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FONCTIONS ENTIERES D’ORDRE FINI
ET FONCTIONS MEROMORPHES *

par Georges VALIRON

FONCTIONS ENTIERES D’ORDRE FINI ET D’ORDRE NULV

(suite)

II. L’ORDRE ET LES COEFFICIENTS TAYLORIENS.

11. Le terme maximum de la série de Taylor et le polygone
d’Hadamard.

Si f(z) = 2 a

o 18

» 2° est une fonction entiére, A, = |a,| et

| z]| =r, la série étant convergente, absolument convergente
quel que soit z, la suite des nombres

Ay, Ayry, ey A, L (1)

tend vers zéro pour chaque valeur de r. Pour chaque r, il y a
donc un terme supérieur ou égal & tous les autres. Ce terme (ou
Pun de ces termes) est le terme maximum pour cette valeur r, ou
simplement le terme maximum; sa valeur est une fonction de r
que nous désignerons par B (r). Si r est remplacé par un nombre
plus grand, chaque terme de la suite (1) augmente (sauf A,),
B (r) est donc une fonction croissante de r, et puisque chaque
terme de (1) est continu, B (r) est une fonction croissante conti-
nue, qui croit indéfiniment avec r. Le rang n du terme maximum
de (1), ou plus exactement de celui des termes maxima dont le
rang est le plus élevé, est aussi une fonction de r que nous

*) Série de cours et de conférences sur la théorie des fonctions entiéres, faits en
1948 au Caire et a Alexandrie, d’aprés le manuscrit revu et mis au point par le pro-
fesseur Henri MILLOUX.
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appellerons p (r). Si n < p (r), donc

A, <A P — B (r)

n

cette inégalité vaut a fortiori lorsque r est remplacé par un

nombre plus grand, donc w (r) est une fonction non décroissante

de r. En outre, si p > n,on a A, r? > A, r" pourvu que A # 0

et que r soit assez grand, w (r) ne reste pas borné. Le rang u (r)

est une fonction non décroissante de v qui tend vers l'infini avec r.
D’apreés I'inégalité de Cauchy (§ I, (2)) on a

B(r)<M(r), (2)

M (r) étant le module maximum de f (z)
Pour étudier la relation entre B (r) et M (r), il est commode
d’employer un procédé géométrique dit & Hadamard.. Posons

(g, étant infini si A, = 0). On a
= + ® (3)

puisque nl/An tend vers zéro lorsque n tend vers l'infini. Prenons
deux axes de coordonnées Oz, Oy et marquons les points C_ de
coordonnées n, g,. Lorsque A, = 0, Pordonnée y de C_ est 4 .
D’aprés (3) on peut construire un polygone de Newton admettant
pour sommets une suite de points C,, les autres points C, étant
sur les cOtés ou au-dessus des cotés; ce polygone que nous
appellerons II (f) étant convexe vers le bas. En effet, en suppo-
sant, par exemple, Ay 7 0, la pente des droites Cy C, a un mini-
mum (d’aprés (3)), ce minimum correspond 4 une dr01te Co C,,
tous les autres points C, sont sur C, C, (entre C, et C p) OU au-
dessus de G, C,. On consideére alors les dr01tes C, C, pour n > p,
ieurs pentes ont un minimum atteint pour une dr01te C, C,,
tous les C, sont sur C, G, (entre C, et C)) ou au-dessus de cette
droite. Et ainsi de sulte

Nous dirons que les abscisses des sommets de II (f) sont les
indices principauz de la suite des coefficients A,. Nous désigne-
rons par G, Pordonnée du point d’abscisse entiére n de II ().

L’Enseignement mathém., t. VI, fase. 2. 9
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On a G, = g, pour les indices principaux et g, > G, pour les
autres n. Pour une valeur de r, le logarithme de A, r? est infé-

Fig. 3.

rieur ou égal au logarithme du terme maximum B (r) =A,r"
n = u(r), done

plogr—g, <nlogr—g,, n=p()
ou

Géométriquement cela signifie que les points C, sont au-dessus
ou sur la droite de pente log r passant par le point C,, n = pu (r).
Par suite, la droite de pente log r ne coupe pas II (f) et contient
un point C,, c’est la « tangentes de pente log r menée a II (f).
Ainsi, le rang p (r) du terme maximum est 'abscisse du point
de contact de la tangente D, de pente log r menée a II (f), ou
I'abscisse du sommet de plus haut rang situé sur le coté de pente
log r lorsque log r est la pente d’un coté de II (f). Lorsque r croit,
la tangente D, tourne autour du sommet de II (f) dont I’abscisse
est w (r), puis autour du sommet suivant, etc. Les valeurs de
w (r) sont les indices principaux. La tangente D, coupe Oy au
point d’ordonnée g, — nlogr = — log B (r).

Pour toutes les fonctions f (z) admettant le méme polygone
IT (f) le terme makimum B (r) est le meéme, ainsi que u (r). La
fonction
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est une fonction majorante pour toutes ces fonctions et a B (r)
pour terme maximum et wu (r) pour rang de ce terme.

Le rapport,
R — eGn‘Gn—i

n

de deux coefficients successifs de F (z) est le rapport rectifié de
Anq & A, La quantité log R, est la pente de II (f) entre les
points d’abscisses n — 1 et n. C’est une fonction non décroissante
de n qui tend vers Pinfini avec 7.

Supposons pour simplifier | f (0) | = 1. (On passera aisément
au cas géneral f (0) # 0 et aux cas particuliers f (0) = 0.) Nous
aurons

¢m = R,R, .. R,
et
o peAr) .
") = RR, B (%)
Or
Rq+1 R r
dt . q+1 dt _
f”(t)T”—qlog Rq ’ f“(t)T—“(r)logRu(r),
R Rur)
done
1ogB(r):fﬁﬁdt- (5)

0
Dans le cas général, on aura

. T
logB(r):logB(rO)—Ffp"T(t)dt, O<rp<r. (6)
To

Telle est la relation entre B (r) et w(r). Si on donne
0) | # 0, par exemple, la donnée de la suite R, détermine

un polygone IT et une classe de fonctions entiéres. De méme, la
donnée de log B (r,) et d’une fonction w (£) non décroissante ne
Prenant que des valeurs entiéres positives ou nulles détermine IT.

12. Belatiqn entre B (r) et M (r). Cas des fonctions d’ordre fint.
Conséquences. »

On a la relation (2) entre B (r) et M. (7). Pour obtenir une
relation dans I’autre sens, Hadamard employait une méthode
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géométrique qui est exposée dans les Lecons sur les séries d termes
positifs de Borel. Nous utiliserons une méthode analytique. On
a évidemment,

M() <Flr)=Senm.
-

Si p est un entier supérieur a p. (r) et tel que R) > r, on a pour
g = p

¢ Sapa — Ot ot skl < B (r) <L>q - )
| R, .. R, R,
par suite
p-1 . ®
] = Ze_Gn &1 Ee_Gn n
p

0

oo S v ]

p

£>!

Prenons

ce qui entraine

Nous obtenons
B(r)<M(r)<B(r)<2u(r+E2.7)>+1>~ (7)

Le coefficient 2 au troisieme membre ne peut pas étre rem-
placé par un nombre inférieur & 1, car le nombre des termes

égaux a B (r) peut étre voisin de w (r) et w <r + - T )> = w(r).
De méme, on ne peut pas remplacer p. <r -+ r )> par w (r).

Remarque. — D’aprés le calcul précédent, la somme des
termes de I (r) dont le rang n est supérieur & Q > p est au plus

B (r) u(r + pj(.r)>< 1_1—>Q-10+1 .
r) |

1+
@
Si Pon prend

Q= 2@(r +;-’('7)>iog(u r+ ) (8)
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on voit que ce reste est infiniment petit par rapport a B (r).
Ainsi M (r) est déterminé asymptotiquement par ses Q premiers
termes, Q étant la fonction (8) de r. |

Cas de Uordre fini. — Pour une fonction d’ordre fini o, I'iné-
galité (2) (premiére partie de (7)) donne

log B (r) < r*®

si petit que soit e, pourvu que r soit assez grand. Remplagant
le premier membre par sa valeur (6), on obtient une borne pour
u (r). L’inégalité a résoudre est la méme qu’au n® 5, on a la
méme borne pour u (r) que pour ¢ (r),

wir) < r>r(e).
Portant cette valeur dans les inégalités (7), on obtient
B(r) <M(r) <B(r)re*, (9) -

et comme corollaire, on voit que:

TatorEME. — Pour une fonction d’ordre fint, log M (r) et log B (r)
sont asymptoliqguement égauz.

Par conséquent, si 'on se donne log B (r) arbitrairement a
partir d’une fonction p (r) telle que p (r) vérifie la condition

Tm log p (r) _

r—o lOgr ’

on peut construire le polygone II correspondant. Pour toute
fonction entiére f(z) admettant ce polygone, 1'inégalité /(7)
a lieu et entraine (9), la fonction M (r) est connue d’une facon
approchée et notamment log M (r) est connu asymptotiquement.
On peut ainsi construire une fonction entiére d’ordre fini dont
le logarithme du module maximum est asymptotiquement égal
a une fonction donnée de log r, convexe en log r. En effet, une

telle fonction est de la forme C 4 f V(tzdt , ¢ (2) étant indéfi-
o

niment croissante et d’ordre fini. Il suffira de prendre pour r > 1,
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7 (r)‘ = E (¢ (1)), E (u) désignant la partie entiére de u. On aura

r

f@(t)%:fv(tzdt——h(r) logr, O0<h(r)<1.
1 1

Non seulement la fonction ainsi construite répondra a la ques-

tion, mais on aura
r

1ogM(r)—f"—(tz_ﬂ=oubgr).
1

Pour une fonction d’ordre infini, on pourra encore dans cer-
tains cas avoir un résultat analogue si la croissance de ¢ (r) est
assez réguliere.

13. Relation entre log M (r) et les coefficients A,.

Lorsqu’on donne les A,, modules des coefficients tayloriens,
les formules (7) et (9) fournissent une valeur approchée de M (r).
Inversement, si log M (r) est connue approximativement, en
particulier connue asymptotiquement, que peut-on dire des A, ?

Bornons-nous au cas des fonctions d’ordre fini. On a donc

r
1ogM(r)mlogB(r)=c+f-““—(’t)ﬂ,
1

C étant une constante. Supposons que log M (r) soit compris entre
deux fonctions ¥, (r) et ¥, (r) convexes en log r. A ces fonctions
correspondent des polygones IT; et IT,. Aux fonctions ¥, (r)(1 —¢)
et ¥, (r) (1 + €) correspondent II, et II,. Comme log B (r) est
compris entre ces valeurs (pour r > r(c)) la tangente D, de
pente log r a II relatif, la fonction envisagée qui coupe Oy au
point — log B () est comprise entre les tangentes de méme pente
log r a I1, et IT,; le polygone II est compris entre II; et 11, puisque
ces polygones sont convexes. La fonction G, de n est comprise
entre les fonctions analogues relatives a II; et IL,. Il en résulte
une borne supérieure pour tous les coefficients A, et une borne
inférieure pour certains d’entre eux; on a en outre une limite
pour I’écart des indices principaux successifs. Dans certains cas,
on pourra trouver des conditions analytiques nécessaires et suffi-
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santes. Mais en général la condition géométrique d’apres laquelle
1T est compris entre II; et 1I, ne exprimerait analytiquement
que sous une forme extrémement compliquée.

14. Cas des fonctions d’ordre fini posiiif et d’ordre précisé L.

Considérons d’abord une fonction parfaitement réguliére par
rapport & un ordre précisé p (r). On a donc

log B (r) ~ r°(), (10)
donce , .

r
fll (z) dt ~ o
t

i

On a vu au n° 9 qu'une telle égalité se résout asymptotiquement.

On a ‘
w () o pr® .

La relation entre n et R, est donc

n oo pRp(Rn) = pU(R

(11)

La fonction inverse de y = U (x), soit z = W (y), a des pro-
priétés analogues a celles de U (z). Si Pon écrit W (y) = y©W),

on a
1

y = 2 = yxo(x)

done o (y) a pour limite %. D’autre part

dy _aUz)de dz __ yWydy Wiy Ul 1
y - U@ 2z’ @ W@ v TWh o eV e
ce qui montre que y logy . o’ (¥) tend vers zéro. Ainsi
lim o (y) = —, lim y o’ (y) logy = 0 . (12)
y== % y=

La conséquence relative au rapport W (ky)/W (y) subsiste et
par suite (11) se résout sous la forme

1

NG
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Alors, puisque

‘log B (R,,) N\U(Rn)m—g—: nlog R, — G, ,

on a
—Gn=ﬂ5¥—nlogwm)+o(n)' (13)
ou
G
— == 1‘%1)_-1ogvv(n) +o(1),
enfin
_ . 1
R (-1 (14)
W (n)

Inversement, de (14) on remonte a (13). Donec, si petit que
soit € > 0, on a pour n assez grand,

—-sn—}—w—nlogW(n < —G <ﬂg§~(&—nlogw n) +en.
" P

P
Or, de
—Gn:&bi—pe—)——ﬁlogW(n)—}—sn, (15)
on déduit .
\ 1
logR, =G, —G _, = — ngPe + log W (n) + (n — 1) logW—‘(Nﬁ(—Ll)—s'

Comme, d’apres les propriétés de W (n), on a

Wiin—1)=W(@n —W (n— 0 =W (n) f-W(n)1—+p%—(—1—), 0<0<1,

on voit qu’on déduit de (15)

log R, = _lge 4 log W) + o)
done :
1
s (fwmsw(z)

-

On retrouve la formule qui avait été déduite de (1»1) mais R, y
est remplacé par le premier membre de (16). On aura donc

n oo pU(Rnes) oo peE°U<Rn> , w(r) o pe®PU(r) cve®rU (r)
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et en intégrant :
log B (r) ~ €U (r) . (17)

De méme, en remplacant ¢ par — ¢ dans (15) on obtiendra
le résultat analogue a (16) mais ou ¢ est remplacé par —e.
Comme ¢ est arbitraire, il s’ensuit que (14) entraine (10) et
aussi (11).

L’égalité (11) montre que R, croit si n est remplacé par
n (1 + €), € > 0 arbitraire. C’est dire que le rapport de deux
indices principaux successifs tend vers un lorsque n — 0.

D’aprés (14), on a pour tous les n,

1
e (p ) (18)
-\/An<<1+o(1>)w(n) |
et pour les indices principaux au moins
1
n . 0 . 7 1
VE > 0—om) &L, an,  dmlmt_y . (19)

p

Inversement, ces inégalités entrainent (14) puisque le rapport
G,/n croit a partir d’une valeur de n et puisque W (n')/W (nr)
tend vers un si n’/n tend vers un.

En définitive:

I. La condition nécessaire et suffisante pour que la fonction
entiére f (z) soit d’ordre précisé o (r) et a croissance parfaitement
réguliére est que W (y) étant la fonction inverse de U (x) = x°X)_
les. conditions (18) et (19) soient réalisées. En ouire, si l'on se
donne a priori une fonction W (y) = v e (y) vérifiant les condi-
itons (12) et les A, vérifiant les inégalités (18), (19), les fonctions
{ (z) dont les modules des coefficients sont les A, sont telles que

log M (r) ~ U (r)

U (x) étant la fonction inverse de x = W (y).
Par exemple, la condition nécessaire et suffisante pour que

log M (r) o GrP

G étant Constant, est que
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et que, pour une suite de valeurs n, de n,

1

n

I n

lim A /A (" >°=1 n— . lim P g
n=m\/ n<Cpe ’ nl: EN p’ ) p=o np ‘ v

Si l'on a

n
lim 4 /A, [nlog n]* =1

n=ow

on a

W) = (

en log n\* olr
o ?

donc

o3 r*

lOgM(r)(\)elogr-

Supposons maintenant qu’il s’agisse d’une fonction f (z) quel-
conque d’ordre précisé p (r). On a seulement

—1, U(r)=r". (20)

Si I1 (F) est le polygone d’Hadamard correspondant & une fonc-
tion pour laquelle (20) est remplacé par (10), les tangentes & II (f)
sont asymptotiquement au-dessus des tangentes a II (F), donc
I1 (f) au-dessus de II (F), les coefficients A, de f(z) vérifient
I’inégalité (18). On ne peut pas avoir, a partir d’une valeur de n
'inégalité (18) ou O (1) serait remplacé par — ¢, en vertu de la
réciproque du théoréme I précédent. Par suite

I1. La condition nécessaire et suffisante pour que f(z) sout
d’ordre précisé L o (r) est que, W (y) étant la fonction inverse de
y = U (x), on ait .

A
e

lim \n/A_nW(n) (pe) ¢ = 1.

n= oo

Supposons maintenant que p (r) jouissant des propriétés de
I’ordre précisé, on ait pour une fonction f (z),

—— log M (r) lim log M (r) (r)
lim &2 — V! — = = 0 B C U = pP\"
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Comme on le voit de suite

log B
log r

log G
log r

e(r) + (21)

, e(r) +

sont aussi des ordres précisés. Le polygone d’Hadamard II (f)
sera asymptotiquement compris entre les polygones correspon-
dant aux fonctions parfaitement réguliéres relatives aux ordres
(21); les G, vérifieront les conditions déduites de (13)

, n\ nlogpe . <_7}_\_n10g(pe)
logW<—C>————p o(n) < G, < nlogW B) ; + (n) o,

et ces conditions seront suffisantes.

15. Cas des fonctions d’ordre nul.

On peut évidemment procéder exactement de la méme fagon.
En posant comme au n° 10, X = log r, cherchons les propriétés
des modules A, des coefficients tayloriens qui entrainent

m V(X |
o = o VIX)=lgMi), (22)
avec
X=w X — oo

On a vu que la dérivée w (X) de V (X) vérifie I'égalité obtenue
en dérivant, on aura donc aussi

w(e) ~k XX
On a 1ci

neo kXEZRT X  jog R,

C’ est ici l'inverse de la fonction Y = X#X)-1 quw’il convient
d’introduire. Comme k£ (X) -— 1 jouit des propriétés de k (X)
(sauf qu’il tend vers k£ — 1 et non pas vers k), l'inverse

X = YY) = Z (Y) jouit encore des mémes propriétés; o (Y)
1

t
end vers —

On a
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et
k

——Gn=10gB(Rn)——anm<%—1>nX ~— (k—1) ktEnZ(n) . (23)

Inversement, si G, vérifie cette égalité, on a I’égalité (22). Car,
en prenant
R
G, =4+ (1 +¢)(k—1)k""nZ(n)
on obtient |

Rk
X = (14 ¢)(k—1) k1"

n

(n Z (n))

la dérivée étant prise pour la valeur n — 0, 0 < 6 < 1, ce qui
donne

On retrouve ainsi en inversant

n oo k Xlk(X/)—i X/ — n
? 1 + > ?

X
, 14+ ¢
Donc, comme au n° 14, la condition (23) est nécessaire et suffi-
sante. | .
On achéve, comme au n° 14, la seule modification étant que
les limites d’indétermination des coefficients sont ici plus larges.
On a cet énoncé:
Pour que Dégalité (22) ait lieu, il faut et il suﬁ‘it que Z (Y)
étant la fonction inverse de X* X1 on ait

puis . (r), puis (22) ot au dénominateur, X est remplacé par

R

" 1-0(1))KZ(n) & (24)
VA, < et (n) | K= (k—1)kl™*,
et
Ve o ot
,\/An > e_(1+0(1))KZ(n) 5 n — np 3 p — 1’ 2, cee s llm Y — 1 .
p= o np

Par exemple, pour que l'on ait, C étant une constante,

log M (r) ~ C (log r)2 ,
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il faut et il suffit que

1

VE <B4 ),

et que, pour une suite de valeurs n, telles que n,,,/n, tende

vers un,
1

n2 -
\/Anr\)e[*c, o= i

On déduira de 1'étude faite que
La condition nécessaire et suffisante pour que

o log M (r) S
o = 1. X =logr,
est que
__ log A
im —2m
n=w KnZin) ’

K étant le nombre défini dans (24).

16. Cas des fonctions d’ordre nul & croissance trés lente.

Hadamard a observé que, si pour une valeur de n, les rap-
ports rectifiés R, ,, R, vérifient la condition

Rn+1 2
R, > k?, k>1,
on a, pourr = kR,
= a1+ 228 ami<t,  sl=r, @

et que, par suite, si k2 > 9, f(z) a exactement n zéros dans le
cercle de rayon kR, centré a I’origine.

L’égalité (25) est une conséquence immédiate de I'inégalité

¥y
n+p n r
| iy | < | a2

RE P "
’ n

AV

p

et la conclusion découle du théoréme connu sur la variation de
Pargument. |
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Hadamard utilisait cette proposition pour obtenir des fonc-
tions pour lesquelles le cas d’exception du théoréme de Picard
ne se produisait pas. Pour qu’il en soit ainsi, il suffit d’ailleurs
que la limite supérieure de R, /R, soit supérieure a 1 3.

Pour que l'inégalité relative au rapport R, /R, ait lieu une
infinité de fois, il suffit que, & partir d’une valeur de =,

R, > K™,
donc que
R, R, .. R, > K" C,

C étant une constante. On déduit alors du n° 15 que:
Pour toute fonction entiére vérifiant Uune des conditions équi-
valentes

=— log M (r) 1 — " _
lim lim —
r=w (log r)? 4 log 3’ n=oo VA, < 3 °
il existe une suite de cercles | z | = r, de rayons indéfiniment crots-

sants, qui renferment un nombre de zéros égal au rang du terme
maximum du développement de Taylor.

Sil’on suppose que, a partir d’un certain rang, les coefficients
a, sont tous différents de zéro, et si, & partir de ce rang,

an
> k2, k>1,
A1 nit
on a, pour
a
r= kR, = k||,
an
fa) = a "1 + H(k) o, (3], Hk) =2D K", | oy () | < 13
1

done, si H (k) < 1, c’est-a-dire si k> 2, 193..., les zéros de
f (z) sont séparés par les cercles de rayons kR, ; sur ces cercles,

on a
log | f (z) | = log B (r) + O (1) .

(On voit que les zéros de f (z2) — C, ou C est une constante arbi-
traire, sont aussi séparés par ces mémes cercles.)
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On peut préciser la position des zéros. Par exemple, si

a, , a
lim n12n+1 — 0

=0
n an

le zéro de rang n (les zéros étant classés par ordre de modules
croissants) est donné par

— o (1)) ;

n

on le voit de suite en mettant en évidence dans f (z) les deux
termes de module maximum pour r = R, ¥."

17. Remarques sur 'approximation de M (r).

Si la fonction f (z) est holomorphe pour | z| < r, ¢’est-a-dire
holomorphe pour | z| < R, r < R, et si

[>o) L ‘o L
g(z):EanCz—)n, anan:—_!a'niz,
0 .

est holomorphe pour |z| > r. Le produit f(z) g (z) est holo-
morphe dans la couronne %2< | z| < R, donc développable

en série de Laurent. Le terme de ce développement qui est indé-
pendant de z est donné par une intégrale prise sur la circonfé-
rence | 2| = r, ce qui conduit & la formule de Gutzmer

2T

ZA;rm = %f If(rei<9)|2dcp5)
L 0

Sil’on désigne par[G (r)]? le premier membre de cette formule,
on voit que, pour toute fonction entiére, on a

e}

B(r) <G()<M() <F()=DA ", A = |a
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‘On peut déduire de 13 une valeur approchée de M (r) au
moyen de F (r) en utilisant I'inégalité de Cauchy-Schwarz,

D 2 p
<2Anrn> < (p 4 1) DAY,
.0 0
D’aprés une remarque du n° 12, il suffit de prendre p + 1 de

la forme
Q) P

pour que le premier membre soit asymptotiquement supérieur
a M (r)2. Dans le cas de Pordre fini p, on obtient ainsi les iné-
galités de Brinkmeier

ie Pie
F(r)<G(r)r* <M()r?
valables & partir d’une valeur r (¢) de r ©.
En utilisant la méme méthode et les résultats de la méthode
de Wiman et Valiron (Lectures on the general theory of integral
functions, chap. IV), on obtient de méme les inégalités

1 1
~+E

F()< G @EE , F() <G logBPE
b
F(r)<G({r)rt |,

valables, les premiéres pour toute fonction entiére, la troisiéme
pour une fonction d’ordre fini p, sauf au plus dans une suite
d’intervalles dans lesquels la variation totale de log r est finie 7.

ITI. DECOMPOSITION EN FACTEURS ET CONSEQUENCES.

18. Théoréme de Jensen. Application aux fonctions entiéres
d’ordre fini.

Soit f (z) une fonction méromorphe pour | z| < r et suppo-
sons que P'origine ne soit ni zéro, ni péle et que la circonférence
| 2| = x ne contienne ni zéro, ni pole. Si n (z) désigne le nombre
des zéros et p () le nombre des pdles dont le module est inférieur
a z, chaque zéro ou pole étant compté un nombre de fois égal a
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son ordre de multiplicité, on sait que, d’aprés le théoréme des
résidus '

’ P24
1 ’ i .
n(z) — p(z) -——mf;((f:w;xe“"zd@
0 3
ce qui peut s’écrire
2
niz) pl) 1 [ ’(xew)eupd
x z 2= (zeo)~ %
0

Intégrons entre x’ et 2" les deux membres de cette égalité en
supposant d’abord que la couronne " < | z| < '’ ne contienne
ni poles, ni zéros. Nous obtenons

» ' .Z' //ei(p
Y/B%dx—/p—;—)dxzﬁ _ log%@—;d@

et, puisque le premier membre est réel, nous pourrons mettre
au second membre ‘

2 ‘ .
L g 1) | —tog [ (" 69) | o
0 ‘

En-outre, pour un péle ou zéro de f (z), log | f(2) | a un infini
logarithmique, la formule reste donc valable si les circonférences
z| = 2" et | z| = &'’ renferment des péles ou des zéros; n (x)
et p (x) seront les nombres de zéros et de poles de module au
plus égal & z. En ajoutant les formules ainsi obtenues dans les
couronnes limitées par les cercles de centre origine passant par
les zéros et les poles, on obtient

r

r 211:’
%dx_f_p%ldx - %flogIf(re?"")l.dcp-loglf(o)l: (1)
0 0

0

? 2 . r . * ’
(est la formule de Jensen. Si &y, &g, ..., o, désignent les zéros,
chacun figurant un nombre de fois égal & son ordre de multi-

L’Enseignement mathém., t. IV, fasc. 2. - 10
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plieité, on sait d’aprés le n® 11 que

r

nx) .,
0

,.n

2
[oclocz...ocnl (2)
Dans le cas ou f (z) admettrait, par exemple, un zéro d’ordre ¢
a origine, on appliquerait la formule (1) a f (z) 27¢.
Appliquons la formule (1) au cas d’une fonction entiére d’ordre
fini p; n (z) désignant alors le nombre des zéros non nuls de mo-

dule inférieur a z, nous obtenons, si r > 1

r P&

Jf%?dx:52/1%U£iﬂb@+C<k@MU%+c» (3)

r4
0 0

C étant une constante; donc si petit que soit ¢ positif, on a, pour

r assez grand,
,

fﬁ—g—)dx<r°+a, re > 0. (&)

To

C’ est I'inégalité déja rencontrée deux fois (n°s 5 et 12). Elle
entraine
nr) <r,  r>rf(e,

donc aussi, les o, étant les zéros non nuls,

p+e
n < Iocnl

ou encore

1 1 2¢e
f4pq—tt

lan|p+25<n””’ e+t

>1.

Comme ¢ est arbitraire, on voit que

Pour une fonction d’ordre fini p, la série formée avec les inverses
des modules des zéros élevés & une puissance supérieure d o est
convergente. ,

Si p (r) est un erdre précisé, I'inégalité (4) est remplacée par

f%)—dx <1 + o (1)]r°®

Tg
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et on a vu qu’il en résulte (n° 7)
n(r) <1+ o(1)]eer®™ .

La recherche des cas ou la série | a, | converge a conduit a
distinguer deux classes de fonctions d’ordre p. Considérons I'in-
tégrale :

/' log M (r) ir

r1+p

To

et convenons de dire que la fonction est de la classe convergente
si cette intégrale converge, de la classe divergente si elle diverge 8.

En multipliant les membres extrémes de (3) par f—:p et intégrant
. r

dery & o, on voit que, pour une fonction de la classe convergente,

fmf 5)

converge. En intégrant par parties, on en déduit que 'intégrale

0

n(x)dzx
[ p(xi“’ (6)

To

st aussi convergente. Car l'intégration par parties de (5) ou

‘intégrale extérieure est prise entre r, et R donne

R

R

2
Lofrl AN, 1 falde, o
P,/ . (xp R")d >Pf o (1—27°).

1‘0 7'0

Or, on vérifie de suite que Pintégrale (6) et la série

o 1

> (7)
T o -

convergent et divergent simultanément. Par suite:

St la fonction est de la classe convergente de Dordre o, la série
{7) formée avec les modules des zéros est convergente ?.

R B AR R
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19.. Théoréme d’Hadamard-Carathéodory sur la partie réelle.
Décomposition en facteurs des fonctions d’ordre inférieur d un.

Rappelons d’abord le
Lemme de Schwarz. — Si la fonction f (z) est holomorphe pour
| z| < R, sif(0) = 0 et si dans le cercle considéré | f (z) | < M,
on a dans ce cercle
£ < MLZL,
I’égalité n’étant possible que si f (z) est un mondéme linéaire.
(C’est une conséquence du théoreme de Cauchy sur le module

f (2)

maximum, appliqué a — -

Considérons alors une fonction f (z) holomorphe pour | z| < R,
nulle pour z = 0 et supposons que, dans ce cercle, sa partie
réelle soit inférieure & un nombre A, qui est nécessairement
positif, car exp. A est le maximum du module de la fonction
exp. f (z) dont le module est 1 & I'origine. (On suppose évidem-
ment que f(z) =£ 0). Les valeurs Z = f(z) appartiennent au
demi-plan X = RZ < A. Faisons la représentation conforme
de ce demi-plan sur le cercle | £| < 1, le point Z = 0 donnant
£ = 0 et la direction positive de I'axe réel étant conservée.
Elle est donnée par »
e 7

2A —7
et transforme Z = f(z) en la fonction & = f (z)/[2A — | (2)],
holomorphe pour |z| < R, nulle a Dorigine et de module au

plus égale a 1. D’apres le lemme de Schwarz, ona | £| < |z I%
I’égalité ne pouvant avoir lieu que si § = o=, lo| = 1. Or
2 A
) =125, E=0@Z, 106 <1;
on a donc
2A|z|
[f(z) | < m ) (8)

d
R
de Carathéodory, qui compléte et précise un théoréme antérieur

d’Hadamard.

I'égalité ne pouvant avoir lieu que si & = w5 . Cest P'inégalité
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Supposons alors que f (z) soit une fonction entiére et que, pour

| 2| = r assez grand, on ait max. R f(z) = o (r*), k étant un
nombre fixe. Appliquons 'inégalité (8) a f (z2) — f (0) en prenant
= 2r, on aura

1f(z) ] < [F(0) ] + 2(o((2r)®) + [£(0) 1)

ce qui montre en utilisant les inégalités de Cauchy (n° 1), que
f (z) est un polyndme inférieur a k. Ainsi
St f(z) est une fonction entiére et st max. Rf(z) = o (r),
f (z) est un polynéme de degré moindre que k (Hadamard).
Considérons alors une fonction.entiére f (z) (une vraie fonction
‘entiére) d’ordre p inférieur 4 1. Si elle a une infinité de zéros «,,
la série

> ()
T ol
est convergente d’aprés le théoréme du n° 18. Le produit infini

formé avec les zéros non nuls

e e]

est convergent. S’il y a & 'origine un zéro d’ordre ¢, la fonction

o]

g (2) = ZQH<1—(§>

1 n

a les mémes zéros que f (z) avec les mémes ordres de multiplicité.
Le quotient f(z)/g (z) est une fonction entiére sans zéros, donc
une exponentielle, exp. & (z), & (z) étant une fonction entiére ou
un polyndéme. Nous allons montrer que % (z) est une constante
en montrant que sa partie réelle est bornée par o (r). Il résultera
bien du theoréeme d’Hadamard qui vient d’8tre établi que % (z)
est une constante. Ecrivons avec E. Landau

h@ _ _ f (2) _ 1
s 162
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en supposant | z | = rtrés grand et prenant m tel que | «,, | < 2r,
| «,.4 | > 2r. Au second membre de (9'), le premier terme est
une -fonction entiére, le maximum de son module pour | z| = r
est inférieur au maximum de ce module pour | z| = 4r; or pour

Z | 4 s r_* b
| 2| = 4r, on a — > 2, le dénominateur est supérieur a 1 et
n

au numérateur M (4r) < e(n®™® avec p + & < 1 sl ¢ est assez

petit. Le logarithme du module du premier facteur du second

z

membre est donc égal a4 o (r). Dans le second facteur est au

“n
plus égalé%et s10 <y <~;—,

—1——<\1—{—20<62”.

1 —v
Le logarithme du module du second facteur du second nembre
de (9') est donc moindre que

et le reste de la série convergente tendant vers zéro, cette borne
est encore o (r). On a

max RA (z) = o (r) ,

b (z) est une constante. Ainsi, comme la démonstration vaudrait
encore si la fonction n’avait qu’un nombre fini de zéros et condui-
rait & la conclusion que cette foriction est un polynome, on voit
que

Une vraie fonction entiére f(z) d’ordre fint o inférieur a 1
posséde une infinité de zéros o, et peut élre décomposée en facteurs
sous la forme

=)

f(z):CquI(ie—ai) o (10) |

1 n

De ce résultat, on déduirait le théoréme général d’Hadamard
sur la décomposition en facteurs des fonctions entiéres d’ordre
fini quelconque 2. |

Le résultat s'étend aux fonctions de la classe convergente de
Pordre 1. Car, pour une telle fonction, la série (9) converge, et
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d’autre part

2 rog M (r) <fk)—g££—(-ﬂdx= o) .
2 : z )
r

Dans tous ces cas, le produit figurant dans (10) est un produit
canonique P (z) de genre 0, la fonction f (z) est dite de genre 0.

' 90. Mazimum du module d'un produit canonique de genre 0.

Si la série (9) converge et i Pon pose | a, | = r,, O a
Pi)| = |1 1——"-)< <1+i), — |z].
o) \H( S <IL(+5). =

Désignons désormais par M (r, f) le maximum de | f (z) | pour
| z| = r. Nous aurons

log M (r, P) < > log (1 + ;’L> . (11)
) 1 %

La série du second membre peut étre remplacée par une inté-
grale. Sir (y) est une fonction égale a r,,,, lorsquen <y <n + 1,

c’est
fwlog (1 + —L—) d
J rw) Y

On pourrait intégrerv par parties. Mais on peut aussi écrire le
second membre de (11) sous la forme

‘\l[n— (n — 1)] log (1‘—{— %) = z n llog(l + r£>—log <1 + rr ) (12)
A . . ‘ 1 n . n+i

car, la série (9) étant convergente et & termes non croissants, le
rapport n/r, tend vers zéro lorsque n— . On peut écrire

Tn+1 T+l

iog(i +’;r;>‘_log(1 +5:r_1):/ d<——-1.og <1+£>>=f ;é‘c_d_‘if_ﬁ

Tn _ Tn
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et le second membre de (12) est alors égal &

(e ]

rn(z)
[ 2oy

Donc

log M (r, P) < dx , (13)

z(x + r)

S —s
~

I’égalité ayant lieu lorsque les zéros sont réels et négatifs. D’apreés
(10) on voit que, pour une fonction d’ordre p inférieur & 1, ou
pour une fonction d’ordre 1 de la classe convergente, on a

JC I‘

log M (r <f (x az o+ O (log 7). (14)
0

Si on se donne & priori la fonction (10), la série (9) étant
convergente, l'inégalité (14) est aussi valable. Supposons la
série (7) convergente, avec p << 1. Multiplions les deux membres

de (14) par ‘f—; et intégrons de r, > 0 a R, en mettant dans
r

I'intégrale du second membre de (14) la limite r, au lieu de 0,
ce qui ne change rien par suite de la présence de O (log r). Nous

obtenons
R
flOgM d<f f x+r+0(1). (15)

Comme f - (9;) dz converge (n° 18), Pintégrale intérieure dans

2
To
(15) converge uniformément quel que soit r positif, on peut

intervertir ’ordre des intégrations et poser ensuite r = iz de
telle sorte que l'intégrale du second membre de (15) devient

-

R

R . X ©
x1+9 (1 + t) tp y (1 + t) 1° sSin e
7'0 ‘

To

X
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Par hypothése, la premiére intégrale, ou @ (z) est remplacé par
une constante, converge lorsque R - oo. Le premier membre
de (15) est borné, f (z) est de la classe convergente. Il s’ensuit,
compte tenu du résultat du n° 18, que

1. La condition nécessaire et suffisante pour qu’une fonction
d’ordre o inférieur d un soit de la classe convergenie est que la
série (7) converge.

Pour une fonction d’ordre inférieur & 1, la série (7) et Pintégrale

[o0}

/log M)y,
r1+p

To

convergent ou divergent simultanément.
Supposons maintenant que p étant inférieur a 1, et o (r)
vérifiant les conditions de Pordre précisé, on ait

n(r) <BU(@) , U@ =rh, (16)

B étant une constante finie. Si & est pris supérieur & 1, on a,
d’aprés un calcul déja fait

: :
rn (z) dz n(z)dz B + o(1) , 17
Ofx———(x+r)<0f — < o U(r) . (17)

D’autre part, si « est compris entre p et 1, p (x) est inférieur
4 « si z est assez grand et z°™* est alors décroissant, donc

[c¢} 0 [>2]

rn (z) dz . B 2% gy 2 plRF)- T dx
fx(x—l—r) <-r'/7_———x2—oc — < B (rk)"Y °"‘/ T
kr A hr. ;tr
B + o (1)
= ————U(r) . 18
T B

D’autre part,

k
< n (kr) [log — i r] : = n(kr)logk, (4
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et

R R 3 ' 3

frrU (z) dx ~ rr 2*M 4z _U 121 4y U =1 dy .
x (x + r) fx(x—I—r)— (r)f1—|.—.tN (r)fl-i—t_

r T 1 4

Rk R R 3

=U0) [+ 2 e

sin Tp k

lorsque £ est trés grand. De ces inégalités, on déduit les résultats
suivants:

IT. Si f(z) est d’ordre o < 1 et d’ordre précisé ¢ (r), on peut
associer aux nombres r pour lesquels log M (r,f) > [1 — o (1)] U(r)
des nombres R = kr, ou k est suffisamment grand, pour lesquels
n (R) > KU (R), K dépendant de k, dés que R > R, W,

Car, d’apres le n° 18, I'inégalité (15) est vérifiée avec B > pe
dés que r est assez grand; on peut alors prendre %k assez grand
pour que les derniers membres dans (17) et (18) soient inférieurs

a %U (r); alors d’apres (14) et (19), on a

n(R) log k > 7 U () > —é—k“"U (R)
dés que R est assez grand.

En rapprochant de I'inégalité du n° 18, en remarquant que
U(R) > (1 — o (1)) log M (R, f) et en considérant les zéros de
f (z2) — Z ou Z est un nombre arbitraire de module inférieur a R,
ce qui ne modifie pas les inégalités, on voit que

II1. Sif(z) est dordre o < 1, il existe une suite de couronnes
AR, < |z| < Ry ou A est un nombre convenable inférieur d 1
et ou lim R, = o dans chacune desquelles le nombre des zéros

m=ow
de f(z) — Z, ou | Z| < Ry, est compris enire
Alog M(R,,.f) - et A" log M (R, , f)

A et N étant des nombres positifs finis. On a d’ailleurs

log M (Rm ’ f) > )\/// U (Rm) .

Ceci se précise dans les cas de régularité:
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IV. Si o < 1 et p(r) un ordre précisé de f(z) et si, @ pariir
d’une valeur v, on a ' |

logM (r,f) >DU(), D>0,

le nombre des zéros de f(z) — Z, | Z| < r, inférieurs en module
a r est compris entre h U (r) et (1 + <) pe U (r), ot ¢ > 0 arbi-
traire, h > 0 déterminé, et ceci a partir d’une valeur de r.

Les propositions I, IT, ITI, TV valent pour toutes les fonctions
entiéres d’ordre fini non entier (voir VALIrRON, Lectures on...,
chap. III). o | |

I’égalité (20) dans laquelle on fait croitre & avec r, jointe
aux inégalités (17) et (18) montre que:

V. 8i o (r) jouit des propriétés de U'ordre précisé, si o < 1 et si
la fonction f (z) définie par (10) a tous ses zéros réels et ne’gati]‘s‘,"
le nombre des zéros de module inférieur ou égal a r étant asymptoti-
quement égal a U (r), on a

log M (r, f) e~

T
sin mp

U(r) .

Cette proposition est aussi un cas particulier d’un théoreme
relatif aux fonctions d’ordre fini non entier & zéros alignés sur
une demi-droite, avec n (r) ~ U (r). Elle comporte un complé-
ment, utile dans certaines questions, sur la valeur de log f (2)
dans le plan privé du voisinage angulaire de la demi-droite
portant les zéros. Elle admet une réciproque 12,

21. Maximum du module des ‘fonctions d’ordre nul.

- De Dinégalité (14) découle a fortiori, puisque x 4+ r > r et
r 4 r >z,

logM <f f”(“;)zd‘” + O (log 7) .

En comparant a l’inégalité (3) de Jensen, on voit que, pour les
fonctions d’ordre inférieur & 1-(et pour les fonctions d’ordre 1
de la classe convergente) on a |

r 0

lg M (r, f) zfm 4 erf‘n (z)zdx +0 (logr), 0<b<1. (21)

x
0 r
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Considérons d’abord la classe de fonctions d’ordfe nul telles que

Th_m li%%ﬂ < . (22)

qui, d’aprés le n® 15 sont caractérisées par la condition

n2
lim 4/A, < 1. (23)
n=ow )
Pour ces fonctions, on a, a partir d’une valeur de r,
log M (r, f) < B (log r)* ,

B étant fini, d’ou 'on déduit, si A > 1,

(A—1)n logr<f

done

I1 §’ensuit que

oc)nocdac
/

donc

r
log M (r,f) = [~ (”2 1 0 (log r) (25)
0
et, a fortiori,
log M (r NJ
0

D’ailleurs le calcul de la borne du second membre de (26)
lorsque (24) a lieu, montre que (22) est alors vérifiée. Ainsi

I. Pour toute fonction entiére f (z) vérifiant U'une des conditions
équivalentes (22), ou (23), ou

on a Dégalité (26).
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Si I’on désigne d’une fagon générale par n (z, Z) le nombre
des zéros non nuls de f (2) — 7 dont le module est inférieur ou
égal & z et si I'on pose |

N (r, Z) —_—f”_(”“;;—z—)dx ,

0
on voit que, pour cette classe de fonctions vérifiant (22), on a

log M (r, f) ~ N (r, Z)

quel que soit Z fini. La moyenne N (r, Z) de Jensen a la méme .

paleur asymptotique quel que soit Z.

Lorsque log M (r, f) sera tel que I'on puisse déduire de (26)
une valeur asymptotique de n (r), les fonctions n (r, Z) auront
toutes la méme valeur asymptotique qui sera asymptotiquement
égale au rang v (r) du terme maximum de la série de Taylor de
f (2). Ce sera le cas lorsque la condition (22) du n° 15 sera vérifiée

avec k < 2 ou avec k = 2 et k(X) < 2. On peut remarquer

que, dans ces conditions, on a

n (r) log r I o log, M (r, f) - log (n (r) log r)
k ’ log, r log, 7 '

]Og M (7’, f) oo

On peut chercher & déterminer toutes les fonctions pour
lesquelles on a la premiére égalité (£ > 1) ou celles obtenues en
y remplacant & par 'une de ses valeurs asymptotiques. Ce sont
ces recherches, et celles analogues lorsque (22) n’a plus lieu; qui
conduisent aux classifications dont il a été question au n° 10.
Pour les fonctions & croissance plus lente que celles considérées
aun® 15, on a k = 1 et les fonctions réguliéres sont celles pour

lesquelles

X
V(X) =log M(r,f) > [w()dico Xw (X)),  w(X) = n (eX) .
1

En désignant I'intégrale par W (X), on doit avoir

W (X) o XW (X)

donce
‘Nl/ 1 ' !
~ =, V(X)) ~o X) = X1+8(X), lim —
w > X (X) ~> W (X) | X?wS(X) 0.
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De la convexité de W (X) résulte que XX est croissante-dés que
X est assez grand. Comme 3 (X) tend vers zéro, ajoutons la
condition qu’il décroisse. Alors, si

V(X))o XIFX) 0 3(X)40, 8(X)log X+t o
on a ‘
w (X) ~ X3X)
Car
V(X)oW(X) < Xw (X), donc w(X) > K—}%&
et |

(X" — X)w (X) < (1 + o (1)) (X)F3ED < (1 4 o (1)) (X1 TIX)
En prenant log X' = <1 + W) log X, on obtient w (X)
< (1 + o (1)) e X3 ce qui achéve la démonstration.

A toute fonction f (z) pour laquelle log V (X)/log X tend vers

un, on peut associer une fonction §(X) telle que 3 (X) i 0,
3(X)log X | © et '

Im X
X =0 Xl-H)(X) ’

ce qui permet des approximations asymptotiques.

II. Pour toute fonction d’ordre nul pour laquelle (22) n’est
pas vérifiée, il existe encore une suite tnfinie de valeurs indéfiniment
croissantes de T pour lesquelles 'égalité (26 ) a lieu.

Cet énoncé est une partie du théoréme de Littlewood qui sera
donné au n° 24. Pour I'établir, il suffit, d’aprés (21), de montrer
que, pour toute fonction d’ordre nul, ’

rfnyc(;c) dx
lim r
r=oco r

e
0

Supposons le contraire, le numérateur dans (27) serait supérieur
au produit d’un nombre positif ~ par le dénominateur que nous
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désignerons par N (r). On aurait donc, en intégrant par parties
au second membre,

- | - d
N<r [N@E = N N
r 4 r
ou
h s d
b+ )N <r [N = rNu()
r
et enfin
N/ () + N o, N, 11,
(B + 1) 7N, (r) + Ny (r) >0, N—1+h+17>

Ainsi la fonction

serait croissante, donc
o 1
f N () > K TR
h

ce qui 1mp11quera1t que le produit N (z)z 1tk ne tendrait pas
vers zéro; pour une suite de r tendant vers I'infini, on aurait

h

N (r) > K1r1+h

et d’aprés la formule de Jensen, la fonction serait au moins

h
1+h
I1 s’ensuit que toutes les fois que n (z) sera assez régulier,
on aura ’

d’ordre

r

n (z) de/x?

lim

r=oo

I

ﬁ“_“8 Fe—3

n (z) dzfx

et (26) aura lieu. Par exemple, pour les fonctions vérifiant la
condition (22) du n° 15, on voit que le numérateur de I’expres-
sion (28) est :

O()n(r) = O (1) XK1,

SRR
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il suffit méme que I'on ait seulement

= log M (r, f) .
Ry

ce qui donne une majoration analogue du coefficient de 6 dans

(21), et que i 108 M (r, /) _
r=w  XRXH
(a suipre).
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