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FONCTIONS ENTIERES D’ORDRE FINI
ET FONCTIONS MEROMORPHES *

par Georges VALIRON

FONCTIONS ENTIERES D’ORDRE FINI ET D’ORDRE NULV

(suite)

II. L’ORDRE ET LES COEFFICIENTS TAYLORIENS.

11. Le terme maximum de la série de Taylor et le polygone
d’Hadamard.

Si f(z) = 2 a

o 18

» 2° est une fonction entiére, A, = |a,| et

| z]| =r, la série étant convergente, absolument convergente
quel que soit z, la suite des nombres

Ay, Ayry, ey A, L (1)

tend vers zéro pour chaque valeur de r. Pour chaque r, il y a
donc un terme supérieur ou égal & tous les autres. Ce terme (ou
Pun de ces termes) est le terme maximum pour cette valeur r, ou
simplement le terme maximum; sa valeur est une fonction de r
que nous désignerons par B (r). Si r est remplacé par un nombre
plus grand, chaque terme de la suite (1) augmente (sauf A,),
B (r) est donc une fonction croissante de r, et puisque chaque
terme de (1) est continu, B (r) est une fonction croissante conti-
nue, qui croit indéfiniment avec r. Le rang n du terme maximum
de (1), ou plus exactement de celui des termes maxima dont le
rang est le plus élevé, est aussi une fonction de r que nous

*) Série de cours et de conférences sur la théorie des fonctions entiéres, faits en
1948 au Caire et a Alexandrie, d’aprés le manuscrit revu et mis au point par le pro-
fesseur Henri MILLOUX.
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appellerons p (r). Si n < p (r), donc

A, <A P — B (r)

n

cette inégalité vaut a fortiori lorsque r est remplacé par un

nombre plus grand, donc w (r) est une fonction non décroissante

de r. En outre, si p > n,on a A, r? > A, r" pourvu que A # 0

et que r soit assez grand, w (r) ne reste pas borné. Le rang u (r)

est une fonction non décroissante de v qui tend vers l'infini avec r.
D’apreés I'inégalité de Cauchy (§ I, (2)) on a

B(r)<M(r), (2)

M (r) étant le module maximum de f (z)
Pour étudier la relation entre B (r) et M (r), il est commode
d’employer un procédé géométrique dit & Hadamard.. Posons

(g, étant infini si A, = 0). On a
= + ® (3)

puisque nl/An tend vers zéro lorsque n tend vers l'infini. Prenons
deux axes de coordonnées Oz, Oy et marquons les points C_ de
coordonnées n, g,. Lorsque A, = 0, Pordonnée y de C_ est 4 .
D’aprés (3) on peut construire un polygone de Newton admettant
pour sommets une suite de points C,, les autres points C, étant
sur les cOtés ou au-dessus des cotés; ce polygone que nous
appellerons II (f) étant convexe vers le bas. En effet, en suppo-
sant, par exemple, Ay 7 0, la pente des droites Cy C, a un mini-
mum (d’aprés (3)), ce minimum correspond 4 une dr01te Co C,,
tous les autres points C, sont sur C, C, (entre C, et C p) OU au-
dessus de G, C,. On consideére alors les dr01tes C, C, pour n > p,
ieurs pentes ont un minimum atteint pour une dr01te C, C,,
tous les C, sont sur C, G, (entre C, et C)) ou au-dessus de cette
droite. Et ainsi de sulte

Nous dirons que les abscisses des sommets de II (f) sont les
indices principauz de la suite des coefficients A,. Nous désigne-
rons par G, Pordonnée du point d’abscisse entiére n de II ().

L’Enseignement mathém., t. VI, fase. 2. 9
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On a G, = g, pour les indices principaux et g, > G, pour les
autres n. Pour une valeur de r, le logarithme de A, r? est infé-

Fig. 3.

rieur ou égal au logarithme du terme maximum B (r) =A,r"
n = u(r), done

plogr—g, <nlogr—g,, n=p()
ou

Géométriquement cela signifie que les points C, sont au-dessus
ou sur la droite de pente log r passant par le point C,, n = pu (r).
Par suite, la droite de pente log r ne coupe pas II (f) et contient
un point C,, c’est la « tangentes de pente log r menée a II (f).
Ainsi, le rang p (r) du terme maximum est 'abscisse du point
de contact de la tangente D, de pente log r menée a II (f), ou
I'abscisse du sommet de plus haut rang situé sur le coté de pente
log r lorsque log r est la pente d’un coté de II (f). Lorsque r croit,
la tangente D, tourne autour du sommet de II (f) dont I’abscisse
est w (r), puis autour du sommet suivant, etc. Les valeurs de
w (r) sont les indices principaux. La tangente D, coupe Oy au
point d’ordonnée g, — nlogr = — log B (r).

Pour toutes les fonctions f (z) admettant le méme polygone
IT (f) le terme makimum B (r) est le meéme, ainsi que u (r). La
fonction
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est une fonction majorante pour toutes ces fonctions et a B (r)
pour terme maximum et wu (r) pour rang de ce terme.

Le rapport,
R — eGn‘Gn—i

n

de deux coefficients successifs de F (z) est le rapport rectifié de
Anq & A, La quantité log R, est la pente de II (f) entre les
points d’abscisses n — 1 et n. C’est une fonction non décroissante
de n qui tend vers Pinfini avec 7.

Supposons pour simplifier | f (0) | = 1. (On passera aisément
au cas géneral f (0) # 0 et aux cas particuliers f (0) = 0.) Nous
aurons

¢m = R,R, .. R,
et
o peAr) .
") = RR, B (%)
Or
Rq+1 R r
dt . q+1 dt _
f”(t)T”—qlog Rq ’ f“(t)T—“(r)logRu(r),
R Rur)
done
1ogB(r):fﬁﬁdt- (5)

0
Dans le cas général, on aura

. T
logB(r):logB(rO)—Ffp"T(t)dt, O<rp<r. (6)
To

Telle est la relation entre B (r) et w(r). Si on donne
0) | # 0, par exemple, la donnée de la suite R, détermine

un polygone IT et une classe de fonctions entiéres. De méme, la
donnée de log B (r,) et d’une fonction w (£) non décroissante ne
Prenant que des valeurs entiéres positives ou nulles détermine IT.

12. Belatiqn entre B (r) et M (r). Cas des fonctions d’ordre fint.
Conséquences. »

On a la relation (2) entre B (r) et M. (7). Pour obtenir une
relation dans I’autre sens, Hadamard employait une méthode
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géométrique qui est exposée dans les Lecons sur les séries d termes
positifs de Borel. Nous utiliserons une méthode analytique. On
a évidemment,

M() <Flr)=Senm.
-

Si p est un entier supérieur a p. (r) et tel que R) > r, on a pour
g = p

¢ Sapa — Ot ot skl < B (r) <L>q - )
| R, .. R, R,
par suite
p-1 . ®
] = Ze_Gn &1 Ee_Gn n
p

0

oo S v ]

p

£>!

Prenons

ce qui entraine

Nous obtenons
B(r)<M(r)<B(r)<2u(r+E2.7)>+1>~ (7)

Le coefficient 2 au troisieme membre ne peut pas étre rem-
placé par un nombre inférieur & 1, car le nombre des termes

égaux a B (r) peut étre voisin de w (r) et w <r + - T )> = w(r).
De méme, on ne peut pas remplacer p. <r -+ r )> par w (r).

Remarque. — D’aprés le calcul précédent, la somme des
termes de I (r) dont le rang n est supérieur & Q > p est au plus

B (r) u(r + pj(.r)>< 1_1—>Q-10+1 .
r) |

1+
@
Si Pon prend

Q= 2@(r +;-’('7)>iog(u r+ ) (8)
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on voit que ce reste est infiniment petit par rapport a B (r).
Ainsi M (r) est déterminé asymptotiquement par ses Q premiers
termes, Q étant la fonction (8) de r. |

Cas de Uordre fini. — Pour une fonction d’ordre fini o, I'iné-
galité (2) (premiére partie de (7)) donne

log B (r) < r*®

si petit que soit e, pourvu que r soit assez grand. Remplagant
le premier membre par sa valeur (6), on obtient une borne pour
u (r). L’inégalité a résoudre est la méme qu’au n® 5, on a la
méme borne pour u (r) que pour ¢ (r),

wir) < r>r(e).
Portant cette valeur dans les inégalités (7), on obtient
B(r) <M(r) <B(r)re*, (9) -

et comme corollaire, on voit que:

TatorEME. — Pour une fonction d’ordre fint, log M (r) et log B (r)
sont asymptoliqguement égauz.

Par conséquent, si 'on se donne log B (r) arbitrairement a
partir d’une fonction p (r) telle que p (r) vérifie la condition

Tm log p (r) _

r—o lOgr ’

on peut construire le polygone II correspondant. Pour toute
fonction entiére f(z) admettant ce polygone, 1'inégalité /(7)
a lieu et entraine (9), la fonction M (r) est connue d’une facon
approchée et notamment log M (r) est connu asymptotiquement.
On peut ainsi construire une fonction entiére d’ordre fini dont
le logarithme du module maximum est asymptotiquement égal
a une fonction donnée de log r, convexe en log r. En effet, une

telle fonction est de la forme C 4 f V(tzdt , ¢ (2) étant indéfi-
o

niment croissante et d’ordre fini. Il suffira de prendre pour r > 1,
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7 (r)‘ = E (¢ (1)), E (u) désignant la partie entiére de u. On aura

r

f@(t)%:fv(tzdt——h(r) logr, O0<h(r)<1.
1 1

Non seulement la fonction ainsi construite répondra a la ques-

tion, mais on aura
r

1ogM(r)—f"—(tz_ﬂ=oubgr).
1

Pour une fonction d’ordre infini, on pourra encore dans cer-
tains cas avoir un résultat analogue si la croissance de ¢ (r) est
assez réguliere.

13. Relation entre log M (r) et les coefficients A,.

Lorsqu’on donne les A,, modules des coefficients tayloriens,
les formules (7) et (9) fournissent une valeur approchée de M (r).
Inversement, si log M (r) est connue approximativement, en
particulier connue asymptotiquement, que peut-on dire des A, ?

Bornons-nous au cas des fonctions d’ordre fini. On a donc

r
1ogM(r)mlogB(r)=c+f-““—(’t)ﬂ,
1

C étant une constante. Supposons que log M (r) soit compris entre
deux fonctions ¥, (r) et ¥, (r) convexes en log r. A ces fonctions
correspondent des polygones IT; et IT,. Aux fonctions ¥, (r)(1 —¢)
et ¥, (r) (1 + €) correspondent II, et II,. Comme log B (r) est
compris entre ces valeurs (pour r > r(c)) la tangente D, de
pente log r a II relatif, la fonction envisagée qui coupe Oy au
point — log B () est comprise entre les tangentes de méme pente
log r a I1, et IT,; le polygone II est compris entre II; et 11, puisque
ces polygones sont convexes. La fonction G, de n est comprise
entre les fonctions analogues relatives a II; et IL,. Il en résulte
une borne supérieure pour tous les coefficients A, et une borne
inférieure pour certains d’entre eux; on a en outre une limite
pour I’écart des indices principaux successifs. Dans certains cas,
on pourra trouver des conditions analytiques nécessaires et suffi-
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santes. Mais en général la condition géométrique d’apres laquelle
1T est compris entre II; et 1I, ne exprimerait analytiquement
que sous une forme extrémement compliquée.

14. Cas des fonctions d’ordre fini posiiif et d’ordre précisé L.

Considérons d’abord une fonction parfaitement réguliére par
rapport & un ordre précisé p (r). On a donc

log B (r) ~ r°(), (10)
donce , .

r
fll (z) dt ~ o
t

i

On a vu au n° 9 qu'une telle égalité se résout asymptotiquement.

On a ‘
w () o pr® .

La relation entre n et R, est donc

n oo pRp(Rn) = pU(R

(11)

La fonction inverse de y = U (x), soit z = W (y), a des pro-
priétés analogues a celles de U (z). Si Pon écrit W (y) = y©W),

on a
1

y = 2 = yxo(x)

done o (y) a pour limite %. D’autre part

dy _aUz)de dz __ yWydy Wiy Ul 1
y - U@ 2z’ @ W@ v TWh o eV e
ce qui montre que y logy . o’ (¥) tend vers zéro. Ainsi
lim o (y) = —, lim y o’ (y) logy = 0 . (12)
y== % y=

La conséquence relative au rapport W (ky)/W (y) subsiste et
par suite (11) se résout sous la forme

1

NG
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Alors, puisque

‘log B (R,,) N\U(Rn)m—g—: nlog R, — G, ,

on a
—Gn=ﬂ5¥—nlogwm)+o(n)' (13)
ou
G
— == 1‘%1)_-1ogvv(n) +o(1),
enfin
_ . 1
R (-1 (14)
W (n)

Inversement, de (14) on remonte a (13). Donec, si petit que
soit € > 0, on a pour n assez grand,

—-sn—}—w—nlogW(n < —G <ﬂg§~(&—nlogw n) +en.
" P

P
Or, de
—Gn:&bi—pe—)——ﬁlogW(n)—}—sn, (15)
on déduit .
\ 1
logR, =G, —G _, = — ngPe + log W (n) + (n — 1) logW—‘(Nﬁ(—Ll)—s'

Comme, d’apres les propriétés de W (n), on a

Wiin—1)=W(@n —W (n— 0 =W (n) f-W(n)1—+p%—(—1—), 0<0<1,

on voit qu’on déduit de (15)

log R, = _lge 4 log W) + o)
done :
1
s (fwmsw(z)

-

On retrouve la formule qui avait été déduite de (1»1) mais R, y
est remplacé par le premier membre de (16). On aura donc

n oo pU(Rnes) oo peE°U<Rn> , w(r) o pe®PU(r) cve®rU (r)
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et en intégrant :
log B (r) ~ €U (r) . (17)

De méme, en remplacant ¢ par — ¢ dans (15) on obtiendra
le résultat analogue a (16) mais ou ¢ est remplacé par —e.
Comme ¢ est arbitraire, il s’ensuit que (14) entraine (10) et
aussi (11).

L’égalité (11) montre que R, croit si n est remplacé par
n (1 + €), € > 0 arbitraire. C’est dire que le rapport de deux
indices principaux successifs tend vers un lorsque n — 0.

D’aprés (14), on a pour tous les n,

1
e (p ) (18)
-\/An<<1+o(1>)w(n) |
et pour les indices principaux au moins
1
n . 0 . 7 1
VE > 0—om) &L, an,  dmlmt_y . (19)

p

Inversement, ces inégalités entrainent (14) puisque le rapport
G,/n croit a partir d’une valeur de n et puisque W (n')/W (nr)
tend vers un si n’/n tend vers un.

En définitive:

I. La condition nécessaire et suffisante pour que la fonction
entiére f (z) soit d’ordre précisé o (r) et a croissance parfaitement
réguliére est que W (y) étant la fonction inverse de U (x) = x°X)_
les. conditions (18) et (19) soient réalisées. En ouire, si l'on se
donne a priori une fonction W (y) = v e (y) vérifiant les condi-
itons (12) et les A, vérifiant les inégalités (18), (19), les fonctions
{ (z) dont les modules des coefficients sont les A, sont telles que

log M (r) ~ U (r)

U (x) étant la fonction inverse de x = W (y).
Par exemple, la condition nécessaire et suffisante pour que

log M (r) o GrP

G étant Constant, est que
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et que, pour une suite de valeurs n, de n,

1

n

I n

lim A /A (" >°=1 n— . lim P g
n=m\/ n<Cpe ’ nl: EN p’ ) p=o np ‘ v

Si l'on a

n
lim 4 /A, [nlog n]* =1

n=ow

on a

W) = (

en log n\* olr
o ?

donc

o3 r*

lOgM(r)(\)elogr-

Supposons maintenant qu’il s’agisse d’une fonction f (z) quel-
conque d’ordre précisé p (r). On a seulement

—1, U(r)=r". (20)

Si I1 (F) est le polygone d’Hadamard correspondant & une fonc-
tion pour laquelle (20) est remplacé par (10), les tangentes & II (f)
sont asymptotiquement au-dessus des tangentes a II (F), donc
I1 (f) au-dessus de II (F), les coefficients A, de f(z) vérifient
I’inégalité (18). On ne peut pas avoir, a partir d’une valeur de n
'inégalité (18) ou O (1) serait remplacé par — ¢, en vertu de la
réciproque du théoréme I précédent. Par suite

I1. La condition nécessaire et suffisante pour que f(z) sout
d’ordre précisé L o (r) est que, W (y) étant la fonction inverse de
y = U (x), on ait .

A
e

lim \n/A_nW(n) (pe) ¢ = 1.

n= oo

Supposons maintenant que p (r) jouissant des propriétés de
I’ordre précisé, on ait pour une fonction f (z),

—— log M (r) lim log M (r) (r)
lim &2 — V! — = = 0 B C U = pP\"
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Comme on le voit de suite

log B
log r

log G
log r

e(r) + (21)

, e(r) +

sont aussi des ordres précisés. Le polygone d’Hadamard II (f)
sera asymptotiquement compris entre les polygones correspon-
dant aux fonctions parfaitement réguliéres relatives aux ordres
(21); les G, vérifieront les conditions déduites de (13)

, n\ nlogpe . <_7}_\_n10g(pe)
logW<—C>————p o(n) < G, < nlogW B) ; + (n) o,

et ces conditions seront suffisantes.

15. Cas des fonctions d’ordre nul.

On peut évidemment procéder exactement de la méme fagon.
En posant comme au n° 10, X = log r, cherchons les propriétés
des modules A, des coefficients tayloriens qui entrainent

m V(X |
o = o VIX)=lgMi), (22)
avec
X=w X — oo

On a vu que la dérivée w (X) de V (X) vérifie I'égalité obtenue
en dérivant, on aura donc aussi

w(e) ~k XX
On a 1ci

neo kXEZRT X  jog R,

C’ est ici l'inverse de la fonction Y = X#X)-1 quw’il convient
d’introduire. Comme k£ (X) -— 1 jouit des propriétés de k (X)
(sauf qu’il tend vers k£ — 1 et non pas vers k), l'inverse

X = YY) = Z (Y) jouit encore des mémes propriétés; o (Y)
1

t
end vers —

On a
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et
k

——Gn=10gB(Rn)——anm<%—1>nX ~— (k—1) ktEnZ(n) . (23)

Inversement, si G, vérifie cette égalité, on a I’égalité (22). Car,
en prenant
R
G, =4+ (1 +¢)(k—1)k""nZ(n)
on obtient |

Rk
X = (14 ¢)(k—1) k1"

n

(n Z (n))

la dérivée étant prise pour la valeur n — 0, 0 < 6 < 1, ce qui
donne

On retrouve ainsi en inversant

n oo k Xlk(X/)—i X/ — n
? 1 + > ?

X
, 14+ ¢
Donc, comme au n° 14, la condition (23) est nécessaire et suffi-
sante. | .
On achéve, comme au n° 14, la seule modification étant que
les limites d’indétermination des coefficients sont ici plus larges.
On a cet énoncé:
Pour que Dégalité (22) ait lieu, il faut et il suﬁ‘it que Z (Y)
étant la fonction inverse de X* X1 on ait

puis . (r), puis (22) ot au dénominateur, X est remplacé par

R

" 1-0(1))KZ(n) & (24)
VA, < et (n) | K= (k—1)kl™*,
et
Ve o ot
,\/An > e_(1+0(1))KZ(n) 5 n — np 3 p — 1’ 2, cee s llm Y — 1 .
p= o np

Par exemple, pour que l'on ait, C étant une constante,

log M (r) ~ C (log r)2 ,
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il faut et il suffit que

1

VE <B4 ),

et que, pour une suite de valeurs n, telles que n,,,/n, tende

vers un,
1

n2 -
\/Anr\)e[*c, o= i

On déduira de 1'étude faite que
La condition nécessaire et suffisante pour que

o log M (r) S
o = 1. X =logr,
est que
__ log A
im —2m
n=w KnZin) ’

K étant le nombre défini dans (24).

16. Cas des fonctions d’ordre nul & croissance trés lente.

Hadamard a observé que, si pour une valeur de n, les rap-
ports rectifiés R, ,, R, vérifient la condition

Rn+1 2
R, > k?, k>1,
on a, pourr = kR,
= a1+ 228 ami<t,  sl=r, @

et que, par suite, si k2 > 9, f(z) a exactement n zéros dans le
cercle de rayon kR, centré a I’origine.

L’égalité (25) est une conséquence immédiate de I'inégalité

¥y
n+p n r
| iy | < | a2

RE P "
’ n

AV

p

et la conclusion découle du théoréme connu sur la variation de
Pargument. |
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Hadamard utilisait cette proposition pour obtenir des fonc-
tions pour lesquelles le cas d’exception du théoréme de Picard
ne se produisait pas. Pour qu’il en soit ainsi, il suffit d’ailleurs
que la limite supérieure de R, /R, soit supérieure a 1 3.

Pour que l'inégalité relative au rapport R, /R, ait lieu une
infinité de fois, il suffit que, & partir d’une valeur de =,

R, > K™,
donc que
R, R, .. R, > K" C,

C étant une constante. On déduit alors du n° 15 que:
Pour toute fonction entiére vérifiant Uune des conditions équi-
valentes

=— log M (r) 1 — " _
lim lim —
r=w (log r)? 4 log 3’ n=oo VA, < 3 °
il existe une suite de cercles | z | = r, de rayons indéfiniment crots-

sants, qui renferment un nombre de zéros égal au rang du terme
maximum du développement de Taylor.

Sil’on suppose que, a partir d’un certain rang, les coefficients
a, sont tous différents de zéro, et si, & partir de ce rang,

an
> k2, k>1,
A1 nit
on a, pour
a
r= kR, = k||,
an
fa) = a "1 + H(k) o, (3], Hk) =2D K", | oy () | < 13
1

done, si H (k) < 1, c’est-a-dire si k> 2, 193..., les zéros de
f (z) sont séparés par les cercles de rayons kR, ; sur ces cercles,

on a
log | f (z) | = log B (r) + O (1) .

(On voit que les zéros de f (z2) — C, ou C est une constante arbi-
traire, sont aussi séparés par ces mémes cercles.)
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On peut préciser la position des zéros. Par exemple, si

a, , a
lim n12n+1 — 0

=0
n an

le zéro de rang n (les zéros étant classés par ordre de modules
croissants) est donné par

— o (1)) ;

n

on le voit de suite en mettant en évidence dans f (z) les deux
termes de module maximum pour r = R, ¥."

17. Remarques sur 'approximation de M (r).

Si la fonction f (z) est holomorphe pour | z| < r, ¢’est-a-dire
holomorphe pour | z| < R, r < R, et si

[>o) L ‘o L
g(z):EanCz—)n, anan:—_!a'niz,
0 .

est holomorphe pour |z| > r. Le produit f(z) g (z) est holo-
morphe dans la couronne %2< | z| < R, donc développable

en série de Laurent. Le terme de ce développement qui est indé-
pendant de z est donné par une intégrale prise sur la circonfé-
rence | 2| = r, ce qui conduit & la formule de Gutzmer

2T

ZA;rm = %f If(rei<9)|2dcp5)
L 0

Sil’on désigne par[G (r)]? le premier membre de cette formule,
on voit que, pour toute fonction entiére, on a

e}

B(r) <G()<M() <F()=DA ", A = |a
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‘On peut déduire de 13 une valeur approchée de M (r) au
moyen de F (r) en utilisant I'inégalité de Cauchy-Schwarz,

D 2 p
<2Anrn> < (p 4 1) DAY,
.0 0
D’aprés une remarque du n° 12, il suffit de prendre p + 1 de

la forme
Q) P

pour que le premier membre soit asymptotiquement supérieur
a M (r)2. Dans le cas de Pordre fini p, on obtient ainsi les iné-
galités de Brinkmeier

ie Pie
F(r)<G(r)r* <M()r?
valables & partir d’une valeur r (¢) de r ©.
En utilisant la méme méthode et les résultats de la méthode
de Wiman et Valiron (Lectures on the general theory of integral
functions, chap. IV), on obtient de méme les inégalités

1 1
~+E

F()< G @EE , F() <G logBPE
b
F(r)<G({r)rt |,

valables, les premiéres pour toute fonction entiére, la troisiéme
pour une fonction d’ordre fini p, sauf au plus dans une suite
d’intervalles dans lesquels la variation totale de log r est finie 7.

ITI. DECOMPOSITION EN FACTEURS ET CONSEQUENCES.

18. Théoréme de Jensen. Application aux fonctions entiéres
d’ordre fini.

Soit f (z) une fonction méromorphe pour | z| < r et suppo-
sons que P'origine ne soit ni zéro, ni péle et que la circonférence
| 2| = x ne contienne ni zéro, ni pole. Si n (z) désigne le nombre
des zéros et p () le nombre des pdles dont le module est inférieur
a z, chaque zéro ou pole étant compté un nombre de fois égal a
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