercles
d’exclusion dés que | z| est assez grand, les zéros de f (z) — Z,
| Z | < A sont intérieurs & ces mémes régions. On peut d’ailleurs
supposer que A augmente indéfiniment, il suffit que log | Z | < .

(log M <%, f)), w < 1, pour que les zéros de f (z) — Z soient dans

les régions exclues. Les cercles exclus sont donc des cercles de
remplissage d’aprés la terminologie de Milloux et le théoréme I1
contient et précise, pour la classe de fonctions considérée le
théoréme de Julia'®. On a pour ces fonctions des renseignements
précis sur la position des points ou f (z) prend une valeur arbi-
traire Z et sur leurs déplacements lorsque Z varie.

Considérons maintenant un nombre fixe A. Dés que r est

assez grand pour que log A = p (log M(%, f)), w <1, les
domaines en lesquels
| Z =1 <A

sont intérieurs aux cercles de remplissage ainsi que leurs fron-
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tieres. Un tel domaine A est simplement connexe et sur sa fron-
tiere | f(z) | = A. Lorsque z varie dans A, le point Z = f (2)
décrit un domaine du plan des Z limité par la circonférence
| Z | = A. Pour tousles Z tels que | Z | < A, I’équation f (z) = Z
a le méme nombre de solutions égal au nombre des zéros de f (2)
situés dans A (on le voit par le théoréme de Rouché), si v est le
nombre de ces solutions, la fonction inverse z = f, (Z) de
Z = f (z) est une fonction & v branches dont les points critiques
correspondent aux zéros de f' (z). Autrement dit, la surface de
Riemann décrite par Z = [ (z), lorsque z décrit A, a v feuillets,
c’est un cercle a v feuillets. On peut rendre les branches de
/4 (Z) uniformes en empéchant les rotations autour des points
critiques Z! = f (), f’ (2;) = 0. A cet effet, on peut joindre les
points Z7 & la circonférence |Z| = A en suivant le rayon
argZ = arg Z), |Z| > |Z'| lorsque Z! # 0, et un rayon
arbitraire distinct des précédents si Z7 = 0. On forme ainsi, dans
le plan simple des Z, un domaine simplement connexe D, que
les v branches de z = f, (Z) rendues holomorphes, et qui sont
univalentes, représentent sur v domaines A; sans points communs
qui constituent avec leurs frontiéres le domaine A. Un arc de
frontiére d’un A; qui n’est frontiére que de A, peut étre supprimé
sans que A, cesse d’étre simplement connexe; dans ces domaines
A;, | (z) est univalente; les frontiéres de A; qui ne sont pas arcs
de frontiére de A fournissent les lignes le long desquelles on
passe d’un feuillet de la surface de Riemann & un autre feuillet.
Le nombre total des points critiques sur la surface de Riemann,
comptés avec leur ordre de multiplicité est égal au nombre des
racines de [ (z) = O appartenant & A; on supposera, en rem-
plagant §’il y a lieu A par un nombre voisin, qu’il n’y a pas de
zéro de [’ (z) sur la ligne | f (z) | = A frontiére de A. D’aprés un
théoréme connu '» que nous admettrons, le nombre des zéros
de /' (z) appartenant & A est v— 1. On a ainsi v — 1 points
critiques et v feuillets. Comme & un point critique d’ordre ¢
correspondent ¢ 4- 1 lignes de passage d’un feuillet & un autre,
tracées sur les divers feuillets, le nombre total des lignes de
passage est X (¢ + 1) avec £g = v — 1, et comme ¢ -+ 1 < 2g,
on a %(q+ 1) <2v—2. Comme il y a v feuillets, 'un au
moins ne contient qu’une ligne de passage. Autrement dit, dans
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A existe au moins un domaine A, dans lequel Z = f (z) est uni-
valente et représente A; sur le cercle | Z | < A privé au plus
~d’un segment porté par un rayon. Ainsi

III. Pour une fonction d’ordre nul de la classe normale, chaque
domaine A d’exclusion du théoréme Il contient au moins un
domaine A’ dans lequel Z = f (z) est univalente et représente ce
domaine sur un cercle | Z | < A privé au plus d’un rayon ou d’un
segment de rayon, A croissant indéfiniment lorsque le domaine
s’éloigne indéfiniment. Le domaine A’ appartient a un cercle qui
est yu de Dorigine sous un angle qui tend vers zéro lorsque A’
s’éloigne indéfiniment.

La nécessité de supprimer un rayon ou un segment de rayon
s'impose puisque f (z) peut n’avoir que des zéros multiples.

La propriété des domaines A’ s’étend & toute fonction entiére
/ (z) pour laquelle existe une suite de courbes fermées simples T,
entourant P'origine telles que le minimum du module de f (z) sur
I',, tende vers l'infini lorsque n croit indéfiniment, & condition
de supprimer la condition relative aux dimensions de A’. En
effet, pour une telle fonction, les domaines dans lesquels
| /(2) | < A seront des domaines A simplement connexes bornés
puisqu’ils ne coupent pas les courbes I', dés que n est assez
grand. Ces domaines existent. Car on peut tout d’abord, en
supprimant des I',, faire en sorte que I',,, contienne I", a son
intérieur; si f(z) ne s’annule pas entre I', et T, , le théoréme
sur le maximum du module montre que |f(z)| est supérieur
entre I', et I', ., & son minimum sur ces courbes. Il s’ensuit que
/ () s’annule entre I', et IT',,, pour une suite infinie de valeurs

de n; sinon | f (z) | serait supérieur & tout nombre donné dés que

| z | serait assez grand 1 serait holomorphe & Pinfini et nulle

" 1)

en ce point, f (z) serait un polynome. Si f (z) ’annule entre r,
et I',,,, 1l existe entre I, et I',,, un domaine A dans lequel
| f(z)] < A; ce domaine est simplement connexe puisque G
étant une courbe fermée intérieure & A, on a sur C, done & son
intérieur, | f (z) | < A, lintérieur de C appartient & A (en parti-
culier, A n’entoure pas l'origine, la portion de plan extérieure
a A comprise entre I', et T', ,, reste connexe). On peut appliquer
a A les raisonnements précédents. Par suite, si 'on convient
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d’appeler fonctions de la classe W (Wiman) les fonctions entieres
jouissant de la propriété en question, on voit que:

IV. Pour toute fonction entiére f (z) de la classe W, il existe
une suite infinie de domaines A’ bornés simplement connexes tels
que, dans chaque A', f (z) est univalente et prend toutes les valeurs
Z appartenant au cercle | Z | < A privé au plus d’un rayon ou
d'un segment de rayon, A croissant indéfiniment lorsque A’
s'éloigne indéfinimendt.

Une fonction £ (z) est de la classe W s’il existe une suite infinie
de courbes fermées simples T' entourant l'origine telles que le mini-
mum du module de f (z) sur T, tende vers l'infini avec n.

D’apreés le théoréme de Liitlewood, toute fonction d’ordre nul est
de la classe W.

Ce dernier résultat est contenu dans un théoréme antérieur
de Wiman.

25. Fonctions d’ordre nul n’appartenant pas a la classe normale.

I1 existe des fonctions n’appartenant pas a la classe normale
pour lesquelles la proposition II n’est plus vraie, ¢’est-a-dire pour
lesquelles | f (z) | reste borné dans des domaines circulaires qui
sont vus de lorigine sous un angle fini. On peut construire de
telles fonctions de la forme

‘o) — fI <1 B OCz(n)>q(n)

1

ou les « (n) sont positifs et les ¢ (n) entiers. On suppose réalisées
les conditions suivantes:

Sq) — {1+ o0(1))qm), (11)
lim ELE o, (12)

< gn)
n'lllinoo o (m)m%ii o (n) =0 ) (13)
lim ¢m—1logafm) _ (14)
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La condition (12), compte tenu de (11), montre que I'ordre
est nul. En écrivant f (z) sous la forme

=T ) T2 () i) w0

1

et en suppbsan‘o
o (m)

A

< |z| < 8a(m) (16)

ou A est fixe et grand, on a les résultats suivants: L.e quatrieme
facteur dans (15) est égal & 1 4 o (1) en vertu de (13) qui
implique que « (m)/o (m -+ 1) tend vers zéro; il en est de méme
du second en vertu de (11) et (13). Le premier facteur a un
module supérieur a 1, mais moindre que

(3 o (m))dlm-D)(A+0(1))

donc égal & e°Wam d’aprés (14). Le troisiéme facteur est de
module moindre que 4%™; si | z — « (m) | > ka (m), k > 1, le
module de ce troisiéme facteur est supérieur a k%™ tandis que
lorsque |z — a (m)| < k' « (m), k' < 1, il est inférieur a k'9m,
Par suite:

La fonction f (z) a son module irés petit dans la suite des cercles

lz—a(m) | <Kalm), k<1

mais elle est irés grande dans la portion des couronnes (16) qui
sont extérieures respectivement aux cercles

|z—a(m)| >ka(m), k>1.

Dans les portions restantes des couronnes (16), f (z) prend
les valeurs Z différentes de zéro; les zéros de f(z) — Z étant
approximativement les sommets d’un polygone régulier de ¢ (m)
cOtés et centre o (m). Lorsque m — «, on peut faire tendre k
et k' vers 1 et I’on obtient des domaines d’univalence de Z — f (2)
que I'on peut enfermer dans des cercles vus de Porigine sous
un angle qui tend vers zéro lorsque m — o, dans chacun
desquels f (z) prend des valeurs Z appartenant a la couronne

1
B < | Z | < B,, fendue le long d’un rayon, B,, étant indéfini-
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ment croissant avec m. On a donc des domaines d’univalence
dont les dimensions sont analogues a celles obtenues pour les
fonctions de la classe normale, mais ou se présente une valeur
exceptionnelle, Z = 0. ,

On peut prendre, par exemple

q(n) = 92" | log o (n) = 22" 2

Peut-on former des fonctions anormales analogues dés que la
condition (22) du n° 21 n’est pas vérifiée, c’est-a-dire dés que
log M (r, f) = (log r)2 A (r), A (r) étant & croissance aussi lente
que I'on veut ? Peut-on avoir plusieurs valeurs exceptionnelles ?
Ou bien, est-il vrai que, tout au moins pour les fonctions d’ordre
nul, le théoreme IV du n° 24 est vrai avec des domaines A’
enfermables dans des cercles vus de I’origine sous un angle qui
tend vers zéro lorsque A’ s’éloigne indéfiniment, & condition
d’exclure de | Z | < A non plus seulement un segment de rayon,

‘mais un petit cercle | Z —Z,, | <% et le segment de rayon
de | Z| < A joignant Z,, & |Z| = A?

26. Théoréme de Wiman.

Wiman a montré que f (z) étant une fonction entiére d’ordre o

- | Y 1 . . . . . .
inférieur a 5 ete> 0 arbitrairement petit, il existe une suite

de circonférences | z| = r de rayons indéfiniment croissants sur
lesquelles on a
log | f(2) | > r*=.

Cette inégalité a été précisée par Littlewood, puis par Valiron
et Wiman, et a été étendue par R. Nevanlinna; des démonstra-
tions nouvelles ont été données par Polya, Denjoy,... Si Pon
considére une fonction entiere d’ordre inférieur a 1, égale a 1
a Dorigine (hypothese qui ne diminuera pas la généralité des
résultats), on augmente le maximum de son module pour
| 2| = r et on diminue le minimum du module pour |z| =r
en alignant les zéros sur une demi-droite sans changer leurs
modules. Une inégalité de la forme log |f (r)| > klog | (—r)|,
k > 0 démontrée pour une fonction & zéros tous positifs entraine
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pour les fonctions dont les zéros ont les.mémes modules
log |f(z) | >klogM(r,f) , |z|l=r.
Considérons (Polya, Denjoy), la fonction

6'(x)#log_li—x[——-—cos(na)log(l+x), x>0, o<a<1t,

J X
X

et D'intégrale

Comme on a

o0

dx | ,wlog' o T
flog]l—xle = = cot (v , f m @ = sm (ma)’
0 - 0

on voit que

D’autre part Q' (z) a le signe de — 0 (z), qui est positif jusqu’a
une valeur z, puis négatif; donc Q (z) croit, puis décroit; on a
Q (x) > 0 pour 0 < x < oo. La fonction positive continue

2" Q(x)
Me) = for ¥ 4
pour laquelle
lim)\(x):1+cosna, lim)\(x)':1——cos(n°‘),

x=0 1— o Xx=00 o

a un minimum positif 2 («). On a, en conséquence,

oo}

r® [(log |1 —z|—cos (mwa) log (1 + x)) x‘ff

a>h(oc)log(1+r).

On en déduit, sir, > 0, en posant t =r,z, R =rr,,

-

R

(mx‘) log < + ;—) tita- h () log (1 + ?-) - (17) |

-n
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Considérons alors la fonction d’ordre p inférieur & 1, & zéros
positifs r,

=113

n

et supposons que, « étant pris supérieur ou égal & p, I'intégrale

[ee}

/Wdt, Mt f) = fl—1), (18)
e t *

1

soit convergente. Dans ces conditions, on peut additionner les
inégalités (17) pour n = 1, 2, ... car

o0
?

1L

Tn

log (19)

J t1+oc

0
N
L]
R 1

converge, ce que nous démontrerons ci-dessous. On obtient

R [ Tiog 1 (41— cos () log |/ (— ) 1155 > (o) log M(R.) . (20)

R

Cette inégalité exige tout d’abord que I'on ait

lim [log |  (r) | — cos (w«) log M (r,f)] = = ,

r=co
sans quol le premier membre de (20) serait borné alors que le
second membre ne I'est pas. Ceci s’applique a une fonction
d’ordre p << 1 en prenant « entre p et 1 et & une fonction d’ordre p
et de la classe convergente en prenant « = p. Par conséquent,
en utilisant les remarques faites au début,

I. Pour toute fonction d’ordre o inférieur a 1 et pour € > 0
P 4 )

il existe une suite de circonférences | z | = r, de rayons indéfiniment
croissants, sur lesquelles

log | f (z) | > [cos (wp) —e]log M (r, f) . (21)

. 1 ;
Pour une fonction d’ordre p < 7 ¢t de la classe conyergente, il
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existe une suite de circonférences de rayons indéfiniment croissants
sur lesquelles

log |f(z) | > cos (mp) log M (r, f) + o (r) , limeo (r) = «.

r=co

. . . S dy 1 1
En particulier, les fonctions d’ordre inférieur a -, ou d’ordre 5 et

de la classe convergente appartiennent d la classe W.
Il reste & prouver que la convergence de (18), qui entraine,
on I’a vu, la convergence de

7 n (z) dz
J :f e (22)
i _

entraine aussi la convergence de (19). Or

log 1—r—

n

< lo —|—r
g ( ;—>$

n
et
r+r,|

r ——-rn

— log

1
r

n

= — log <1+Fr—> + log
n

Comme (18) converge, il reste & montrer que

[

converge. Si r, > 2r

r—l—r

I — r

Adr

(23) -

r+ory, 2r 4r
=] 1 il
oy = o (14 5 ) <o (14 ).

et puisque (18) converge, on peut remplacer dans (23) la série
par la somme pour r, < 2r. L’intégrale (23) ainsi modifiée est
alors inférieure &

log

2q+2

< 21+3UCJ ,

i

q=1
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ou C est le maximum de

2
J log
1

La proposition I est ainsi complétement démontrée. On peut
la compléter en utilisant d’une fagon plus précise I'inégalité (20).

u -+ A
U — A

du , A>0.

Supposons o <—;- et soit p(r) un ordre précisé de f(z). Si

%>O€>petk>1,ona
log |f()] <log |f(— o] =logMf) <(14+o0(1)U(, Ul =Y,

le premier membre de (20) dans lequel on prend kR pour limite
inférieure de l'intégrale est inférieur a

U (R)

PO gy — (1 1 0 (1)) (1 — Te)) ————— .
(14 0 1) (1 —eos (me) -0 8

R*(1 4+ o (1)) (1 — cos (ma))

Pl
o8

On pourra prendre % assez grand pour que le dernier membre
soit inférieur a —;—U (R) h (). Il s’ensuit que, pour les valeurs
de R pour lesquelles

logM (R, f) ~ U (R) ,

on aura
RR i R
R [[Tlog 11 (1)] — cos () log M (1,11) 7z > 5 (o) U ()
R

dés que R sera assez grand. Si L est la longueur des intervalles
dans lesquels le crochet figurant dans cette intégrale est positif,
la valeur du premier membre est au plus égale a

(14 o (1)) (1 — cos (ma)) U (R)

o &

on a donc
h (o)

L>R{1—o))g—5 5 (mo)
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Par suite

I1. Si Uordre o est inférieur a %, a ¢ > 0 correspond un
nombre k tel que inégalité (21) a liew pour des T appartenant @
une suite dintervalles R, kR, Ry, tendant vers Uinfini avec m,

ces T formant des intervalles dont la somme des longueurs enire Ry,
et kR est au moins L (s, p) R, Pour ces v, on a

>0, Ul(r) = ro(r) )

o (r) étant un ordre précisé de la fonction considérée 17

En suivant une méthode analogue, on montre que, pour une
fonction f (z), d’ordre p < 1, il existe des r aussi grands que 'on
veut pour lesquels

log | f () | > (mp cot (mp) —e) N (r, 0) ,  [z]=7
et des r aussi grands que I'on veut, tels que

sin (7 p)
TP

N(r,0)>< —e>logM(r,f),

¢ étant donné arbitrairement petit positif, et on a des comple-
ments analogues a I’énoncé II.

V. EXEMPLES DE FONCTIONS D’ORDRE NUL.

97. Fonctions solutions d équations différentielles.

Wiman a montré que les fonctions entieres, ou plus générale-
ment les fonctions de la forme y = z* f (), ou f (z) est une fone-
tion entiére, qui vérifient une équation différentielle algébrique
du premier ordre, @ (z, ¥, ¥') = 0 ot @ est un polyndme & trois
variables, sont nécessairement d’ordre fini positif, d’ordre précise

o + Eﬁ;—; et parfaitement réguliéres par rapport a cet ordre 18),

Mais il existe des fonctions d’ordre nul vérifiant des équations
d’ordre supérieur au premier. Partons de la fonction de Jacobi,

+ 1) n+1
S(z)—_—Zgngzn:A]lM—l-zqan)(i+QT>, lgl < 1,
-5 0

1’Enseignement mathém., t. IV, fasc. 3. 12
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(A est une constante) et posons

7 (e) = Z,’SS,((ZZ))

nous avons
2P (5)2 =4 (P 4 ¢) — Gy (P + ¢) — Gy ,

¢, Gy, G, 6tant des constantes qui dépendent de g. Il s’ensuit
que S (z) est solution d’une équation différentielle du troisiéme
ordre, algébrique. Mais, si 'on pose '

1
5 =
z

—u, Sl =F,

F (u) est une fonction entiere d’ordre nul,

o u q2n+1
P = o[ (1 + {2 ) 24
qui est solution d’une équation différentielle algébrique' du
troisieme ordre. Pour cette fonction F (u), on a

(log r)2

logM(r, F) o —2 1.
g Ml )N~410g1q|

On peut déduire de la d’autres fonctions d’ordre nul vérifiant
des équations différentielles algébriques. Tout d’abord en faisant
le changement de variables u = 0 (z) ou 6 est un polynome; les
~ fonctions obtenues satisferont encore a la condition (22) du n° 21.
On obtiendra des fonctions a croissance plus rapide en prenant

G(z) = F (F (2)) .

D’aprés la condition (24), il existe une courbe fermée I'y entou-
rant Porigine sur laquelle

__ (log 'R)z
~si grand que soit R donné, et les valeurs de r = | z | vérifiant la

condition
logr=(1+ o0(1)) log R .

La courbe I'y étant courbe de module constant de F (z), 'argu-
ment de F (z) varie de 2nng, ny étant le nombre de zéros de F (z)
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intérieurs a 'y, lorsqu’on fait un tour sur I'y dans le sens direct,
il existe donc sur I'y des points en lesquels ’'argument de u = F (2)
est tel que
log R)?
Pl | =M(ul, ), log|Ful= g
Il s’ensuit que
log | u)® (log r)*

08 M G ™ iTog g Y s logal |

La fonction G vérifie une équation différentielle du sixiéme ordre
déduite de celle de F = y. On a @ (y, vy, ", y'"’, z2) = 0, de

G/ — yl (F) yl , GII — y// (F) y/2 + y/ (F) y// , G//l —_ y//l (F) yl3 —I— .

on tire y"’ (F), ¥y (F), ¥y’ (F) et en portant dans @ (G, y' (F),
y'" (F), ¥y (F), F) = 0, on obtient ¥ (G, G', G", G'", F, F', F",
F'"y = 0 avec @ (F, F', F"") F'’, z2) = 0. On peut éliminer F’"’
ce qui donne u (G, G', G, G'', F, F’, F”’, z) = 0; on dérive et
on élimine F'"'; et on recommence deux fois; on a trois équa-
tions w = 0, v= 0, o = 0 contenant F, F’, F"" qu’on élimine.

On peut évidemment continuer ce procédé.

Existe-il des fonctions entiéres d’ordre nul vérifiant des
équations différentielles algébriques du second ordre ? Il n’en
existe pas pour lesquelles

log M (r) 1 1)
(log r) (logy r) ~ log 4

Mais cette borne est-elle bonne ?

28. Fonctions entiéres d’ordre nul vérifiant des équations
fonctionnelles.

Considérons I’équation de Poincaré

flzs) = Pola) f(a) + P1(a), [|s|>1,

ou P, (z) et P;(z) sont des polyndémes. Elle admet une solu-
tion entiére sous la seule réserve que le calcul formel des coeffi-
cients du développement taylorien soit possible. Si Ion pose
Py(z) = ¢cp22+ ..., | ¢o| = C, on a
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O (1)

M(rS, f) = <1—[———;—-—>Ar‘1M(r,f), S = [1].

En itérant, on obtient

nn—1)

—log S + nlog (Arg?) + O (1) ;

log M (S"ro, f) = ¢

il s’ensuit que

q
log M (r, f) ~ 5 Tog S (log r)% .
De méme, la méthode des fonctions majorantes montre que
I’équation
[ () =Pz fla), [s|>1,

admet une solution entiére prenant une valeur donnée & lori-
gine; lorsque le second membre est du premier degré en f (z), ces
fonctions entiéres sont d’ordre nul.

Dans d’autres cas, les solutions d’équations fonctionnelles,
si elles existent, ne peuvent &tre que des fonctions d’ordre nul.
Par exemple, si I’équation

T QEN™ =R (5 f(2)

ot Q (z) est un polyndme de degré q et R une fraction ration-
nelle de degré p par rapport a f (z), ne peut avoir de solution
méromorphe que si p > mg; et si une telle solution existe, c’est
une fonction méromorphe d’ordre nul (quotient de deux fonc-
tions entiéres d’ordre nul) 2.

Soit encore la fonction entiere

[¢0)

F(z;a):H(i—-a—%), ]a|>1,"

n=0

qui vérifie ’équation fonctionnelle

ot = (1—2)eldel—2),

a

et qui est & croissance trés lente. La recherche de la solution
méromorphe générale de cette équation fonctionnelle est ramenee
a la résolution de "
9 (z*) = ¢ (2) @ (—2) . %)
(A suivre).
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NOTES

18) Une proposition plus générale est donnée par H. Cartan; elle a été étendue et
utilisée par AuHLFORS, L.: Ein Satz von Henri Cartan und seine Anwendung auf die
Theorie der meromorphen Funktionen, Commentationes phys.-math. Soc. Sci. fenn., 8
Nr. 16, pp. 1-19 (1931). Une proposition plus précise que celle donnée ici est démontree,
par MACINTYRE, A. et FucHs, W. H. J.: Inequalities for the logarithmic derivatives of
a polynomial, J. London Math. Soc., 15, 162-168 (1940), et utilisée par eux dans ’étude
de la dérivée logarithmique d’un polynome.

14) Pour ces questions voir, par exemple, VALIRON, G.: Directions de Borel des
fonctions méromorphes. Mémorial des Sciences mathématiques, 89, Gauthier-Villars,
Paris (1938).

15) Voir TitcEMARCH, E. C.: Theory of functions, loc. cit. 12). Des extensions du
théoréeme en question ont été données par DENJOY, A.: Sur une propriété des fonctions
de variable complexe. Versl. v. d. Koninkl. Akad. v. Wetensch. Amsterdam, 26, pp. 1063~
1068 (1918). .

16) Cet exemple est étudié dans VALIRON, G.: loc. cit. 4), mais sans considérations
sur les domaines d’univalence. Voir aussi VALIRON, G.: Remarques sur les domaines
d’univalence des fonctions entiéres d’ordre inférieur a ¥%. Bull. Sci. Math. (2), 71,
pp. 25-32 (1947).

17) Des énonces de ce genre ont été donnés d’abord par AMIgrA, B.: Sur un théoréeme
de M. Wiman dans la théorie des fonctions entiéres. Math. Zeitschr., 22, 206-221 (1925),
puis par BesicoviTcH, A. S.: On integral functions of order < 1, Math. Ann., 97,
pp. 677-695 (1927), et Miss CARTWRIGHT, M.-L.: On the minimal modulus of integral
functions, Proc. Cambridge Philos. Soc., 30, pp. 412-420 (1934). Voir VALIRON, G.:
Sur un théoréeme de M. Wiman, Opusculata mathematica A. Wiman dedicata, Upsala,
1930, pp. 1-12, et VALIRON, G.: Sur le minimum du module des fonctions entiéres d’ordre
inférieur 3 un, Mathematica (Cluj), XI, pp. 264-269 (1935).

18) Voir, par exemple, VALIRON, G.: loc. cil. 9), pD. 109-111.

19) Voir VALIRON, G.: Sur les fonctions entieres d’ordre nul et les équations diffé- -
rentielles. Bulletin Soc. math. France, 53, pp. 34-42 (1925).

20) Voir VALIRON, G.: Fonctions convexes et fonctions entiéres. Bull. Soc. Math.
France, 60, pp. 278-287 (1932). .

21) Pour des équations analogues, voir VALIRON, G.: loc. cit 4), pp. 87-92.
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