Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 4 (1958)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: FONCTIONS ENTIÈRES D'ORDRE FINI ET FONCTIONS

MÉROMORPHES

Autor: Valiron, Georges

Kapitel: II. L'ordre et les coefficients tayloriens.

DOI: https://doi.org/10.5169/seals-34633

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

FONCTIONS ENTIÈRES D'ORDRE FINI ET FONCTIONS MÉROMORPHES *

par Georges Valiron †

FONCTIONS ENTIÈRES D'ORDRE FINI ET D'ORDRE NUL (suite)

II. L'ORDRE ET LES COEFFICIENTS TAYLORIENS.

11. Le terme maximum de la série de Taylor et le polygone d'Hadamard.

Si $f(z) = \sum_{n=0}^{\infty} a_n z^n$ est une fonction entière, $A_n = |a_n|$ et |z| = r, la série étant convergente, absolument convergente quel que soit z, la suite des nombres

$$A_0 , A_1 r , \dots , A_n r^n , \dots$$
 (1)

tend vers zéro pour chaque valeur de r. Pour chaque r, il y a donc un terme supérieur ou égal à tous les autres. Ce terme (ou l'un de ces termes) est le terme maximum pour cette valeur r, ou simplement le terme maximum; sa valeur est une fonction de r que nous désignerons par B (r). Si r est remplacé par un nombre plus grand, chaque terme de la suite (1) augmente (sauf A_0), B (r) est donc une fonction croissante de r, et puisque chaque terme de (1) est continu, B (r) est une fonction croissante continue, qui croît indéfiniment avec r. Le rang r du terme maximum de (1), ou plus exactement de celui des termes maxima dont le rang est le plus élevé, est aussi une fonction de r que nous

^{*)} Série de cours et de conférences sur la théorie des fonctions entières, faits en 1948 au Caire et à Alexandrie, d'après le manuscrit revu et mis au point par le professeur Henri MILLOUX.

appellerons $\mu(r)$. Si $n < \mu(r)$, donc

$$A_n r^n \leqslant A_{\mu(r)} r^{\mu(r)} = B(r)$$

cette inégalité vaut a fortiori lorsque r est remplacé par un nombre plus grand, donc μ (r) est une fonction non décroissante de r. En outre, si p>n, on a A_p $r^p>A_n$ r^n pourvu que $A_p\neq 0$ et que r soit assez grand, μ (r) ne reste pas borné. Le rang μ (r) est une fonction non décroissante de r qui tend vers l'infini avec r.

D'après l'inégalité de Cauchy (§ I, (2)) on a

$$B(r) < M(r), \qquad (2)$$

M(r) étant le module maximum de f(z).

Pour étudier la relation entre B(r) et M(r), il est commode d'employer un procédé géométrique dû à Hadamard. Posons

$$\log A_n = -g_n$$

 $(g_n \text{ étant infini si } A_n = 0)$. On a

$$\lim_{n=\infty} \frac{g_n}{n} = +\infty \tag{3}$$

puisque $olimits A_n$ tend vers zéro lorsque n tend vers l'infini. Prenons deux axes de coordonnées Ox, Oy et marquons les points C_n de coordonnées n, g_n . Lorsque $A_n = 0$, l'ordonnée y de C_n est $+\infty$. D'après (3) on peut construire un polygone de Newton admettant pour sommets une suite de points C_n , les autres points C_n étant sur les côtés ou au-dessus des côtés; ce polygone que nous appellerons Π (f) étant convexe vers le bas. En effet, en supposant, par exemple, $A_0 \neq 0$, la pente des droites C_0 C_n a un minimum (d'après (3)), ce minimum correspond à une droite C_0 C_p , tous les autres points C_n sont sur C_0 C_p (entre C_0 et C_p) ou audessus de C_0 C_p . On considère alors les droites C_p C_n pour n > p, leurs pentes ont un minimum atteint pour une droite C_p C_q , et tous les C_n sont sur C_p C_q (entre C_p et C_q) ou au-dessus de cette droite. Et ainsi de suite.

Nous dirons que les abscisses des sommets de Π (f) sont les indices principaux de la suite des coefficients A_n . Nous désignerons par G_n l'ordonnée du point d'abscisse entière n de Π (f).

On a $G_n = g_n$ pour les indices principaux et $g_n \geqslant G_n$ pour les autres n. Pour une valeur de r, le logarithme de A_p r^p est infé-

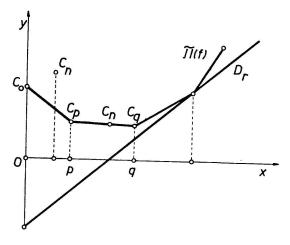


Fig. 3.

rieur ou égal au logarithme du terme maximum B $(r) = A_n r^n$, $n = \mu(r)$, donc

$$p \log r - g_p \leqslant n \log r - g_n$$
, $n = \mu(r)$

ou

$$g_p \geqslant g_n + (p - n) \log r$$
.

Géométriquement cela signifie que les points C_p sont au-dessus ou sur la droite de pente $\log r$ passant par le point C_n , $n=\mu(r)$. Par suite, la droite de pente $\log r$ ne coupe pas $\Pi(f)$ et contient un point C_n , c'est la «tangente» de pente $\log r$ menée à $\Pi(f)$. Ainsi, le rang $\mu(r)$ du terme maximum est l'abscisse du point de contact de la tangente D_r de pente $\log r$ menée à $\Pi(f)$, ou l'abscisse du sommet de plus haut rang situé sur le côté de pente $\log r$ lorsque $\log r$ est la pente d'un côté de $\Pi(f)$. Lorsque r croît, la tangente D_r tourne autour du sommet de $\Pi(f)$ dont l'abscisse est $\mu(r)$, puis autour du sommet suivant, etc. Les valeurs de $\mu(r)$ sont les indices principaux. La tangente D_r coupe Oy au point d'ordonnée $g_n - n \log r = -\log B(r)$.

Pour toutes les fonctions f(z) admettant le même polygone $\Pi(f)$ le terme maximum B(r) est le même, ainsi que $\mu(r)$. La fonction

$$F(z) = \sum_{0}^{\infty} e^{-G_n} z^n$$

est une fonction majorante pour toutes ces fonctions et a B (r) pour terme maximum et μ (r) pour rang de ce terme.

Le rapport

$$R_n = e^{G_{n} - G_{n-1}}$$

de deux coefficients successifs de F (z) est le rapport rectifié de A_{n-1} à A_n . La quantité $\log R_n$ est la pente de Π (f) entre les points d'abscisses n-1 et n. C'est une fonction non décroissante de n qui tend vers l'infini avec n.

Supposons pour simplifier |f(0)| = 1. (On passera aisément au cas général $f(0) \neq 0$ et aux cas particuliers f(0) = 0.) Nous aurons

$$e^{G_n} = R_1 R_2 \dots R_n$$

et

$$B(r) = \frac{r^{\mu(r)}}{R_1 R_2 ... R_{\mu(r)}}.$$
 (4)

Or

$$\int_{\mathrm{R}_{q}}^{\mathrm{R}_{q+1}} \mu(t) \frac{dt}{t} = q \log \frac{\mathrm{R}_{q+1}}{\mathrm{R}_{q}}, \qquad \int_{\mathrm{R}_{\mu(r)}}^{r} \mu(t) \frac{dt}{t} = \mu(r) \log \frac{r}{\mathrm{R}_{\mu(r)}},$$

donc

$$\log B(r) = \int_{0}^{r} \frac{\mu(t)}{t} dt. \qquad (5)$$

Dans le cas général, on aura

log B
$$(r)$$
 = log B (r_0) + $\int_{r_0}^{r} \frac{\mu(t)}{t} dt$, $0 < r_0 < r$. (6)

Telle est la relation entre B (r) et $\mu(r)$. Si l'on donne $|f(0)| \neq 0$, par exemple, la donnée de la suite R_n détermine un polygone Π et une classe de fonctions entières. De même, la donnée de log B (r_0) et d'une fonction $\mu(t)$ non décroissante ne prenant que des valeurs entières positives ou nulles détermine Π .

12. Relation entre B (r) et M (r). Cas des fonctions d'ordre fini. Conséquences.

On a la relation (2) entre B (r) et M. (r). Pour obtenir une relation dans l'autre sens, Hadamard employait une méthode

géométrique qui est exposée dans les *Leçons sur les séries à termes* positifs de Borel. Nous utiliserons une méthode analytique. On a évidemment

$$\mathrm{M}\;(r)\;\leqslant\;\mathrm{F}\;(r)\;=\;\sum_{0}^{\infty}e^{-\mathrm{G}_{n}}\,r^{n}\;\;\boldsymbol{\cdot}$$

Si p est un entier supérieur à μ (r) et tel que $R_p > r$, on a pour $q \ge p$,

$$e^{-\mathrm{G}_q} \, r^q \, = \, e^{-\mathrm{G}_{p-1}} \, r^{p-1} \, \frac{r^{q-p+1}}{\mathrm{R}_p \, \ldots \, \mathrm{R}_q} \leqslant \mathrm{B} \, (r) \left(\frac{r}{\mathrm{R}_p} \right)^{q-p+1} \, ,$$

par suite

$$F(r) = \sum_{0}^{p-1} e^{-G_n} r^n + \sum_{p}^{\infty} e^{-G_n} r^n$$

$$< B(r) \left[p + \sum_{p}^{\infty} \left(\frac{r}{R_p} \right)^{q-p+1} \right] = B(r) \left[p + \frac{r}{R_p - r} \right].$$

Prenons

$$p = \mu \left[r + \frac{r}{\mu(r)} \right] + 1$$

ce qui entraîne

$$R_p > r + \frac{r}{\mu(r)} \cdot$$

Nous obtenons

$$B(r) < M(r) < B(r) \left(2 \mu \left(r + \frac{r}{\mu(r)}\right) + 1\right). \tag{7}$$

Le coefficient 2 au troisième membre ne peut pas être remplacé par un nombre inférieur à 1, car le nombre des termes égaux à B (r) peut être voisin de μ (r) et μ $\left(r + \frac{r}{\mu(r)}\right) = \mu$ (r). De même, on ne peut pas remplacer μ $\left(r + \frac{r}{\mu(r)}\right)$ par μ (r).

Remarque. — D'après le calcul précédent, la somme des termes de F (r) dont le rang n est supérieur à Q > p est au plus

$$\mathbf{B}\left(r\right)\mu\left(r+\frac{r}{\mu\left(r\right)}\right)\left(\frac{1}{1+\frac{1}{\mu\left(r\right)}}\right)^{\mathbf{Q}-p+1}.$$

Si l'on prend

$$Q = 2 \mu \left(r + \frac{r}{\mu(r)}\right) \log \left(\mu \left(r + \frac{r}{\mu(r)}\right)\right)$$
 (8)

on voit que ce reste est infiniment petit par rapport à B(r). Ainsi M(r) est déterminé asymptotiquement par ses Q premiers termes, Q étant la fonction (8) de r.

Cas de l'ordre fini. — Pour une fonction d'ordre fini ρ, l'inégalité (2) (première partie de (7)) donne

$$\log B(r) < r^{\rho+\epsilon}$$

si petit que soit ε , pourvu que r soit assez grand. Remplaçant le premier membre par sa valeur (6), on obtient une borne pour $\mu(r)$. L'inégalité à résoudre est la même qu'au no 5, on a la même borne pour $\mu(r)$ que pour $\nu(r)$,

$$\mu (r) < r^{\rho+\epsilon}$$
 $r > r_0(\epsilon)$.

Portant cette valeur dans les inégalités (7), on obtient

$$B(r) < M(r) < B(r) r^{\rho+\epsilon}$$
, (9)

et comme corollaire, on voit que:

Théorème. — Pour une fonction d'ordre fini, log M (r) et log B (r) sont asymptotiquement égaux.

Par conséquent, si l'on se donne $\log B(r)$ arbitrairement à partir d'une fonction $\mu(r)$ telle que $\mu(r)$ vérifie la condition

$$\overline{\lim_{r=\infty}} \frac{\log \mu(r)}{\log r} = \rho ,$$

on peut construire le polygone Π correspondant. Pour toute fonction entière f(z) admettant ce polygone, l'inégalité (7) a lieu et entraîne (9), la fonction M(r) est connue d'une façon approchée et notamment $\log M(r)$ est connu asymptotiquement. On peut ainsi construire une fonction entière d'ordre fini dont le logarithme du module maximum est asymptotiquement égal à une fonction donnée de $\log r$, convexe en $\log r$. En effet, une

telle fonction est de la forme $C + \int_{1}^{r} \frac{v(t) dt}{t}$, v(t) étant indéfi-

niment croissante et d'ordre fini. Il suffira de prendre pour r > 1,

 $\mu(r) = E(v(t)), E(u)$ désignant la partie entière de u. On aura

$$\int_{1}^{r} \mu(t) \frac{dt}{t} = \int_{1}^{r} \frac{v(t) dt}{t} - h(r) \log r, \qquad 0 < h(r) < 1.$$

Non seulement la fonction ainsi construite répondra à la question, mais on aura

$$\log M(r) - \int_{1}^{r} \frac{v(t) dt}{t} = O(\log r).$$

Pour une fonction d'ordre infini, on pourra encore dans certains cas avoir un résultat analogue si la croissance de v(r) est assez régulière.

13. Relation entre log M (r) et les coefficients A_n.

Lorsqu'on donne les A_n , modules des coefficients tayloriens, les formules (7) et (9) fournissent une valeur approchée de M (r). Inversement, si log M (r) est connue approximativement, en particulier connue asymptotiquement, que peut-on dire des A_n ?

Bornons-nous au cas des fonctions d'ordre fini. On a donc

$$\log M(r) \sim \log B(r) = C + \int_{1}^{r} \frac{\mu(t) dt}{t}$$

C étant une constante. Supposons que log M(r) soit compris entre deux fonctions $\Psi_1(r)$ et $\Psi_2(r)$ convexes en log r. A ces fonctions correspondent des polygones Π_1' et Π_2' . Aux fonctions $\Psi_1(r)(1-\varepsilon)$ et $\Psi_2(r)(1+\varepsilon)$ correspondent Π_1 et Π_2 . Comme log B(r) est compris entre ces valeurs (pour $r>r(\varepsilon)$) la tangente D_r de pente log r à Π relatif, la fonction envisagée qui coupe Oy au point — log B(r) est comprise entre les tangentes de même pente log r à Π_1 et Π_2 ; le polygone Π est compris entre Π_1 et Π_2 puisque ces polygones sont convexes. La fonction G_n de n est comprise entre les fonctions analogues relatives à Π_1 et Π_2 . Il en résulte une borne supérieure pour tous les coefficients A_n et une borne inférieure pour certains d'entre eux; on a en outre une limite pour l'écart des indices principaux successifs. Dans certains cas, on pourra trouver des conditions analytiques nécessaires et suffi-

santes. Mais en général la condition géométrique d'après laquelle Π est compris entre Π_1 et Π_2 ne s'exprimerait analytiquement que sous une forme extrêmement compliquée.

14. Cas des fonctions d'ordre fini positif et d'ordre précisé L.

Considérons d'abord une fonction parfaitement régulière par rapport à un ordre précisé ρ (r). On a donc

$$\log B(r) \sim r^{\rho(r)}$$
, (10)

donc

$$\int\limits_{1}^{r} \frac{\mu\left(t\right)\,d\,t}{t} \sim r^{\rho\left(r\right)}\;.$$

On a vu au nº 9 qu'une telle égalité se résout asymptotiquement. On a

$$\mu(r) \sim \rho r^{\rho(r)}$$
.

La relation entre n et R_n est donc

$$n \sim \rho R_n^{\rho(\mathbf{R}_n)} = \rho U(\mathbf{R}_n)$$
 (11)

La fonction inverse de y = U(x), soit x = W(y), a des propriétés analogues à celles de U(x). Si l'on écrit $W(y) = y^{\omega(y)}$, on a

$$y = x^{\rho(x)}$$
, $x = y x^{\frac{1}{\rho(x)}}$

donc $\omega(y)$ a pour limite $\frac{1}{\rho}$. D'autre part

$$\frac{dy}{y} = \frac{x \, \mathrm{U}'\left(x\right)}{\mathrm{U}\left(x\right)} \frac{dx}{x} \,, \quad \frac{dx}{x} = \frac{y \, \mathrm{W}'\left(y\right)}{\mathrm{W}\left(y\right)} \frac{dy}{y} \,, \quad y \, \frac{\mathrm{W}'\left(y\right)}{\mathrm{W}\left(y\right)} = \frac{\mathrm{U}\left(x\right)}{x \, \mathrm{V}'\left(x\right)} \sim \frac{1}{\rho}$$

ce qui montre que y log y . ω' (y) tend vers zéro. Ainsi

$$\lim_{y=\infty} \omega(y) = \frac{1}{\rho}, \qquad \lim_{y=\infty} y \omega'(y) \log y = 0. \tag{12}$$

La conséquence relative au rapport W(ky)/W(y) subsiste et par suite (11) se résout sous la forme

$$\mathbf{R}_n \sim \mathbf{W}\left(\frac{n}{\rho}\right) \sim \left(\frac{1}{\rho}\right)^{\frac{1}{\rho}} \mathbf{W}\left(n\right) \; .$$

Alors, puisque

$$\log \mathrm{B}\left(\mathrm{R}_{n}\right) \sim \mathrm{U}\left(\mathrm{R}_{n}\right) \sim rac{n}{\mathrm{\rho}} = n \log \mathrm{R}_{n} - \mathrm{G}_{n}$$

on a

$$-G_n = \frac{n \log (\rho e)}{\rho} - n \log W(n) + o(n)$$
 (13)

ou

$$-\frac{G_n}{n} = \frac{\log (\rho e)}{\rho} - \log W(n) + o(1),$$

enfin

$$e^{-\frac{G_n}{n}} \sim \frac{(\rho e)^{\frac{1}{\rho}}}{W(n)}$$
 (14)

Inversement, de (14) on remonte à (13). Donc, si petit que soit $\varepsilon > 0$, on a pour n assez grand,

$$-\varepsilon n + \frac{n \log (\rho e)}{\rho} - n \log W(n) < -G_n < \frac{n \log (\rho e)}{\rho} - n \log W(n) + \varepsilon n.$$

Or, de

$$-G_n = \frac{n (\log \rho e)}{\rho} - n \log W(n) + \varepsilon n , \qquad (15)$$

on déduit

$$\log R_{n} = G_{n-1} = -\frac{\log \rho e}{\rho} + \log W(n) + (n-1) \log \frac{W(n)}{W(n-1)} - \epsilon.$$

Comme, d'après les propriétés de W (n), on a

$$W(n-1) = W(n) - W'(n-\theta) = W(n) - W(n) \frac{1 + o(1)}{\rho n}, \quad 0 < \theta < 1,$$
on voit qu'on déduit de (15)

$$\log R_n = -\frac{\log \rho}{\rho} - \epsilon + \log W(n) + o(1)$$

donc

$$e^{\varepsilon} R_n \sim \left(\frac{1}{\rho}\right)^{\frac{1}{\rho}} W(n) \sim W\left(\frac{n}{\rho}\right).$$
 (16)

On retrouve la formule qui avait été déduite de (11) mais R_n y est remplacé par le premier membre de (16). On aura donc

$$n\sim
ho~{
m U}\left({
m R}_n\,e^{
m e}
ight)\sim
ho~e^{
m e}{
ho}~{
m U}\left({
m R}_n
ight)$$
 , $\mu~(r)\sim
ho~e^{
m e}{
ho}~{
m U}~(r)\sim e^{
m e}{
ho}~r~{
m U}'~(r)$

et en intégrant

$$\log B(r) \sim e^{\epsilon \rho} U(r)$$
 (17)

De même, en remplaçant ε par — ε dans (15) on obtiendra le résultat analogue à (16) mais où ε est remplacé par — ε . Comme ε est arbitraire, il s'ensuit que (14) entraîne (10) et aussi (11).

L'égalité (11) montre que R_n croît si n est remplacé par n (1 + ϵ), $\epsilon > 0$ arbitraire. C'est dire que le rapport de deux indices principaux successifs tend vers un lorsque $n \to \infty$.

D'après (14), on a pour tous les n,

$$\sqrt[n]{\mathbf{A}_n} < (1 + o(1)) \frac{(\rho e)^{\frac{1}{\rho}}}{\mathbf{W}(n)}$$
(18)

et pour les indices principaux au moins

$$\sqrt[n]{A_n} > (1 - o(1)) \frac{(\rho e)^{\rho}}{W(n)}, \qquad n = n_p, \qquad \lim_{p = \infty} \frac{n_{p+1}}{n_p} = 1.$$
(19)

Inversement, ces inégalités entraînent (14) puisque le rapport G_n/n croît à partir d'une valeur de n et puisque W(n')/W(n) tend vers un si n'/n tend vers un.

En définitive:

I. La condition nécessaire et suffisante pour que la fonction entière f(z) soit d'ordre précisé $\rho(r)$ et à croissance parfaitement régulière est que W(y) étant la fonction inverse de $U(x) = x^{\rho(x)}$, les conditions (18) et (19) soient réalisées. En outre, si l'on se donne à priori une fonction $W(y) = y^{\omega(y)}$, $\omega(y)$ vérifiant les conditions (12) et les A_n vérifiant les inégalités (18), (19), les fonctions f(z) dont les modules des coefficients sont les A_n sont telles que

$$\log M(r) \sim U(r)$$
,

U(x) étant la fonction inverse de x = W(y).

Par exemple, la condition nécessaire et suffisante pour que

$$\log M(r) \sim C r^{\rho}$$

C étant constant, est que

$$\lim_{n=\infty} \sqrt[n]{\mathbf{A}_n} \left(\frac{\mathbf{C} \, \rho \, e}{n} \right)^{-\frac{1}{\rho}} = 1$$

et que, pour une suite de valeurs n_p de n,

$$\lim_{n=\infty}^{n} \sqrt[n]{\overline{A_n}} \left(\frac{n}{C \rho e}\right)^{\frac{1}{\rho}} = 1 , \quad n = n_1 , \dots , \quad n_p , \dots , \quad \lim_{p=\infty}^{n} \frac{n_{p+1}}{n_p} = 1 .$$

Si l'on a

$$\lim_{n=\infty}^{n} \sqrt[n]{A_n} [n \log n]^{\alpha} = 1$$

on a

$$\mathrm{W}\left(n
ight) = \left(rac{e \; n \; \log \; n}{lpha}
ight)^{lpha}, \qquad n \sim rac{lpha^2 \, r^{rac{1}{lpha}}}{e \; \log \; r} \, ,$$

donc

$$\log \mathrm{~M}\left(r
ight) \sim rac{lpha^3 \, r^{rac{1}{lpha}}}{e \, \log \, r} \, \cdot$$

Supposons maintenant qu'il s'agisse d'une fonction f(z) quelconque d'ordre précisé $\rho(r)$. On a seulement

$$\overline{\lim}_{r=\infty} \frac{\log B(r)}{U(r)} = 1, \qquad U(r) = r^{\rho(r)}. \tag{20}$$

Si Π (F) est le polygone d'Hadamard correspondant à une fonction pour laquelle (20) est remplacé par (10), les tangentes à Π (f) sont asymptotiquement au-dessus des tangentes à Π (F), donc Π (f) au-dessus de Π (F), les coefficients A_n de f (z) vérifient l'inégalité (18). On ne peut pas avoir, à partir d'une valeur de n l'inégalité (18) où 0 (1) serait remplacé par — ε , en vertu de la réciproque du théorème I précédent. Par suite

II. La condition nécessaire et suffisante pour que f(z) soit d'ordre précisé $L \rho(r)$ est que, W(y) étant la fonction inverse de y = U(x), on ait

$$\overline{\lim}_{n=\infty}^{n} \sqrt[n]{A_n} W(n) (\rho e)^{-\frac{1}{\rho}} = 1.$$

Supposons maintenant que $\rho(r)$ jouissant des propriétés de l'ordre précisé, on ait pour une fonction f(z),

$$\frac{\lim_{r=\infty} \frac{\log M(r)}{U(r)} = C, \quad \lim_{r=\infty} \frac{\log M(r)}{U(r)} = B, \quad 0 < B < C, \quad U(r) = r^{\rho(r)}.$$

Comme on le voit de suite

$$\rho(r) + \frac{\log C}{\log r}, \qquad \rho(r) + \frac{\log B}{\log r}$$
 (21)

sont aussi des ordres précisés. Le polygone d'Hadamard Π (f) sera asymptotiquement compris entre les polygones correspondant aux fonctions parfaitement régulières relatives aux ordres (21); les G_n vérifieront les conditions déduites de (13)

$$\log W\left(\frac{n}{C}\right) - \frac{n \log (\rho e)}{\rho} - o(n) < G_n < n \log W\left(\frac{n}{B}\right) - \frac{n \log (\rho e)}{\rho} + (n) o$$

et ces conditions seront suffisantes.

15. Cas des fonctions d'ordre nul.

On peut évidemment procéder exactement de la même façon. En posant comme au no 10, $X = \log r$, cherchons les propriétés des modules A_n des coefficients tayloriens qui entraînent

$$\lim_{X=\infty} \frac{V(X)}{X^{h(X)}} = 1 , \qquad V(X) = \log M(r) , \qquad (22)$$

avec

$$\lim_{X=\infty} k(X) = k > 1, \quad \lim_{X=\infty} k'(X) X \log X = 0.$$

On a vu que la dérivée ω (X) de V (X) vérifie l'égalité obtenue en dérivant, on aura donc aussi

$$\mu(\varepsilon) \sim k X^{k(X)-1}$$
.

On a ici

$$n \sim k X_n^{k(X_n)-1}$$
, $X_n = \log R_n$.

C' est ici l'inverse de la fonction $Y = X^{k(X)-1}$ qu'il convient d'introduire. Comme k(X) — 1 jouit des propriétés de k(X) (sauf qu'il tend vers k — 1 et non pas vers k), l'inverse $X = Y^{\omega(Y)} = Z(Y)$ jouit encore des mêmes propriétés; $\omega(Y)$ tend vers $\frac{1}{k-1}$. On a

$$X_n = \log R_n \sim Z\left(\frac{n}{k}\right) \sim k^{\frac{1}{1-k}} Z(n)$$

 \mathbf{et}

$$-\mathbf{G}_{n} = \log \mathbf{B}\left(\mathbf{R}_{n}\right) - n \, \mathbf{X}_{n} \sim \left(\frac{1}{k} - 1\right) n \, \mathbf{X}_{n} \sim -\left(k - 1\right) \, k^{\frac{k}{1-k}} \, n \, \mathbf{Z}\left(n\right) \, . \tag{23}$$

Inversement, si G_n vérifie cette égalité, on a l'égalité (22). Car, en prenant

$$G_n = + (1 + \epsilon) (k - 1) k^{\frac{k}{1-k}} n Z(n)$$

on obtient

$$X_n = (1 + \epsilon) (k - 1) k^{\frac{k}{1-k}} (n Z(n))'$$

la dérivée étant prise pour la valeur $n-\theta,\,0<\theta<1,$ ce qui donne

$$X_n = (1 + \epsilon) (1 + o (1)) k^{\frac{1}{1-k}} Z(n)$$
.

On retrouve ainsi en inversant

$$n \sim k \, \mathrm{X'}^{k(\mathrm{X'})-1}$$
, $\mathrm{X'} = \frac{\mathrm{X}_n}{1+\varepsilon}$,

puis μ (r), puis (22) où au dénominateur, X est remplacé par $\frac{X}{1+\epsilon}$. Donc, comme au no 14, la condition (23) est nécessaire et suffisante.

On achève, comme au nº 14, la seule modification étant que les limites d'indétermination des coefficients sont ici plus larges. On a cet énoncé:

Pour que l'égalité (22) ait lieu, il faut et il suffit que Z(Y) étant la fonction inverse de $X^{k(X)-1}$, on ait

$$\sqrt[n]{A_n} < e^{-(1-o(1))KZ(n)}, K = (k-1)k^{\frac{k}{1-k}}, (24)$$

et

$$\sqrt[n]{A_n} > e^{-(1+o(1))KZ(n)}$$
, $n = n_p$, $p = 1, 2, ...$, $\lim_{p=\infty} \frac{n_{p+1}}{n_p} = 1$.

Par exemple, pour que l'on ait, C étant une constante,

$$\log M(r) \sim C(\log r)^2$$
,

il faut et il suffit que

$$\sqrt[n^2]{{
m A}_n} < e^{-rac{1}{4{
m C}}} \left(1 \, + \, {
m o} \left(1
ight)
ight) \, ,$$

et que, pour une suite de valeurs n_p telles que n_{p+1}/n_p tende vers un,

$$\sqrt[n^2]{\mathrm{A}_n} \sim e^{-rac{1}{4\mathrm{C}}}\,, \qquad n = n_p \;.$$

On déduira de l'étude faite que La condition nécessaire et suffisante pour que

$$\overline{\lim_{r=\infty}} \frac{\log M(r)}{X^{k(X)}} = 1 , \quad X = \log r ,$$

est que

$$\overline{\lim_{n=\infty}} \, \frac{\log A_n}{\operatorname{K} n \operatorname{Z}(n)} = -1 ,$$

K étant le nombre défini dans (24).

16. Cas des fonctions d'ordre nul à croissance très lente.

Hadamard a observé que, si pour une valeur de n, les rapports rectifiés R_{n+1} , R_n vérifient la condition

$$\frac{\mathrm{R}_{n+1}}{\mathrm{R}_n} \geqslant k^2 \; , \qquad k > 1 \; ,$$

on a, pour $r = k R_n$

$$f(z) = a_n z^n \left[1 + \frac{2 \alpha(z)}{k-1} \right], \quad |\alpha(z)| < 1, \quad |z| = r, \quad (25)$$

et que, par suite, si $k^2 > 9$, f(z) a exactement n zéros dans le cercle de rayon kR_n centré à l'origine.

L'égalité (25) est une conséquence immédiate de l'inégalité

$$\left| a_{n+p} z^{n+p} \right| \leqslant \left| a_n z^n \right| \frac{r^p}{R_n^p k^{2p}}, \qquad p \gtrsim 0.$$

et la conclusion découle du théorème connu sur la variation de l'argument.

Hadamard utilisait cette proposition pour obtenir des fonctions pour lesquelles le cas d'exception du théorème de Picard ne se produisait pas. Pour qu'il en soit ainsi, il suffit d'ailleurs que la limite supérieure de R_{n+1}/R_n soit supérieure à 1 3).

Pour que l'inégalité relative au rapport R_{n+1}/R_n ait lieu une infinité de fois, il suffit que, à partir d'une valeur de n,

$$\mathbf{R}_n \geqslant k^{2n} ,$$

donc que

$$R_1 R_2 \dots R_n > k^{n^2} C_n,$$

C étant une constante. On déduit alors du nº 15 que:

Pour toute fonction entière vérifiant l'une des conditions équivalentes

$$\overline{\lim_{r=\infty}} \, \frac{\log \, \mathrm{M} \, (r)}{(\log \, r)^2} < \frac{1}{4 \, \log \, 3} \, , \qquad \overline{\lim_{n=\infty}} \, \sqrt[n^2]{\mathrm{A}_n} < \frac{1}{3} \, ,$$

il existe une suite de cercles $|\mathbf{z}| = \mathbf{r}$, de rayons indéfiniment croissants, qui renferment un nombre de zéros égal au rang du terme maximum du développement de Taylor.

Si l'on suppose que, à partir d'un certain rang, les coefficients a_n sont tous différents de zéro, et si, à partir de ce rang,

$$\left| \frac{a_n^2}{a_{n-1} a_{n+1}} \right| \geqslant k^2 , \qquad k > 1 ,$$

on a, pour

$$r = k R_n = k \left| \frac{a_{n-1}}{a_n} \right|,$$

$$f(z) = a_n z^n [1 + H(k) \alpha_n(z)], \quad H(k) = 2 \sum_{1}^{\infty} k^{-n^2}, \quad |\alpha_n(z)| < 1;$$

donc, si H (k) < 1, c'est-à-dire si k > 2, 193..., les zéros de f(z) sont séparés par les cercles de rayons kR_n ; sur ces cercles, on a

$$\log |f(z)| = \log B(r) + O(1)$$
.

(On voit que les zéros de f(z) — C, où C est une constante arbitraire, sont aussi séparés par ces mêmes cercles.)

On peut préciser la position des zéros. Par exemple, si

$$\lim_{n = \infty} \frac{a_{n-1} \, a_{n+1}}{a_n^2} = 0$$

le zéro de rang n (les zéros étant classés par ordre de modules croissants) est donné par

$$-\frac{a_{n-1}}{a_n} (1 + o (1)) ;$$

on le voit de suite en mettant en évidence dans f(z) les deux termes de module maximum pour $r = R_n^{4}$.

17. Remarques sur l'approximation de M (r).

Si la fonction f(z) est holomorphe pour $|z| \le r$, c'est-à-dire holomorphe pour |z| < R, r < R, et si

$$f(z) = \sum_{n=0}^{\infty} a_n z^n,$$

la fonction g (z) définie par

$$g(z) = \sum_{n=0}^{\infty} \overline{a_n} \left(\frac{r^2}{z}\right)^n, \quad \overline{a_n} a_n = |a_n|^2,$$

est holomorphe pour $|z| \gg r$. Le produit f(z) g(z) est holomorphe dans la couronne $\frac{r^2}{R} < |z| < R$, donc développable en série de Laurent. Le terme de ce développement qui est indépendant de z est donné par une intégrale prise sur la circonférence |z| = r, ce qui conduit à la formule de Gutzmer

$$\sum_{0}^{\infty} A_{n}^{2} r^{2n} = \frac{1}{2 \pi} \int_{0}^{2 \pi} |f(r e^{i \varphi})|^{2} d \varphi^{5}$$

Si l'on désigne par $[G(r)]^2$ le premier membre de cette formule, on voit que, pour toute fonction entière, on a

$$\mathrm{B}\left(r\right)<\mathrm{G}\left(r\right)<\mathrm{M}\left(r\right)\leqslant\mathrm{F}\left(r\right)=\sum_{0}^{\infty}\mathrm{A}_{n}\,r^{n}\;,\quad \mathrm{A}_{n}=\left|\,a_{n}\,\right|\;.$$

On peut déduire de là une valeur approchée de M (r) au moyen de F (r) en utilisant l'inégalité de Cauchy-Schwarz,

$$\left(\sum_{0}^{p} A_{n} r^{n}\right)^{2} \leqslant (p + 1) \sum_{0}^{p} A_{n}^{2} r^{2n} .$$

D'après une remarque du no 12, il suffit de prendre p+1 de la forme

$$\left[v \left(r + rac{r}{v \left(r
ight)}
ight)
ight]^{1+arepsilon}, \qquad arepsilon > 0$$

pour que le premier membre soit asymptotiquement supérieur à M $(r)^2$. Dans le cas de l'ordre fini ρ , on obtient ainsi les inégalités de Brinkmeier

$$F(r) < G(r) r^{\frac{\rho}{2} + \epsilon} < M(r) r^{\frac{\rho}{2} + \epsilon}$$

valables à partir d'une valeur r (ϵ) de r 6).

En utilisant la même méthode et les résultats de la méthode de Wiman et Valiron (*Lectures on the general theory of integral* functions, chap. IV), on obtient de même les inégalités

$$\mathrm{F}\left(r
ight) < \mathrm{G}\left(r
ight)\left[\nu\left(r
ight)
ight]^{rac{1}{4}+\epsilon}, \qquad \mathrm{F}\left(r
ight) < \mathrm{G}\left(r
ight)\left[\log\,\mathrm{B}\left(r
ight)
ight]^{rac{1}{4}+\epsilon}, \ \ \mathrm{F}\left(r
ight) < \mathrm{G}\left(r
ight)r^{rac{
ho}{4}+\epsilon},$$

valables, les premières pour toute fonction entière, la troisième pour une fonction d'ordre fini ρ , sauf au plus dans une suite d'intervalles dans lesquels la variation totale de $\log r$ est finie ⁷⁾.

III. Décomposition en facteurs et conséquences.

18. Théorème de Jensen. Application aux fonctions entières d'ordre fini.

Soit f(z) une fonction méromorphe pour $|z| \le r$ et supposons que l'origine ne soit ni zéro, ni pôle et que la circonférence |z| = x ne contienne ni zéro, ni pôle. Si n(x) désigne le nombre des zéros et p(x) le nombre des pôles dont le module est inférieur à x, chaque zéro ou pôle étant compté un nombre de fois égal à