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FONCTIONS ENTIÈRES D'ORDRE FINI
ET FONCTIONS MÉROMORPHES *

par Georges Valiron f

FONCTIONS ENTIÈRES D'ORDRE FINI ET D'ORDRE NUL
(suite)

IV. Théorème de Wiman. Extensions et applications.

22. Théorème de Boutroux-Cartan.

Ce théorème est relatif au module minimum d'un polynôme
à l'extérieur de domaines contenant les zéros. Obtenu par
Boutroux dans le cas des polynômes à variable et zéros réels

(Thèse, 1903) il a été complété par H. Cartan (Thèse, 1928).
n

Etant donné un polynôme canonique P (z) II (z — zv), H
î

un nombre positif arbitraire et e la base des logarithmes, on a

pourvu que Von prenne z à Vextérieur de n cercles au plus dont la
somme des rayons est au plus 2H.

Il existe un entier Xx supérieur ou égal à tous les autres, tel
H

qu'il existe un cercle Cx de rayon Xx — qui contient exactement

\ points zv à son intérieur. En effet, si aucun cercle de rayon H

ne contient tous les zéros, on peut considérer les cercles de

rayon {n — 1) —, si aucun d'eux ne contient n — 1 zéros, on

considère les cercles correspondant à \ n — 2, etc. Si l'on
arrive à \ 1 sans avoir trouvé X1? chacun des cercles de

rayon ^ ayant pour centre les zv contient un seul zéro, donc

\ l. Car si l'un de ces cercles de centre contenait q > 1

points zv, le cercle concentrique de rayon q^- en contiendrait

q' > q (sinon on aurait eu \ — g), le cercle concentrique de

*) Série de cours et de conférences sur la théorie des fonctions entières, faits en
1948 au Caire et à Alexandrie, d'après le manuscrit revu et mis au point par le
professeur Henri MILL OU X.
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158 G. VALIRON

JJ
rayon qr — en contiendrait q" > q\ etc., ce qui conduirait à une

contradiction, il y aurait plus de n zéros.
Ainsi, il existe un \ et un cercle correspondant Ci. Les points

contenus dans Cx seront les points de rang Xv Considérons
maintenant les n — X1 autres points. Il existe un plus grand entier X2

et un cercle C2 de rayon X2 — qui contient exactement X2 de ces

points. OnaX2< X1. Sinon, C2 contiendrait X' > X2 points de

l'ensemble total zv, un cercle concentrique de rayon X" ~
contiendrait X" > Xj points de l'ensemble total, contrairement à
la définition de Xx. Les points, autres que ceux de rang Xx déjà
considérés, contenus dans C2 sont points de rang X2 (X2 < XJ.
Ne considérant plus que les n— X2 autres points, on
définit les points de rang X3, (X3 < Xa), qui sont contenus dans

un cercle C3 de rayon X3 —. Et ainsi de suite. La somme des

rayons des cercles C1? C2, Cp ainsi obtenus est

S(x1 + x2 + ...+ xp) H.

Tout cercle S de rayon A — où X est entier, qui contient au
moins X points zv, en contient un au moins de rang supérieur ou
égal à X; c'est une conséquence immédiate de la définition du
rang.

Marquons alors les cercles I\, T2, Tp respectivement
concentriques à Cl7 C2, Cp et de rayons respectivement
doubles et prenons z à l'extérieur de ces cercles T. Un cercle S

de centre z et rayon X —, où X est entier, contient au plus X — 1

points zv. En effet, si zv est intérieur à S et si X3- est son rang et
ai le centre du cercle C3- correspondant, on a

2 X. — < \z —a,1< X,- + X-1nIî I n

donc X3- < X; S contient X — 1 points zv au plus. Rangeons les
zv dans l'ordre des distances non décroissantes à z, la distance
du çlème point à z sera au moins —, on aura
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ce qui démontre le théorème puisque la somme des rayons des

cercles T est 2H 13).

23. Etude du module d'une jonction d'ordre nul à l'extérieur
de certains cercles.

Une fonction d'ordre nul, égale à 1 pour z 0, est de la
forme

f(z)— n f1 — 7~)>S ÜTT convergent-
1 \ n! I °Si I

Donnons-nous une fonction ß (x) telle que lorsque x (réel) tend
vers l'infini,

ß (x) ^ 0 xß\(x) > 1

et considérons la suite de cercles de centre z 0 et rayons

Ri > R2 (1 + ß (Ri)) Rx Rm+1 (1 + ß (Rm)) Rm

D'après la seconde hypothèse sur ß, Rm croît indéfiniment avec
m. Appelons Dw la couronne Rm < | z | < Rm+1 et D^ la
couronne définie par

Rm < M < Rm> Rm Rm (1 ~ ß (Rm)) > K Rm (* + 2 P (Rm)) •

Désignons par m' et m" les nombres n (r) de zéros de / (z) pour
r Rm et r R^ respectivement et appliquons au polynôme

m'+l \ m'+i an

le théorème de Boutroux-Cartan. Nous aurons

± m"-m'

I'»W|>W r W
\ m'

pourvu que z soit extérieur à m" — m' cercles dont la somme
des rayons est au plus 2H. Nous prendrons

H Rmß(Rm)2,

l'inégalité (1) aura lieu dans toute la couronne Dm sauf au plus
dans m" — m' cercles dont la somme des rayons est au plus
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égale à
2 Rm ß (Rm)2 > (2)

ces cercles pouvant couper les cercles limitant la couronne.
Appelons Am la portion de Dm extérieure à ces cercles. Dans A
on a d'après (1)

..8|«mW|>-2„»,„gR|5>=±j, (31

dès que m est assez grand.
On a, dans Dm,

m' / oo

'M =11 (<-r II >-r)'«<* w
1 V /m"+1 \ n/

Dans le second produit | an | > Rm (1 + 2 ß) > r
1 + 2ß

en
posant pour simplifier ß ß (Rm), et | z | r, donc

log (l — ^ > log ll— rA_> 1a" 1

> _
1 + 2 ß

\ a"/ V I an | / | an | | an | <*„| ß

Le logarithme du module du second produit dans (4) est donc
supérieur à

— - y r——> — — y —— •>_!£? "
ß z—1 a« I ß -1--1 lal g r2 ' (5)
p m"+l I n I p m"+11 n I P ^ x

pourvu que m soit assez grand.
On a d'ailleurs, si m est assez grand,

/• n (x) dx r n(xdx m" m''
> 77" >r n (x) dx /*

J x2 ^ J x2 R ^ 3r (6)
" m
m

Le premier facteur de (4) peut s'écrire

m' m' /„ \

• ——ai <*2 ccm, y\z /
ou encore
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Dans cette expression, le logarithme du module du premier
facteur est

r

j n (x) dx
m ^

0

dans le second facteur, les |
oc3-

| sont supérieurs ou égaux à Rm
et \ z \ moindre que Rm+1, le logarithme du module de ce facteur
est supérieur à

1 4- ß
— n log £ > — 2 n > — 2 m"° 1 — ß

si m est assez grand. Enfin, le troisième facteur dans (7) dans
lequel |an — z | > r — j an | > r — r 1 — ß) ^ ß a son
logarithme supérieur à

_ i°g _ > _ _.
Le module du premier facteur de (4) est donc supérieur à l'ex-
pression (8) diminuée de — m"^En tenant compte de ce

résultat et des inégalités (3), (5) et (6) on obtient, dans Am,
l'inégalité

log I/(z) I > fj xßjU r

qui, rapprochée de l'égalité (21) du n° 21, montre que:
Pour toute fonction d'ordre nul f (z) (même si f (0) 0), on a,

à l'extérieur des régions circulaires contenant les

,og,/Mi./^ + o„.g„ + ev/S(^, -i < o- <
0 r

(9)

K étant une constante numérique et ß (r) tendant vers zéro lorsque
r co. La fonction ß (r) peut être choisie arbitrairement telle que
ß (r) | 0, rß (r). > 1 etles régions circulaires exclues dans la
couronne r (1 — ß (r)) < | z | < r (1 + ß (r)) sont constituées par
moins de n [r (1 -| ß (r)] cercles dont la somme des rayons est
moindre que r ß (r)2 K', K' étant une constante numérique.
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Pour toute fonction vérifiant la condition (28) du n° 21, on
pourra prendre pour ß (r) la racine carrée du rapport figurant
dans (28) ou plus exactement le maximum de cette racine carrée
entre r et oo. Dans les régions restantes, on aura

lim lQgl^>l i ho,
r= oo N (r, 0) A'

24. Conséquences de Vétude précédente. Théorème de Littlewood
et fonctions de la classe normale. Fonctions de la classe W.

Si / (z) est une fonction d'ordre nul quelconque, nous avons
vu que l'on a l'égalité (27). Gomme la fonction

r

décroît lorsque r croît, tandis que N 0) croît, on déduit de (27)
qu'il existe une suite de couronnes R < | z | < 1 dans
lesquelles le rapport de

r/^U. M —
r

à N (r) tend vers zéro lorsque R -> oo. On pourra prendre pour
ß (r) la racine carrée de ce rapport et dans la portion de la
couronne extérieure aux cercles d'exclusion, on aura l'égalité (10).
Comme la somme des rayons des cercles exclus dans une
couronne d'épaisseur relative 2ß (r) est Krß (r)2, il existera des
circonférences | z | rappartenant à la région non' exclue, ce
qui donne le théorème de Littlewood:

I. Pourtoute fonction d'ordre nul, existe une suite de
circonférences | z | r, derayons indéfiniment croissants, sur lesquelles
log |f (z) I ~ log M (r, f).

Nous appellerons fonction d'ordre nul de la classe normale,
toute fonction / (z) pour laquelle l'égalité (28) du n° 21 est vérifiée.

Le théorème du n° 23 s'applique quel que soit r en choisissant
ß (r) comme il a été dit à la fin du n° 23. Dans la couronne
r (1 — ß (r)) <r |z|<r(l + ß (r)), les régions exclues
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appartiennent à un nombre fini de couronnes dont la somme des

épaisseurs est Krß (r)2, infiniment petite par rapport à l'épaisseur

totale 2rß (r). Si deux cercles d'exclusion se coupent, on peut
les remplacer par un seul, ce qui n'augmente pas la somme des

rayons. On peut donc supposer ces cercles extérieurs les uns aux
autres. Chaque cercle d'exclusion est vu de l'origine sous un
angle qui tend vers zéro lorsque le centre du cercle tend vers

l'infini; il contient au moins un zéro. Ainsi, compte tenu de

l'égalité (26) du n° 21:

II. Pour une fonction entière d'ordre nul de la classe normale,
on a

log | / (z) | no log M (r, f) | z | r (11)

à la condition dexclure des cercles contenant les zéros, extérieurs
les uns aux autres, la somme des rayons des cercles exclus dont le

centre est à une distance de Vorigine comprise entre R et 2R étant
o (R). En conséquence, les cercles exclus sont vus de Vorigine sous

un angle qui tend vers zéro lorsque le centre s^éloigne indéfiniment.

D'après l'égalité (10), les régions du plan où | f (z) ] < A,
A étant fixe et arbitrairement grand, sont intérieures aux cercles
d'exclusion dès que \ z \ est assez grand, les zéros de f (z) — Z,
| Z | < A sont intérieurs à ces mêmes régions. On peut d'ailleurs
supposer que A augmente indéfiniment, il suffit que log I Z | < IL

(log M (y /^, p. < 1, pour que les zéros de f (z) — Z soient dans

les régions exclues. Les cercles exclus sont donc des cercles de

remplissage d'après la terminologie de Milloux et le théorème II
contient et précise, pour la classe de fonctions considérée le
théorème de Julia14). On a pour ces fonctions des renseignements
précis sur la position des points où / (z) prend une valeur
arbitraire Z et sur leurs déplacements lorsque Z varie.

Considérons maintenant un nombre fixe A. Dès que r est

assez grand pour que log A (log M (•£, /)) y < 1, les

domaines en lesquels

| Z / (Z) | < A

sont intérieurs aux cercles de remplissage ainsi que leurs fron-
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tières. Un tel domaine A est simplement connexe et sur sa frontière

| f (z) | A. Lorsque z varie dans A, le point Z f (z)
décrit un domaine du plan des Z limité par la circonférence
1 Z | A. Pour tous les Z tels que | Z | < A, l'équation f (z) Z
a le même nombre de solutions égal au nombre des zéros de f (z)
situés dans A (on le voit par le théorème de Rouché), si v est le
nombre de ces solutions, la fonction inverse z (Z) de
Z — f (z) est une fonction à v branches dont les points critiques
correspondent aux zéros de f (z). Autrement dit, la surface de
Riemann décrite par Z / (z), lorsque z décrit A, a v feuillets,
c'est un cercle à v feuillets. On peut rendre les branches de
/_! (Z) uniformes en empêchant les rotations autour des points
critiques 7) f (zj), f (zj) 0. A cet effet, on peut joindre les
points Z3 à la circonférence | Z | A en suivant le rayon
arg Z arg Z\ | Z | > | ZJ | lorsque Zj ^ 0, et un rayon
arbitraire distinct des précédents si Z3 0. On forme ainsi, dans
le plan simple des Z, un domaine simplement connexe DA que
les v branches de z — f_{ (Z) rendues holomorphes, et qui sont
univalentes, représentent sur v domaines Aj sans points communs
qui constituent avec leurs frontières le domaine A. Un arc de
frontière d'un Aj qui n'est frontière que de A3 peut être supprimé
sans que Ad cesse d'être simplement connexe; dans ces domaines
Ap f (z) est univalente; les frontières de A,- qui ne sont pas arcs
de frontière de A fournissent les lignes le long desquelles on
passe d'un feuillet de la surface de Riemann à un autre feuillet.
Le nombre total des points critiques sur la surface de Riemann,
comptés avec leur ordre de multiplicité est égal au nombre des
racines de f {z) 0 appartenant à A; on supposera, en
remplaçant s'il y a lieu A par un nombre voisin, qu'il n'y a pas de
zéro de f (z) sur la ligne | / (z) | A frontière de A. D'après un
théorème connu 15)

que nous admettrons, le nombre des zéros
de f (z) appartenant à A est v — 1. On a ainsi v — 1 points
critiques et v feuillets. Comme à un point critique d'ordre q
correspondent q + 1 lignes de passage d'un feuillet à un autre,
tracées sur les divers feuillets, le nombre total des lignes de

passage est S (q + 1) avec 2g v — 1, et comme q + 1 < 2g,
on a 2 (g -f- 1) < 2v — 2. Comme il y a v feuillets, l'un au
moins ne contient qu'une ligne de passage. Autrement dit, dans
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A existe au moins un domaine A3 dans lequel Z / (z) est
univalente et représente Aj sur le cercle | Z | < A privé au plus
d'un segment porté par un rayon. Ainsi

III. Pour une fonction d'ordre nul de la classe normale, chaque
domaine A dexclusion du théorème II contient au moins un
domaine A' dans lequel Z f (z) est univalente et représente ce

domaine sur un cercle | Z | < A privé au plus dun rayon ou dun
segment de rayon, A croissant indéfiniment lorsque le domaine
s'éloigne indéfiniment. Le domaine A' appartient à un cercle qui
est vu de Vorigine sous un angle qui tend vers zéro lorsque A'
s'éloigne indéfiniment.

La nécessité de supprimer un rayon ou un segment de rayon
s'impose puisque f (z) peut n'avoir que des zéros multiples.

La propriété des domaines A7 s'étend à toute fonction entière
/ {z) pour laquelle existe une suite de courbes fermées simples Tn
entourant l'origine telles que le minimum du module de f (z) sur
Fn tende vers l'infini lorsque n croît indéfiniment, à condition
de supprimer la condition relative aux dimensions de A7. En
effet, pour une telle fonction, les domaines dans lesquels
I / (z) I < A seront des domaines A simplement connexes bornés
puisqu'ils ne coupent pas les courbes Fn dès que n est assez
grand. Ces domaines existent. Car on peut tout d'abord, en
supprimant des Tn, faire en sorte que Fn+i contienne Fn à son
intérieur; si f (z) ne s'annule pas entre Fn et Tn+1 le théorème
sur le maximum du module montre que | f (z) ] est supérieur
entre Fn et Tn+1 à son minimum sur ces courbes. Il s'ensuit que
f (z) s'annule entre Fn et Fn+1 pour une suite infinie de valeurs
de n; sinon | f (z) j serait supérieur à tout nombre donné dès que
I 2 I serait assez grand, serait holomorphe à l'infini et nulle
en ce point, f (z) serait un polynôme. Si f (z) s'annule entre Fn
et rn+1, il existe entre Fn et Tn+1 un domaine A dans lequel
|/(2)| < A; ce domaine est simplement connexe puisque C
étant une courbe fermée intérieure à A, on a sur C, donc à son
intérieur, | f (z) | < A, l'intérieur de C appartient à A (en
particulier, A n entoure pas l'origine, la portion de plan extérieure
à A comprise entre Fn et Fn+i reste connexe). On peut appliquer
a A les raisonnements précédents. Par suite, si l'on convient
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d'appeler fonctions de la classe W (Wiman) les fonctions entières

jouissant de la propriété en question, on voit que:

IV. Pour toute fonction entière f (z) de la classe W, il existe

une suite infinie de domaines A' bornés simplement connexes tels

que, dans chaque A', f (z) est univalente et prend toutes les valeurs

Z appartenant au cercle | Z | < A privé au plus d'un rayon ou

d'un segment de rayon, A croissant indéfiniment lorsque A'
s'éloigne indéfiniment.

Une fonction f (z) est de la classe W s'il existe une suite infinie
de courbes fermées simples Tn entourant l'origine telles que le minimum

du module de f (z) sur Tn tende vers l'infini avec n.

D'après le théorème de Littlewood, toute fonction d'ordre nul est

de la classe W.
Ce dernier résultat est contenu dans un théorème antérieur

de Wiman.

25. Fonctions d'ordre nul n'appartenant pas à la classe normale.

Il existe des fonctions n'appartenant pas à la classe normale

pour lesquelles la proposition II n'est plus vraie, c'est-à-dire pour
lesquelles | / (z) | reste borné dans des domaines circulaires qui
sont vus de l'origine sous un angle fini. On peut construire de

telles fonctions de la forme

où les oc {n) sont positifs et les q (n) entiers. On suppose réalisées

les conditions suivantes:

m
S q (n) (1 + 0 (1)) q (m) (11)

(12)

(13)

lim 1(m — 1> log a ^ 0
m==° q (m)

(14)
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La condition (12), compte tenu de (11), montre que l'ordre
est nul. En écrivant f (z) sous la forme

et en supposant
a < \z\ < 3 a (m) (16)

où A est fixe et grand, on a les résultats suivants: Le quatrième
facteur dans (15) est égal à 1 + o (1) en vertu de (13) qui
implique que oc (m)/en (m -f 1) tend vers zéro; il en est de même
du second en vertu de (11) et (13). Le premier facteur a un
module supérieur à 1, mais moindre que

donc égal à e0(l)q(-m) d'après (14). Le troisième facteur est de
module moindre que 4a(m); si | z — oc (m) | > &oc (m), k > 1, le
module de ce troisième facteur est supérieur à kq(m) tandis que
lorsque \z — oc (m) | < k' oc (m), k' < 1, il est inférieur à k,q{yn\

Par suite :

La fonction f (z) a son module très petit dans la suite des cercles

| z — oc (m) | < k' a (m) H < 1

mais elle est très grande dans la portion des couronnes (16) qui
sont extérieures respectivement aux cercles

| z — a (m) I > k a (m) k > 1

Dans les portions restantes des couronnes (16), / (z) prend
les valeurs Z différentes de zéro; les zéros de f (z) — Z étant
approximativement les sommets d'un polygone régulier de q (m)
côtés et centre a (m). Lorsque m-+ oo, on peut faire tendre k
et k' vers 1 et l'on obtient des domaines d'univalence de Z / (z)
que l'on peut enfermer dans des cercles vus de l'origine sous
un angle qui tend vers zéro lorsque m-+ oo, dans chacun
desquels / (z) prend des valeurs Z appartenant à la couronne

< I Z | < Bm fendue le long d'un rayon, Bm étant indéfini-
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ment croissant avec m. On a donc des domaines d'univalence
dont les dimensions sont analogues à celles obtenues pour les

fonctions de la classe normale, mais où se présente une valeur
exceptionnelle, Z 0.

On peut prendre, par exemple

q (n) 22n+2
5 log oc (n) — 22n *

Peut-on former des fonctions anormales analogues dès que la
condition (22) du n° 21 n'est pas vérifiée, c'est-à-dire dès que
log M (r, /) (log r)2 X (r), X (r) étant à croissance aussi lente
que l'on veut Peut-on avoir plusieurs valeurs exceptionnelles
Ou bien, est-il vrai que, tout au moins pour les fonctions d'ordre
nul, le théorème IV du n° 24 est vrai avec des domaines A'
enfermables dans des cercles vus de l'origine sous un angle qui
tend vers zéro lorsque A' s'éloigne indéfiniment, à condition
d'exclure de | Z | < A non plus seulement un segment de rayon,

-mais un petit cercle | Z — ZA, | < j- et le segment de rayon
de j Z | < A joignant ZA, à | Z | A

26. Théorème de Wiman.

Wiman a montré que / (z) étant une fonction entière d'ordre p

linférieur à et s > 0 arbitrairement petit, il existe une suite

de circonférences \ z \ r de rayons indéfiniment croissants sur
lesquelles on a

log I / (z) I >

Cette inégalité a été précisée par Littlewood, puis par Valiron
et Wiman, et a été étendue par R. Nevanlinna; des démonstrations

nouvelles ont été données par Pôlya, Denjoy,... Si l'on
considère une fonction entière d'ordre inférieur à 1, égale à 1

à l'origine (hypothèse qui ne diminuera pas la généralité des

résultats), on augmente le maximum de son module pour
| 2 | — r et on diminue le minimum du module pour [ z ] r
en alignant les zéros sur une demi-droite sans changer leurs
modules. Une inégalité de la forme log | / (r) | > k log | / (— r)|,
k > 0 démontrée pour une fonction à zéros tous positifs entraîne
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pour les fonctions dont les zéros ont les. mêmes modules

log I f(z)I> klogM f),[ z I

Considérons (Pôlya, Denjoy), la fonction

0 (x) log | 1 — x|—- cos (icoc) log (1 + a: > 0 0 < a < 1

et l'intégrale

M
X

Comme on a

00 '

I' log I 1 — x I ~~ COt (tc a)

0
'

u

on voit que
n (o) o o (oo) o

D'autre part ß' (x) a le signe de — 0 (;x), qui est positif jusqu'à
une valeur puis négatif; donc ß (x) croît, puis décroît; on a

ß (x) > 0 pour 0 < x < oo. La fonction positive continue

oo

/ lQg + a)
dx =•

yl+a oc sin (tc a)

X(x)

pour laquelle

lim x (x)
1 + C0STCa

x=0 1 — a

a (x)

log (1 + x)

lim \(x)
X=°o

1 — cos (tt a)

a un minimum positif h (a). On a, en conséquence,

dx"f— " ----'V-ra f (log 11 — xI— cos (na.) log (1 + x)) -r— > h (a) log (1 + r)

On en déduit, si rn > 0, en posant R

\f\ log 1 — cos (tz oc) log 1 H
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Considérons alors la fonction d'ordre p inférieur à 1, à zéros
positifs rn,

tu=n i-f
et supposons que, a étant pris supérieur ou égal à p, l'intégrale

C log M (t, /)
J *1+a

dt M [t, f)/ (— t) (18)

soit convergente. Dans ces conditions, on peut additionner les

inégalités (17) pour n1, 2, car

oo

/• ^

./?
r> t

log 1
dt

/1+a (19)

converge, ce que nous démontrerons ci-dessous. On obtient

oo

Ra/[log | / (t) | — cos (tu a) log I / (— t) > h (a) log M (R,/) (20)

R

Cette inégalité exige tout d'abord que l'on ait

lim [log I / (r) I — cos (n a) log M (r, /)] oo

r=°o

sans quoi le premier membre de (20) serait borné alors que le
second membre ne l'est pas. Ceci s'applique à une fonction
d'ordre p < 1 en prenant a entre p et 1 et à une fonction d'ordre p

et de la classe convergente en prenant a p. Par conséquent,
en utilisant les remarques faites au début,

lI. Pour toute jonction d'ordre p inférieur à — et pour s > 0,

il existe une suite de circonférences \z \ r, de rayons indéfiniment
croissants, sur lesquelles

log I / (z) I > [cos (tt p) — e] log M (r, /) (21)

1Pour une fonction dordre p < — et de la classe convergente, il
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existe une suite de circonférences de rayons indéfiniment croissants

sur lesquelles

log \f(z)\ > cos (tt p) log M (r, /) + co (r) lim cù (r) oo

X— oo

1 \
En particulier, les fonctions d'ordre inférieur à —, ou d'ordre — et

de la classe convergente appartiennent à la classe W.
Il reste à prouver que la convergence de (18), qui entraîne,

on l'a vu, la convergence de

oo

=/ n (x) dx
V.1+0C

(22)

entraîne aussi la convergence de (19). Or

et

log

log

i-±

1 — < log 1 +

— log 1 + log
r 4-t*' I ' n

Comme (18) converge, il reste à montrer que

r 4- r1 ' nf 2 log
,,1+oc

(23)

converge. Si rn > 2r

loS; ; log f 1 + 2r < log 1 +
4 r

et puisque (18) converge, on peut remplacer dans (23) la série
par la somme pour rn < 2r. L'intégrale (23) ainsi modifiée est
alors inférieure à

y
Q

2q+l

)~ f
1

2®a J r
H

S 1

rn<2r

r + r- ^<2^gpC<2^CJ)^_J 9goc
«=1 ^
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où C est le maximum de

2

Jl»6
1

u -f- X

u — X
du X > 0

La proposition I est ainsi complètement démontrée. On peut
la compléter en utilisant d'une façon plus précise l'inégalité (20).

Supposons p < y et soit p (r) un ordre précisé de / (z). Si

— > oc > p et k > 1, on a

log I f(t)I < log I f(—t)]=> log M l + o (1)) U (t) U (t) tM

le premier membre de (20) dans lequel on prend /cR pour limite
inférieure de l'intégrale est inférieur à

°o

Ra(l + 0(1)) (1 — COS (net)) [ fP(t)-i-cc dt=(1-1-0 (1)) (1 —cos (TT oc)) -—
J (a - P)

On pourra prendre k assez grand pour que le dernier membre

soit inférieur à |u (R)/«(a). Il s'ensuit que, pour les valeurs

de R pour lesquelles

log M (R, /) ~ U (R)

on aura

fcR

,aj[log 1/(0 I — cos (71 a) log M ((,/)] ^ > 2/7(a)U(R)
fcR

R
R

dès que R sera assez grand. Si L est la longueur des intervalles
dans lesquels le crochet figurant dans cette intégrale est positif,
la valeur du premier membre est au plus égale à

(1+0 (1)) (1 — cos (7t a)) r ;R)

on a donc

L > R (1 — o (1))
2 _ 2 cos (tt<x)

'
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Par suite

II. Si Vordre p est inférieur 0 correspond un

nombre k tel que V inégalité(21)a lieu pour des r appartenant à

une suite d'intervallesRm,&Rm, Rm tendant vers l infini avec m,

ces r formant des intervalles dont la somme des longueurs entre Rm

et kRm est au moins L (s, p) Rm. Pour ces r, on a

limi^ÄM>0 um=^»,u M

P (r) étant un ordre précisé de la fonction considérée17).

En suivant une méthode analogue, on montre que, pour une

fonction / (z),d'ordre p < 1, il existe des r aussi grands que l'on

veut pour lesquels

log | f(z)|> (rep cot (irp) — e) N (r, 0) | z

et des r aussi grands que l'on veut, tels que

N (r, 0) > (SinJpp) - s) log M (r,

s étant donné arbitrairement petit positif, et on a des compléments

analogues à l'énoncé II.

V. Exemples de fonctions d'ordre nul.

27. Fonctions solutions d'équations différentielles.

Wiman a montré que les fonctions entières, ou plus généralement

les fonctions de la forme y(z), où / (z) est une fonction

entière, qui vérifient une équation différentielle algébrique
du premier ordre, 3> (z, y, y') 0 où ® est un polynôme à trois

variables, sont nécessairement d'ordre fini positif, d'ordre précisé

p _|_ et parfaitement régulières par rapport à cet ordre 18).

Mais il existe des fonctions d'ordre nul vérifiant des équations
d'ordre supérieur au premier. Partons de la fonction de Jacobi,

+ 00 00 / 2ïl+1\
s (z) 2 AIId + zî2n+1) l1 + -7-) >

— 00 0

L'Enseignement mathém., t. IV, fasc. 3.

i \ < i

12



174 G. VALIRON

(A est une constante) et posons

Z(z)=zï^' pw lZ'W>

nous avons

*2 P' (s)2 4 (P + c)*- G2 (P + c) — G3

c, Ga, G3 étant des constantes qui dépendent de q. Il s'ensuit

que S (z) est solution d'une équation différentielle du troisième
ordre, algébrique. Mais, si l'on pose

z + - u,S(z) F

F (u) est une fonction entière d'ordre nul,

+ 1241

qui est solution d'une équation différentielle algébrique du
troisième ordre. Pour cette fonction F (w), on a

log M (r,F)r-
(log r)3

r2n+l

4 log I q I

On peut déduire de là d'autres fonctions d'ordre nul vérifiant
des équations différentielles algébriques. Tout d'abord en faisant
le changement de variables u 0 (z) où 0 est un polynôme; les

fonctions obtenues satisferont encore à la condition (22) du n° 21.

On obtiendra des fonctions à croissance plus rapide en prenant

G (z) =* F (F (z))

D'après la condition (24), il existe une courbe fermée TR entourant

l'origine sur laquelle
(log R)2

log I F (2) I

— 4 log I q I

si grand que soit R donné, et les valeurs de r | z | vérifiant la
condition

log r (1 + o (1)) log R

La courbe TR étant courbe de module constant de F (z), l'argument

de F (z) varie de 27t^r, nR étant le nombre de zéros de F (z)
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intérieurs à TR, lorsqu'on fait un tour sur rR dans le sens direct,
il existe donc sur TR des points en lesquels l'argument de u F (z)

est tel que

| F (m) ] M (| u\,F) log | Fu|

Il s'ensuit que

i iv/r / n\ (l°g I u I)2 (log ^)4
log M (r, G) ' & i—L. no — & 7

— 4 log q (—4 log g)3

La fonction G vérifie une équation différentielle du sixième ordre
déduite de celle de F y. On a ® (y, y', y", y"f z) 0, de

G' y' (F) y' G" y" (F) y'» + y> {F) y» %
G/// y- (F) y'3 +

on tire y777 (F), y" (F), yr (F) et en portant dans O (G, y' (F),
y" (F), y"\F), F) - 0, on obtient T (G, G', G", G"\ F, F', F77,

F'") 0 avec <I> (F, F7, F77, F7 7 7

z) 0. On peut éliminer F'"
ce qui donne p. (G, G7, G77, G7'', F, F7, F77, z) 0; on dérive et
on élimine F7 7 7

; et on recommence deux fois; on a trois équations

p 0, v 0, p 0 contenant F, F7, F77 qu'on élimine.
On peut évidemment continuer ce procédé.
Existe-il des fonctions entières d'ordre nul vérifiant des

équations différentielles algébriques du second ordre Il n'en
existe pas pour lesquelles

log M (r) 1 19) - - •

(log r) (log2 r) log 4

Mais cette borne est-elle bonne

28. Fonctions entières d'ordre nul vérifiant des équations
fonctionnelles.

Considérons l'équation de Poincaré

/ (zs) P0 (z) f (z) + P, (Z) I * I > 1

où P0 (z) et P1 (z) sont des polynômes. Elle admet une solution

entière sous la seule réserve que le calcul formel des coefficients

du développement taylorien soit possible. Si l'on pose
Pq (z) — co zQ • • •

I co I C, on a
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M (r S, /) (l + A M (r, /) S | 1 |

En itérant, on obtient

log M (Snr0, /) q- —~ ^ log S + log (Ar0^ + O (1) ;

il s'ensuit que

log M (r, /) ~ 2 g
(log r)2

De même, la méthode des fonctions majorantes montre que

l'équation
/' (zs) P (z,f(z))M > 1

admet une solution entière prenant une valeur donnée à

l'origine; lorsque le second membre est du premier degré en / (z), ces

fonctions entières sont d'ordre nul.
Dans d'autres cas, les solutions d'équations fonctionnelles,

si elles existent, ne peuvent être que des fonctions d'ordre nul.

Par exemple, si l'équation

[/'(Q

où Q (z) est un polynôme de degré q et R une fraction rationnelle

de degré ppar rapport à / (z), ne peut avoir de solution

méromorphe que si p^ mq; et si une telle solution existe, c est

une fonction méromorphe d'ordre nul (quotient de deux
fonctions entières d'ordre nul)20).

Soit encore la fonction entière

F(*;a) =n(1-4i). M >4 >

71=0 \ a /

qui vérifie l'équation fonctionnelle

9 {z2) (1 — ^ M 9 (— »

et qui est à croissance très lente. La recherche de la solution

méromorphe générale de cette équation fonctionnelle est ramenée

à la résolution de

9 [z2) 9 M 9 (— z) • 21)

(A suivre).
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NOTES

13) Une proposition plus générale est donnée par H. Cartan; elle a été étendue et

utilisée par Ahlfors, L.: Ein Satz yon Henri Cartan und seine Anwendung auf die

Theorie der meromorphen Funktionen, Commentationes phys-math. Soc. Sei. fenn., 5

Nr. 16 pp. 1-19 (1931). Une proposition plus précise que celle donnée ici est démontrée,

par Macintyre, A. et Fuchs, W. H. J. : Inequalities for the logarithmic derivatives of

a polynomial, J. London Math. Soc., 15, 162-168 (1940), et utilisée par eux dans 1 étude

de la dérivée logarithmique d'un polynôme.
14) Pour ces questions voir, par exemple, Valiron, G-.: Directions de Borel des

fonctions méromorphes. Mémorial des Sciences mathématiques, 89, Gauthier-Villars,
pariS H 938)»

is) Voir Titchmarch, E. .: Theory of functions, loc. cit. 12). Des extensions du

théorème en question ont été données par Denjoy, A.: Sur une propriété des fonctions
de variable complexe. Versl. v. d. Koninkl. Akad. v.Wetensch. Amsterdam, 26, pp. 1063-

1068 (1918). _.
iß) Cet exemple est étudié dans Valiron, G.: loc. cit. 4), mais sans considérations

sur les domaines d'univalence. Voir aussi Valiron, G.: Remarques sur les domaines

d'univalence des fonctions entières d'ordre inférieur à y2. Bull. Sei. Math. (2), 71,

pp. 25-32 (1947).
17) Des énoncés de ce genre ont été donnés d'abord par Amira, B. : Sur un théoreme

de M. Wiman dans la théorie des fonctions entières. Math. Zeitschr., 22, 206-221 (1925),

puis par Besicovitch, A. S.: On integral functions of order < 1, Math. Ann., 97,

pp. 677-695 (1927), et Miss Cartwrioht, M.-L.: On the minimal modulus of integral
functions, Proc. Cambridge Philos. Soc., 30, pp. 412-420 (1934). Voir Valiron, G.:
Sur un théorème de M. Wiman, Opusculata mathematica A. Wiman dedicata, Upsala,
1930, pp. 1-12, et Valiron, G. : Sur le minimum du module des fonctions entières d'ordre
inférieur, à un, Mathematica (Cluj), XI, pp. 264-269 (1935).

is) Voir, par exemple, Valiron, G.: loc. cit. 9), pp. 109-111.
19) Voir Valiron, G.: Sur les fonctions entières d'ordre nul et les équations diffé^

rentielles. Bulletin Soc. math. France, 53, pp. 34-42 (1925).
20) voir Valiron, G.: Fonctions convexes et fonctions entières. Bull. Soc. Math.

France, 60, pp. 278-287 (1932).
21) Pour des équations analogues, voir Valiron, G.: loc. cit 4), pp. 87-92.
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