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FONCTIONS ENTIÈRES D'ORDRE FINI
ET FONCTIONS MÉROMORPHES *

par Georges Valiron f

FONCTIONS ENTIÈRES D'ORDRE FINI ET D'ORDRE NUL

suite)

II. L'ordre et les coefficients tayloriens.

11. Le terme maximum de la série de Taylor et le polygone
$Hadamard.

00

Si f (z)S an zn est une fonction entière, An | |et
I 2 | r, la série étant convergente, absolument convergente
quel que soit z, la suite des nombres

A0, Air,...A (1)

tend vers zéro pour chaque valeur de Pour chaque r, il y a
donc un terme supérieur ou égal à tous les autres. Ce terme (ou
l'un de ces termes) est le terme maximum pour cette valeur r, ou
simplement le terme maximum;sa valeur est une fonction de r
que nous désignerons par B (r). Si r est remplacé par un nombre
plus grand, chaque terme de la suite (1) augmente (sauf A0),
B (r) est donc une fonction croissante de r, et puisque chaque
terme de (1) est continu, B (r) est une fonction croissante continue,

qui croît indéfiniment avec r. Le rang n du terme maximum
de (1), ou plus exactement de celui des termes maxima dont le

rang est le plus élevé, est aussi une fonction de que nous

*) Série de cours et de conférences sur la théorie des fonctions entières, faits en
1948 au Caire et à Alexandrie, d'après le manuscrit revu et mis au point par le

professeur Henri MILLOUX.
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appellerons p, (r). Si n < p. (r), donc

K rU <\(r)r*r)=BW

cette inégalité vaut a fortiori lorsque r est remplacé par un
nombre plus grand, donc p. (r) est une fonction non décroissante
de r. En outre, si p>n,ona Ap rp > An rn pourvu que Ap 0
et que r soit assez grand, p (r) ne reste pas borné. Le rang p (r)
est une fonction non décroissante de r qui tend vers Vinfini avec r.

D'après l'inégalité de Cauchy (§ I, (2)) on a

B (r)<M (r) (2)

M (r) étant le module maximum de / (z).
Pour étudier la relation entre B (r) et M (r), il est commode

d'employer un procédé géométrique dû à Hadamard.. Posons

log An

(gn étant infini si An 0). On a

Hm
TT + 00 (3)

n oo fv

puisque |VAn tend vers zéro lorsque n tend vers l'infini. Prenons
deux axes de coordonnées Ox, Oy et marquons les points Cn de
coordonnées n, gn.LorsqueA„ 0, l'ordonnée y de C„ est -f oo

D'après (3) on peut construire un polygone de Newton admettant
pour sommets une suite de points Cn, les autres points Cn étant
sur les côtés ou au-dessus des côtés; ce polygone que nous
appellerons II (/) étant convexe vers le bas. En effet, en supposant,

par exemple, A0 # 0, la pente des droites C0 Cn a un minimum

(d'après (3)), ce minimum correspond à une droite C0 Cp,
tous les autres points Cn sont sur C0 Cp (entre C0 et Cp) ou au-
dessus de C0 Cp. On considère alors les droites Cp Cn pour n
leurs pentes ont un minimum atteint pour une droite C, C et
tous les C„ sont sur Cp Cq (entre Cp et Cq) ou au-dessus de cette
droite. Et ainsi de suite.

Nous dirons que les abscisses des sommets de II (/) sont les
indices principaux de la suite des coefficients An. Nous désignerons

par Gn l'ordonnée du point d'abscisse entière de II (/).
L'Enseignement mathém., t. VI, fasc. 2. 9
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On n Gn gn pour Igs indices principaux et gn Gn pour les
autres n. Pour une valeur de r, le logarithme de Ap rv est infé¬

rieur ou égal au logarithme du terme maximum B (r) A rn
n= y. (r), donc n '

P loS r ~ gp < n log r — gn n p (r)

OU

gp > ên + (p — n) log r

Géométriquement cela signifie que les points Cp sont au-dessus
ou sur la droite de pente log r passant par le point Cn, n p, (r).
Par suite, la droite de pente log r ne coupe pas n (/) et contient
un point Cn, c est la «tangente» de pente log r menée à n (/).
Ainsi, le rang p (r) du terme maximum est l'abscisse du point
de contact de la tangente Dr de pente log r menée à n (/), ou
l'abscisse du sommet de plus haut rang situé sur le côté de pente
log r lorsque log r est la pente d'un côté de II (/). Lorsque r croît,
la tangente Dr tourne autour du sommet de II (/) dont l'abscisse
est p, (r), puis autour du sommet suivant, etc. Les valeurs de
p (r) sont les indices principaux. La tangente Dr coupe 0y au
point d'ordonnée gn — n log r — log B (r).

Pour toutes les fonctions / (z) admettant le même polygone
II (/) le terme maximum B (r) est le même, ainsi que p (r). La
fonction

00

F (z) 2
0
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est une fonction majorante pour toutes ces fonctions et a B (r)
pour terme maximum et (ji (r) pour rang de ce terme.

Le rapport
-r Gn-Gn-1
jnn — e

de deux coefficients successifs de F (z) est le rapport rectifié de
An-i à An. La quantité log Rn est la pente de II (/) entre les
points d'abscisses n — 1 et n. C'est une fonction non décroissante
de n qui tend vers l'infini avec n.

Supposons pour simplifier | / (0) | 1. (On passera aisément
au cas général / (0) ^ 0 et aux cas particuliers / (0) 0.) Nous
aurons

e
71

— Ri R2 ••• Rn
et

rV-(r)

\(r)
Or

Rq+l

B(r)
Rx R2 R <4>

^ l) ~T ~ qIog ' J'^ W y V (r) log r
R '

R * p" ^
donc

r
logB (r)=f^Mdt.(5)

0

Dans le cas général, on aura
r

log B (r) log B (rt)+f£Mdt, 0 < r0 < r (6)

Telle est la relation entre B (r) et (r (r). Si l'on donne
| f(0) | .jz 0, par exemple, la donnée de la suite Rn détermine
un polygone II et une classe de fonctions entières. De même, la
donnée de log B (r0) et d'une fonction p. non décroissante ne
prenant que des valeurs entières positives ou nulles détermine II.

12. Relation entre B (r) et M (r). Cas des fonctions d'ordre fini.
Conséquences.

On a la relation (2) entre B (r) et M. Pour obtenir une
relation dans l'autre sens, Hadamard employait une méthode
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géométrique qui est exposée dans les Leçons sur les séries à termes
positifs de Borel. Nous utiliserons une méthode analytique. On
a évidemment

00

M(r) < F(r) ^e~Gn rn
0

Si p est un entier supérieur à [x (r) et tel que Rp > r, on a pour
q> p,

-Ct -CT A r«-P+l
r<î — P rp-l _

par suite

e e ,.P-i ___ < g

p-1 00

F (r) 2e~Gn7,K + 2e"&n'-"
o p

q-p+l
[p + îÇ^]<B(r)P + 2(^') =B(r)|p +

Prenons

p - *[' + ÏTïïl + 1

ce qui entraîne

_ r
Rp > r H rr '

P (r)

Nous obtenons

B (r) <M (r) < B (r) (2jx{r + ij (7)

Le coefficient 2 au troisième membre ne peut pas être
remplacé par un nombre inférieur à 1, car le nombre des termes

égaux à B (r) peut être voisin de [x (r) et fx ^r + fx (r).

De même, on ne peut pas remplacer (x (r + Par P (r)•

Remarque. — D'après le calcul précédent, la somme des

termes de F (r) dont le rang n est supérieur à Q > p est au plus

t. ] \ r \ / 1 \ Q-p+l
B (r) (x r +

I
1 x _i_

' +
H (r)

Si l'on prend

Q 2K"+^)log(Mr+^) (8)
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on voit que ce reste est infiniment petit par rapport à B (r).
Ainsi M (r) est déterminé asymptotiquement par ses Q premiers

termes, Q étant la fonction (8) de r.

Cas de Vordre fini. — Pour une fonction d'ordre fini p,

l'inégalité (2) (première partie de (7)) donne

log B (r) < rp+s

si petit que soit s, pourvu que r soit assez grand. Remplaçant
le premier membre par sa valeur (6), on obtient une borne pour
[x (r). L'inégalité à résoudre est la même qu'au n° 5, on a la
même borne pour p, (r) que pour v (r),

p (r) < rp+£ r > r0 (s)

Portant cette valeur dans les inégalités (7), on obtient

B {r) < M (r) < B (r) rp+e (9) -

et comme corollaire, on voit que:

Théorème. — Pour une jonction d'ordre fini, log M (r) et log B (r)
sont asymptotiquement égaux.

Par conséquent, si l'on se donne log B (r) arbitrairement à

partir d'une fonction p, (r) telle que p (r) vérifie la condition

» log r r

on peut construire le polygone II correspondant. Pour toute
fonction entière / (z) admettant ce polygone, l'inégalité (7)
a lieu et entraîne (9), la fonction M (r) est connue d'une façon
approchée et notamment log M (r) est connu asymptotiquement.
On peut ainsi construire une fonction entière d'ordre fini dont
le logarithme du module maximum est asymptotiquement égal
à une fonction donnée de logr,convexe en log r. En effet, une

r
telle fonction est de la forme C + f v (t) étant indéfi-

î
niment croissante et d'ordre fini. Il suffira de prendre pour 1,
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jjL (r) E (v (£)), E (u) désignant la partie entière de u. On aura

r r

J [i (t) y J _ h (r) log r 0 < h (r) < 1

1 1

Non seulement la fonction ainsi construite répondra à la question,

mais on aura
r

log M (r) — J
Ç dt

O (log r)

1

Pour une fonction d'ordre infini, on pourra encore dans
certains cas avoir un résultat analogue si la croissance de v (r) est

assez régulière.

13. Relation entre log M (r) et les coefficients An.

Lorsqu'on donne les An, modules des coefficients tayloriens,
les formules (7) et (9) fournissent une valeur approchée de M (r).
Inversement, si log M (r) est connue approximativement, en

particulier connue asymptotiquement, que peut-on dire des An
Bornons-nous au cas des fonctions d'ordre fini. On a donc

r
log M (r) fxj log B (r) C + J ^

1

C étant une constante. Supposons que log M (r) soit compris entre
deux fonctions XF1 (r) et W2 (r) convexes en log r. A ces fonctions

correspondent des polygones II^ et II^ Aux fonctions (r)( 1 — e)

et Y2 (r) (1 + s) correspondent Il1 et II2. Gomme log B (r) est

compris entre ces valeurs (pour r > r (s)) la tangénte Dr dé

pente log r à II relatif, la fonction envisagée qui coupe Oy au

point — log B (r) est comprise entre les tangentes de même pente
log r à Il1 et II2; le polygone II est compris entre II1 et II2 puisque
ces polygones sont convexes. La fonction Gn de n est comprise
entre les fonctions analogues relatives à 11^ et 112. Il en résulte

une borne supérieure pour tous les coefficients An et une borne

inférieure pour certains d'entre eux; on a en outre une limite

pour l'écart des indices principaux successifs. Dans certains cas,

on pourra trouver des conditions analytiques nécessaires et suffi-



ORDRE ET COEFFICIENTS TAYLORIENS 131

santés. Mais en général la condition géométrique d'après laquelle

n est compris entre nx et II2 ne s'exprimerait analytiquement

que sous une forme extrêmement compliquée.

14. Cas des fonctions d'ordre fini positif et d'ordre précisé L.

Considérons d'abord une fonction parfaitement régulière par

rapport à un ordre précisé p (r). On a donc

log B (r) r>o r
donc

j (A (t) dt ^ rp(r)
^

1

On a vu au n° 9 qu'une telle égalité se résout asymptotiquement.

On a
(-*• fr) rxj P rP^ •

La relation entre n et Rn est donc

P<(Rn) PU(R„) (")

La fonction inverse de yU (x), soit x W a des

propriétés analogues à celles de U (x). Si l'on écrit W (y)

on a
î

y — X y

donc w (y) a pour limite -. D'autre part
P

dy XÜ >(x)dx dxyW 'Jy)_;;W' U (x) _ 1

~y ~U(x) x 'x W (y) y
y W (y) V' p

ce qui montre que ylog y.o>' (y) tend vers zéro. Ainsi

lim cù(y) -,lim y 0/ (y) log y « 0 (12)
î/ co P 2/=33

La conséquence relative au rapport W {ky)[W (y) subsiste et

par suite (11) se résout sous la forme

1

R„~W(-W(-YW (n).9/ \9
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Alors, puisque

on a

ou

enfin

log B (Rn) ~U(Rn) ~ ~ n log Rn — Gn

Gn
71 lQg (pe)

— n log W (n) + o (n) (13)
P

- — l0g ^ — log W (n) + o (1)

G 1

e n no
(P e)P

6
W>)

Inversement, de (14) on remonte à (13). Donc, si petit que
soit s > 0, on a pour n assez grand,

_ En + n
Iog^(Pe) _ n log W (w) < _ Gn < log <Pe>

— ra log W («) + e 77

Or, de

on déduit

Gw
-(1°g P e)

— nlog W (n)+ s n,(15)

log Rn G„ - «„.J - + log W (ti) + - 1) log
W (n)

p W (n — 1)

Comme, d'après les propriétés de W (n), on a

W (71 — 1) W (n) — W' (77 — 6) W (77) — W (77)
1 + 0 ^1>, 0 < e < 1

p

on voit qu'on déduit de (15)

log p
lug xxn —

donc

log R71
n

s + log W (n) + 0 (1)
p

e5 Rn ~ (i)e W (77) rv; w (-^) •
<16)

On retrouve la formule qui avait été déduite de (11) mais Rn y
est remplacé par le premier membre de (16). On aura donc

^pU(Rne£)^p esp U (Rn) [x (r) 00 p esp U (r) 00 eep r U' (r)
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et en intégrant
log B (r) 00 e£p U (r) (17)

De même, en remplaçant s par — s dans (15) on obtiendra
le résultat analogue à (16) mais où s est remplacé par — s.

Comme s est arbitraire, il s'ensuit que (14) entraîne (10) et

aussi (11).
L'égalité (11) montre que Rn croît si n est remplacé par

n (1 + s), s > 0 arbitraire. C'est dire que le rapport de deux
indices principaux successifs tend vers un lorsque n co.

D'après (14), on a pour tous les n,

VÄ; <,1 + 0,1,1 («1.

et pour les indices principaux au moins

VK> (i ~ 011» WM ' B V p1Lmoa-^i 1- (19)

Inversement, ces inégalités entraînent (14) puisque le rapport
GJn croît à partir d'une valeur de n et puisque W (n')lW (n)
tend vers un si n'jn tend vers un.

En définitive:

I. La condition nécessaire et suffisante pour que la fonction
entière f (z) soit d'ordre précisé p (r) et à croissance parfaitement
régulière est que W (y) étant la fonction inverse de U (x) xp(x),.

les conditions (18) et (19) soient réalisées. En outre, si Von se
donne à priori une fonction W (y) yw(y) ,co (y) vérifiant les conditions

12) et les An vérifiant les inégalités 18), (19), les fonctions
f (z) dont les modules des coefficients sont les An sont telles que

log M (r) U (r)

U (x) étant la fonction inverse de x — W (y).
Par exemple, la condition nécessaire et suffisante pour que

log M (r) (vCrp

C étant constant, est que

n
_

1^

ïïm Va 1

n= 00 \ n J
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et que, pour une suite de valeurs nv de n,

1 n nx

Si l'on a
n

lim y/An [n log nf 1

on a

n log w
J

a a2 ra

log r 'W (ra)

donc

Supposons maintenant qu'il s'agisse d'une fonction / (z)

quelconque d'ordre précisé p (r). On a seulement

Si n (F) est le polygone d'Hadamard correspondant à une fonction

pour laquelle (20) est remplacé par (10), les tangentes à n (/)

sont asymptotiquement au-dessus des tangentes à II (F), donc

Il (/) au-dessus de II (F), les coefficients An de / (z) vérifient

l'inégalité (18). On ne peut pas avoir, à partir d'une valeur de n

l'inégalité (18) où 0 (1) serait remplacé par — s, en vertu de la

réciproque du théorème I précédent. Par suite

II. Lacondition nécessaire et suffisante pour que f (z) soit

d'ordre précisé L p (r) est que,W (y) étant la jonction inverse de

y U (x), on ait

Supposons maintenant que p (r) jouissant des propriétés de

l'ordre précisé, on ait pour une fonction / (z),

i-logBJr) U(r)=rPW
r==° U(r) ' 1 ' (20)

n
lim VAnWH(Pe>~P 1 '

r'"" U (r) - ^ ' r« U (r)
log M (r) _ c ^

lim lQg M (r> p 0 < B < C U (r) r^r)
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Comme on le voit de suite

* log c j_ lo8B mip [r)+ • p W + 15£7
(21)

sont aussi des ordres précisés. Le polygone d'Hadamard II (/)

sera asymptotiquement compris entre les polygones correspondant

aux fonctions parfaitement régulières relatives aux ordres

(21); les Gn vérifieront les conditions déduites de (13)

log W(g) - "l0gp(p6) - o (n) < Gn <log W(g) - "l0gp(pe) +

et ces conditions seront suffisantes.

15. Cas des fonctions d'ordre nul.

On peut évidemment procéder exactement de la même façon.
En posant comme au n° 10, X log r, cherchons les propriétés
des modules An des coefficients tayloriens qui entraînent

xl - 1 V (X) log M (r) (22)

avec
ÏÏrn k (X) k > 1 lim k' (X) X log X 0

X=oo X=co

On a vu que la dérivée w (X) de V (X) vérifie l'égalité obtenue

en dérivant, on aura donc aussi

'

(X (e) no k Xfe(XM

On a ici

n ~ k Xn log R„

C est ici l'inverse de la fonction Y xfe(X)_1 qu'il convient
d'introduire. Comme k (X) -- 1 jouit des propriétés de k (X)
(sauf qu'il tend vers k — 1 et non pas vers k), l'inverse
X Y"(Y) *=2 Z (Y) jouit encore des mêmes propriétés; co (Y)

\tend vers -, On a
k — 1

1

xn iog R„~Z(J)~IhZW
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et
k

-Gn logB(Rn)-WXn~(i-l^Xn^-(Ä-l)A1-&wZH- (M)

Inversement, si Gn vérifie cette égalité, on a l'égalité (22). Car,
en prenant

h

Gn — + (1 -f s) (/l — 1) k^nZ (n)

on obtient
h

X„= (1 + e) (k-l)kl-h(nZ(n)Y

la dérivée étant prise pour la valeur n — 0, 0 < 0 < 1, ce qui
donne

î

xn= (1 + é) (1 + 0(1))

On retrouve ainsi en inversant

n ~ k x,h(X'yi)x,
1 -f- £

V
puis [jl (r), puis (22) où au dénominateur, X est remplacé par •

1 -f- £

Donc, comme au n° 14, la condition (23) est nécessaire et
suffisante.

On achève, comme au n° 14, la seule modification étant que
les limites d'indétermination des coefficients sont ici plus larges.
On a cet énoncé:

Pour que Végalité (22) ait lieu, il faut et il suffit que Z (Y)
étant la fonction inverse de Xfe(x)_1, on ait

< e-(l-o(D)KZ(n)
> g - 1)

<24>

et

WTn > e-(l+o(l))KZ(n)
; n n p 1, 2 lim 1

P P= 00 71
^

Par exemple, pour que l'on ait, C étant une constante,

log M (r) rv G (log r)2
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il faut et il suffit que

n2 L
VAn < e 40 (1 + o (1))

et que, pour une suite de valeurs np telles que np+ilnp tende
vers un,

n2

VAn e
4C

» n np '

On déduira de l'étude faite que
La condition nécessaire et suffisante pour que

est que

• X logr,

y log A
lim —— — i

n— oo K n Z (n)

K étant le nombre défini dans (24).

16. Cas des fonctions d'ordre nul à croissance très lente.

Hadamard a observé que, si pour une valeur de n, les
rapports rectifiés Rn+1, Rn vérifient la condition

> &,i,
on a, pour r —kRn

/(z) anz«[l+|^M]> |a(2)l<l, M=,, (25)

et que, par suite, si k2>9, f(za exactement n zéros dans le
cercle de rayon /cRn centré à l'origine.

L'égalité (25) est une conséquence immédiate de l'inégalité

Pi«.

et la conclusion découle du théorème connu sur la variation de
l'argument.
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Hadamard utilisait cette proposition pour obtenir des fonctions

pour lesquelles le cas d'exception du théorème de Picard
ne se produisait pas. Pour qu'il en soit ainsi, il suffit d'ailleurs

que la limite supérieure de Rn+1/Rn soit supérieure à 1 3).

Pour que l'inégalité relative au rapport Rn+1/Rn ait lieu une
infinité de fois, il suffit que, à partir d'une valeur de n,

R„ > k2n

donc que

R, R2 Rn > kn2 G

C étant une constante. On déduit alors du n° 15 que:
Pour toute fonction entière vérifiant Vune des conditions

équivalentes

log M n2

<(log r)2 4 log 3
lim VAn< 3 '

il existe une suite de cercles | z | — r, de rayons indéfiniment crois-

sants, qui renferment un nombre de zéros égal au rang du terme

maximum du développement de Taylor.
Si l'on suppose que, à partir d'un certain rang, les coefficients

a sont tous différents de zéro, et si, à partir de ce rang,

1 an+1
> k2 k > 1

on a, pour

r k R„
*71-1

/ (a) anzn[l+ H (k) an (a)] H 2 ^ *-n2 (z) I < 1 ;

donc, si H (k) < 1, c'est-à-dire si k > 2, 193..., les zéros de

/ (z) sont séparés par les cercles de rayons &Rn; sur ces cercles,

on a
log I / (z) I l°g B (r) + O (1)

(On voit que les zéros de / (z) — G, où G est une constante
arbitraire, sont aussi séparés par ces mêmes cercles.)
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On peut préciser la position des zéros. Par exemple, si

lim ^!^±i o

n= oc an

le zéro de rang n (les zéros étant classés par ordre de modules

croissants) est donné par

_^=i(l + 0(1)) ;

n

on le voit de suite en mettant en évidence dans f (z) les deux

termes de module maximum pour r Rn 4).

17. Remarques sur Vapproximation de M (r).

Si la fonction / (z) est holomorphe pour \ z \ < r, c'est-à-dire

holomorphe pour | z | < R, r < R, et si

00

/ (z)=2 % zn

0

la fonction g (z) définie par

00

f2\n —
g M 2 an (7)

0
v 7

est holomorphe pour \ z \ > r. Le produit / (z) g {z) est holo-

morphe dans la couronne g < | z | < R, donc développable

en série de Laurent. Le terme de ce développement qui est
indépendant de z est donné par une intégrale prise sur la circonférence

I z I — r, ce qui conduit à la formule de Gutzmer

00 ztc

SAn^2n f 1

n «/

Si l'on désigne par [G (r)]2 le premier membre de cette formule,
on voit que, pour toute fonction entière, on a

B (r) < G (r) < M (r) < F (r) 2 V* K \*n\
0
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On peut déduire de là une valeur approchée de M (r) au
moyen de F (r) en utilisant l'inégalité de Cauchy-Schwarz,

/ V \ 2 p

2An'n < iP + l)SAn^n-
\ 0 / 0

D'après une remarque du n° 12, il suffit de prendre p + 1 de
la forme

K- + 4T' *>o

pour que le premier membre soit asymptotiquement supérieur
à M (r)2. Dans le cas de l'ordre fini p, on obtient ainsi les
inégalités de Brinkmeier

p p

F (r) < G (r) A < M (r) A

valables à partir d'une valeur r (z) de r 6).

En utilisant la même méthode et les résultats de la méthode
de Wiman et Valiron (Lectures on the general theory of integral
functions, chap. IV), on obtient de même les inégalités

î i
F (r) < G (r) [v (r)]4 F (r) < G (r) [log B (r)]4

F (r) < G (r) r4

valables, les premières pour toute fonction entière, la troisième
pour une fonction d'ordre fini p, sauf au plus dans une suite
d'intervalles dans lesquels la variation totale de log r est finie 7).

III. Décomposition en facteurs et conséquences.

18. Théorème de Jensen. Application aux fonctions entières
Tordre fini.

Soit / (z) une fonction méromorphe pour | z | < r et supposons

que l'origine ne soit ni zéro, ni pôle et que la circonférence
\ z \ x ne contienne ni zéro, ni pôle. Si n (x) désigne le nombre
des zéros et p (x) le nombre des pôles dont le module est inférieur
à x, chaque zéro ou pôle étant compté un nombre de fois égal à
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son ordre de multiplicité, on sait que, d'après le théorème des
résidus

2rr

/ \ / \
1 Ff (^elCP) im - rn(x)— p(x —- / ^—r-^xe^idcù

P f (xe1*)
0

ce qui peut s'écrire
2tt

xX2 7 lJ9'

0

Intégrons entre x' et x" les deux membres de cette égalité en
supposant d'abord que la couronne < | z | < ne contienne
ni pôles, ni zéros. Nous obtenons

f r-^i. ±f lVt'f'^d,J x J x 2*J 9

x' x' 0

et, puisque le premier membre est réel, nous pourrons mettre
au second membre

2 TC

2^/ log I / (®" ei:p) I —log 1/ (^6^)1
0

En outre, pour un pôle ou zéro de (z), log | \ a un infini
logarithmique, la formule reste donc valable si les circonférences

z | x et | z | x'renfermentdes pôles ou des zéros ; n (x)
et p (x) seront les nombres de zéros et de pôles de module au
plus égal à x. En ajoutant les formules ainsi obtenues dans les
couronnes limitées par les cercles de centre origine passant parles zéros et les pôles, on obtient

J~dx~/^irdx ~i^flo8\f(re'l:'l')\'d<f>—-iog\f(0)\: (î)
0 0 0

C est la formule de Jensen. Si «1; a2, an désignent les zéros,
chacun figurant un nombre de fois égal à son ordre de multi-

L'Enseignement mathém., t. IY, fasc. 2. in
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plicité, on sait d'après le n° 11 que

[lMdx log—^— (2)J x &
oc, a2 <x I

K 1

| % a2 ocn |

Dans le cas où f (z) admettrait, par exemple, un zéro d'ordre q
à l'origine, on appliquerait la formule (1) à / (z) z~q

Appliquons la formule (1) au cas d'une fonction entière d'ordre
fini p ; n (x) désignant alors le nombre des zéros non nuls de
module inférieur à x, nous obtenons, si r > 1

r 2tz
I / (reicp) I—„^9 + C < log M + C (3)/ /log

C étant une constante ; donc si petit que soit s positif, on a, pour
r assez grand,

f ï~x^dx < r9+Z r° > 0 ' ^
C' est l'inégalité déjà rencontrée deux fois (nos 5 et 12). Elle
entraîne

n (r) < rp+£ r > r (e)

donc aussi, les ocn étant les zéros non nuls,

*<Kr
ou encore

1 ^ 1 p -f 2s
| an|P+2£ ni+Tl ' ^ ~ P + £

>

Comme s est arbitraire, on voit que
Pour une fonction d'ordre fini p, la série formée avec les inverses

des modules des zéros élevés à une puissance supérieure à p est

convergente.
Si p (r) est un ordre précisé, l'inégalité (4) est remplacée par

r

j^ïdx<[1 + 0 (l)]/-p<r)
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et on a vu qu'il en résulte (n° 7)

n M < [1 + o (l)]pe7*p(r)

La recherche des cas où la série | an |"p converge a conduit à

distinguer deux classes de fonctions d'ordre p. Considérons

l'intégrale

./ 'l0g*{r)dr,

et convenons de dire que la fonction est de la classe convergente
si cette intégrale converge, de la classe divergente si elle diverge 8).

En multipliant les membres extrêmes de (3) par et intégrant

de r0 à oo on voit que, pour une fonction de la classe convergente,

P dr P n (x) 1

ro ro

converge. En intégrant par parties, on en déduit que l'intégrale

00

/n (x) dx
<6)

p

^0

est aussi convergente. Car l'intégration par parties de (5) où
l'intégrale extérieure est prise entre r0 et R donne

R

1 C ZLM /I _ _L\ da; > I r W ^(i _ 2-e)
P J «L B?) Pj u

ro

Or, on vérifie de suite que l'intégrale (6) et la série

<7>

1 | an I

convergent et divergent simultanément. Par suite:
Si la fonction est de la classe convergente de Vordre p, la série

(7) formée avec les modules des zéros est convergente 9).
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19.- Théorème (THadamard-Carathéodory sur la partie réelle.

Décomposition en facteurs des fonctions d'ordre inférieur à un.

Rappelons d'abord le
Lemme de Schwarz. — Si la fonction f (z) est holomorphe pour

| z | < R, si / (0) 0 et si dans le cercle considéré \ f (z) \ < M,
on a dans ce cercle

| f(z)\<mM,

l'égalité n'étant possible que si f (z) est un monôme linéaire.
C'est une conséquence du théorème de Cauchy sur le module

maximum, appliqué à

Considérons alors une fonction f (z) holomorphe pour | z | < R,
nulle pour z 0 et supposons que, dans ce cercle, sa partie
réelle soit inférieure à un nombre A, qui est nécessairement

positif, car exp. A est le maximum du module de la fonction
exp. f (z) dont le module est 1 à l'origine. (On suppose évidemment

que f (z) ^ 0). Les valeurs Z f (z) appartiennent au
demi-plan X RL < A. Faisons la représentation conforme
de ce demi-plan sur le cercle | £, | < 1, le point Z 0 donnant
£ — 0 et la direction positive de l'axe réel étant conservée.
Elle est donnée par

Z
5

2 A — Z

et transforme Z f (z) en la fonction £ / {z)f[2A — / (z)],
holomorphe pour | z\ < R, nulle à l'origine et de module au

plus égale à 1. D'après le lemme de Schwarz, on a | Ç | < | z | g
l'égalité né pouvant avoir lieu que si £ cag |.<*> | 1. Or

t rfl'56 (2) s ' i6 (z) i <1 ;

on a donc

l'égalité ne pouvant avoir lieu que si \ co^. C'est l'inégalité
de Carathéodory, qui complète et précise un théorème antérieur
d'Hadamard.
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Supposons alors que / (z) soit une fonction entière et que, pour
| z I — r assez grand, on ait max. R f (z) o (rh), k étant un
nombre fixe. Appliquons l'inégalité (8) à f (z) — / (0) en prenant
R 2r, on aura

|/(*)| < 1/(0)1 + 2 (o + 1/(0)1)

ce qui montre en utilisant les inégalités de Cauchy (n° 1), que
f (z) est un polynôme inférieur à k. Ainsi

Si f (z) est une fonction entière et si max. R f (z) o (rfe),

f (z) est un polynôme de degré moindre que k (Hadamard).
Considérons alors une fonction,entière f (z) (une vraie fonction

entière) d'ordre p inférieur à 1. Si elle a une infinité de zéros an,
la série

00

V (9)tKI
est convergente d'après le théorème du n° 18. Le produit infini
formé avec les zéros non nuls

n(-^
est convergent. S'il y a à l'origine un zéro d'ordre q, la fonction

'W—n(«-i;)
a les mêmes zéros que / (z) avec les mêmes ordres de multiplicité.
Le quotient / z)/g(z)est une fonction entière sans zéros, donc
une exponentielle, exp. h (z), h (z) étant une fonction entière ou
un polynôme. Nous allons montrer que h (z) est une constante
en montrant que sa partie réelle est bornée par o (r). Il résultera
bien du théorème d'Hadamard qui vient d'être établi que h (z)
est une constante. Ecrivons avec E. Landau

Mz) _fW 1
— m —
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en supposant | z |- r très grand et prenant m tel que | am | < 2r,
| am+1 | > 2r. Au second membre de (9'), le premier terme est

une fonction entière, le maximum de son module pour \z \ r
est inférieur au maximum de ce module pour \z \ — 4r; or pour
| ^ | 4r, on a — > 2, le dénominateur est supérieur à 1 et

1

an

au numérateur M (4r) < e(4r)p+£ f avec p + e < 1 si s est> assez

petit. Le logarithme du module du premier facteur du second

membre est donc égal à o (r). Dans le second facteur — est au
an

1 1

plus égal à et si 0 < v <

—-— < 1 + 2 p < e2v
1 — ç

Le logarithme du module du second facteur du second nembre
de (9') est donc moindre que

oo

2rSï^
m+11 n I

et le reste de la série convergente tendant vers zéro, cette borne

est encore o (r). On a

max R h (z) o [r)

h (z) est une constante. Ainsi, comme la démonstration vaudrait
encore si la fonction n'avait qu'un nombre fini de zéros et conduirait

à la conclusion que cette fonction est un polynôme, on voit
que

Une vraie fonction entière f (z) d'ordre fini p inférieur à 1

possède une infinité de zéros olu et peut être décomposée en facteurs

sous la forme

iv c*jlh-A no)

De ce résultat, oû déduirait le théorème général d'Hadamard

sur la décomposition en facteurs des fonctions entières d'ordre

fini quelconque10'.
Le résultat s''étend aux fonctions de la classe convergente de

Vordre 1. Car, pour une telle fonction, la série (9) converge, et
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d'autre part

Dans tous ces cas, le produit figurant dans (10) est un produit

canonique P (z) de genre 0, la fonction / (z) est dite de genre 0.

20. Maximum du module d'un produit canonique de genre 0.

Si la série (9) converge et si l'on pose | an | rn, on a

IP M I
1*1 •

Désignons désormais par M (r, /) le maximum de | / (z) | pour
2 I r. Nous aurons

CO

log M (r,P) < S l0S (4 + (11)

La série du second membre peut être remplacée par une

intégrale. Si r (y) est une fonction égale à rn+l lorsque < < 1,

c'est
00

/1ok 0+

On pourrait intégrer par parties. Mais on peut aussi écrire le

second membre de (11) sous la forme

(12)|.ni«(i + fj - 2» ["*( + -(• + |

car, la série (9) étant convergente et à termes non croissants, le

rapport n/rn tend vers zéro lorsque n -* On peut écrire

rn+l rn+l

l,8 +i) _ ,°g + JL-) j +
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et le second membre de (12) est alors égal à

J x (x + r)
0

Donc
00

log M (r, P) < M 31
' / x [x + r)

0

l'égalité ayant lieu lorsque les zéros sont réels et négatifs. D'après
(10) on voit que, pour une fonction d'ordre p inférieur à 1, ou

pour une fonction d'ordre 1 de la classe convergente, on a

log M (r, f)<j+O (log (14)

0

Si on se donne à priori la fonction (10), la série (9) étant
convergente, l'inégalité (14) est aussi valable. Supposons la
série (7) convergente, avec p < 1. Multiplions les deux membres

de (14) par et intégrons de r0 > 0 à R, en mettant dans

l'intégrale du second membre de (14) la limite r0 au lieu de 0,

ce qui ne change rien par suite de la présence de 0 (log r). Nous
obtenons

?o r0 r0

0°

Comme j n ^tdx converge (n° 18), l'intégrale intérieure dans

ro

(15) converge uniformément quel que soit r positif, on peut
intervertir l'ordre des intégrations et poser ensuite r — tx de

telle sorte que l'intégrale du second membre de (15) devient

H

flM, i[x)dx,o (x)f - <
J x J(1+ t) f(1 + sill Ttp
r0 rç 0

X
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Par hypothèse, la première intégrale, où O est remplacé par

une constante, converge lorsque R -> co. Le premier membre

de (15) est borné, / (z) est de la classe convergente. Il s'ensuit,

compte tenu du résultat du n° 18, que

I. La condition nécessaire et suffisante pour qu'une fonction

d'ordre p inférieur à un soit de la classe convergente est que la

série (7)converge.
Pour une fonction d'ordre inférieur à 1, la série (7) et l'intégrale

I log M (r,
„1+P

convergent ou divergent simultanément.

Supposons maintenant que p étant inférieur à 1, et p (r)

vérifiant les conditions de l'ordre précisé, on ait

n (r) < BU (r) f
- U (r) rp(r) (16)

B étant une constante finie. Si k est pris supérieur à 1, on a,

d'après un calcul déjà fait

r r
k k
r rn (x) dx ^ Ç n [x) dx ^ B + o (1) (17)

J a (x + r) < J s ^ F p

1

0 0

D'autre part, si a est compris entre p et 1, p (#) est inférieur
à a si x est assez grand et xp(x)_oc est alors décroissant, donc

00 oo °o

r rn(x) dx
.___

P B xp'x'a dx^gr I
J x(x+ r)< JJ-* 1 J *2-«
kr kr kr

5 + 0 0) up) (18)
(1 — a) kl'p

D'autre part,

kr

/rn (x) dx /7 |\ x Vw
_____ < B {kr)^log__j r

„ log (19)
r_
¥
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et

1 1
k k

U(r) f^— + (20)
[sin tc p k J '

lorsque k est très grand. De ces inégalités, on déduit les résultats
suivants :

II. Si f (z) est d'ordre p < 1 et d'ordre précisé p (r), on peut
associer aux nombres r pour lesquels log M (r, f) > [1 — o (1)] U(r)
des nombres R kr, où k est suffisamment pour lesquels
n(R) Kl_I_J (R), K. dependant de k^ des qu/e R ^ Ho

Car, d'après le n° 18, l'inégalité (15) est vérifiée avec B > pe
dès que r est assez grand; on peut alors prendre k assez grand
pour que les derniers membres dans (17) et (18) soient inférieurs
à — U (r); alors d'après (14) et (19), on a

n (R) log k >~U(r) > | rp U (R)

dès que R est assez grand.
En rapprochant de l'inégalité du n° 18, en remarquant que

U (R) > (1 — o (1)) log M (R, /) et en considérant les zéros de

f (z) — Z où Z est un nombre arbitraire de module inférieur à R,
ce qui ne modifie pas les inégalités, on voit que

III. Si f (z) est d'ordre p < 1, il existe une suite de couronnes
X Rm < | z | < Rm où X est un nombre convenable inférieur à 1

et où lim Rm qo dans chacune desquelles le nombre des zéros
m oo

de f (z) — Z, où | Z | < Rm est compris entre

log M (Rm /) et X" log M (Rm /)

Xr et X" étant des nbmbres positifs finis. On a d'ailleurs

log M (Rm, /) > X'" U (Rm)

hr kr
Ç rXJ (x) dx Ci

J x (x + r) ^ J ;

dx
x (x -j- r)

Ceci se précise dans les cas de régularité:
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IV. Si p < 1 et p (r) un ordre précisé de f (z) et si, à partir
d'une valeur y, on a

log M (r, f) > DU (r) D > 0

le nombre des zéros de f (z) — Z, | Z | < r, inférieurs en module

à y est compris entre h U (r) et (1 + s) pe U (r), où z > 0

arbitraire, h > 0 déterminé, et ceci à partir dune valeur de r.
Les propositions I, II, III, IV valent pour toutes les fonctions

entières d'ordre fini non entier (voir Valiron, Lectures on.,.,
chap. III).

L'égalité (20) dans laquelle on fait croître k avec r, jointe
aux inégalités (17) et (18) montre que:

V. Si p (r) jouit des propriétés de Vordre précisé, si p < 1 et si
la fonction f (z) définie par (10) a tous ses zéros réels et négatifs,
le nombre des zéros de module inférieur ou égal à r étant asymptoti-
quement égal d U (r), on a

log M (r, f) -j--—: U (r)
sin je p

Cette proposition est aussi un cas particulier d'un théorème
relatif aux fonctions d'ordre fini non entier à zéros alignés sur
une demi-droite, avec n (r) ~ U (r). Elle comporte un complément,

utile dans certaines questions, sur la valeur de log f (z)
dans le plan privé du voisinage angulaire de la demi-droite
portant les zéros. Elle admet une réciproque 12).

21. Maximum du module des fonctions dordre nul.

De l'inégalité (14) découle à fortiori, puisque x + r > r et
x + r > x,

log M (r,/)< f^^ + rf^^ + 0(logr).
0 r

En comparant à l'inégalité (3) de Jensen, on voit que, pour les
fonctions d'ordre inférieur à 1 (et pour les fonctions d'ordre 1

de la classe convergente), on a

ogM M) Jn-^- + er f^ +O (log 0 < 0 < 1 (21)
0 r
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Considérons d'abord la classe de fonctions d'ordre nul telles que

îîm < co (22)
r=co (log

qui, d'après le n° 15 sont caractérisées par la condition

n2

lim <\/An < i (23)
n= oo

Pour ces fonctions, on a, à partir d'une valeur de r,

log M (r, /) < B (log r)2

B étant fini, d'où l'on déduit, si X > 1,

rx

(X — 1) n(r) log r < jn^<ß x2 ^ ^ ^

r
donc

n (r) < B' log r B' < 4B (24)

Il s'ensuit que

yn(x)dx^/"logŝ_ R, log r + 1

r
donc

çn(x)dx k B, r^dx B,J x2 J x2 r

log M (r, f) f+ O (log (25)

0

et, à fortiori,
r

log M (r, /) rvj J dx - (26)

0

D'ailleurs le calcul de la borne du second membre de (26)

lorsque (24) a lieu, montre que (22) est alors vérifiée: Ainsi

I. Pour toute fonction entière f (z) vérifiant Vune des conditions

équivalentes (22), ou (23), ou

lim < oo

r= oo log r

on a Végalité (26).
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Si l'on désigne d'une façon générale par (x, Z) le nombre

des zéros non nuls de f (z) —Z dont le module est inférieur ou

égal à £ et si l'on pose

N(r,z)_/ll£iU
0

on voit que, pour cette classe de fonctions vérifiant (22), on a

log M (r, /) rvj N (r, Z)

quel que soit Z fini. La moyenne N (r, Z) de Jensen a la même

valeur asymptotique quel que soit Z.

Lorsque log M (r, /) sera tel que l'on puisse déduire de (26)

une valeur asymptotique de n (r), les fonctions n (r, Z) auront

toutes la même valeur asymptotique qui sera asymptotiquement

égale au rang v r)du terme maximum de la série de Taylor de

f(z). Ce sera le cas lorsque la condition (22) du n° 15 sera vérifiée

avec k <2ou avec k 2 et k (X) < 2. On peut remarquer

que, dans ces conditions, on a

m / O n(r)\ogrlog^M^j) log (Mr) lQg r)
log M (r,f)m£ log2r ~ iog2r

On peut chercher à déterminer toutes les fonctions pour
lesquelles on a la première égalité (k > 1) ou celles obtenues en

y remplaçant k par l'une de ses valeurs asymptotiques. Ce sont

ces recherches, et celles analogues lorsque (22) n'a plus lieu, qui
conduisent aux classifications dont il a été question au n° 10.

Pour les fonctions à croissance plus lente que celles considérées

au n° 15, on a k 1 et les fonctions régulières sont celles pour
lesquelles

V (X) log M (r,f)rxjJ W (t) dt no (X) w (X) (ex) •

1

En désignant l'intégrale par W (X), on doit avoir

W (X) oo XW (X)

donc

^y' v. 1 V(X) ~ W(X) X1+S(x) lim 8 (X) 0
W X x=«>
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De la convexité de W (X) résulte que Xs(x) est croissante dès que
X est assez grand. Gomme S (X) tend vers zéro, ajoutons la
condition qu'il décroisse. Alors, si

Y (X) no X1+S<x> S (X) | 0 S (X) log X t 00

on a

w (X) ^ x5(X).
Car

V (X) W (X) < Xw(X) donc w (X) >
et

(X' — X) w (X) < (1 + o (1)) (X')1 +S(X,) < (1 + o (1)] (X')1 +8<x)

En prenant log X' (l + g (x)k>g x) on °btient w (X)
< (1 + o (1)) eE Xs(x), ce qui achève la démonstration.

A toute fonction / (z) pour laquelle log V (X)/log X tend vers
un, on peut associer une fonction S (X) telle que S (X) j 0,
S (X) log X | QO et

ES V<X> _x=» x1+S(X) ~~ '

ce qui permet des approximations asymptotiques.

II. Pour toute fonction d'ordre nul pour laquelle (22) réest

pas vérifiée, il existe encore une suite infinie de valeurs indéfiniment
croissantes de r pour lesquelles Végalité (26) a lieu.

Cet énoncé est une partie du théorème de Littlewood qui sera
donné au n° 24. Pour l'établir, il suffit, d'après (21), de montrer
que, pour toute fonction d'ordre nul,

r}n-^dx
J X2

lim r
r— — 0 (27)

f^dxJ X
0

Supposons le contraire, le numérateur dans (27) serait supérieur
au produit d'un nombre positif h par le dénominateur que nous
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désignerons par N (r). On aurait donc, en intégrant par parties

au second membre,

feN (r)<rfN»^ — N (r) + /• /N (a) J
r r

OU
00

(Ä + 1) N (r) < r J'n ^ cN, (r)

7-

et enfin

(Ä. + 1) rNt' (r) + Ni (r) > 0 ^ + ^717 > 0 '

Ainsi la fonction
î

N1r?l + 1

serait croissante, donc

jN(»)J>Kr"î+Â
r

ce qui impliquerait que le produit N (#) x i+h ne tendrait pas

vers zéro; pour une suite de r tendant vers l'infini, on aurait

h

N (r) > Kx ri+h

et d'après la formule de Jensen, la fonction serait au moins

d'ordre ^ •

1 + h

Il s'ensuit que toutes les fois que n (x) sera assez régulier,

on aura
00

r J n (x) dx/x2

lim 0 (28)
r— oo -

n (x) dx/x
r

et (26) aura lieu. Par exemple, pour les fonctions vérifiant la
condition (22) du n° 15, on voit que le numérateur de l'expression

(28) est
O (1) n(r) O (1) Xfc(XH ;
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il suffît même que l'on ait seulement

M) ö 4

r= oo Xft(x)

ce qui donne une majoration analogue du coefficient de 0 dans
<21)' e' q°e i X^H co

(à suivre).
NOTES

3) Voir Hadamard, J. : Sur les fonctions entières. C. R. Acad. Sei., Paris, 135,
pp. 1309-1311 (1902), et Valiron G-.: Sur le nombre des singularités transcendantes
des fonctions inverses d'une classe d'algébroïdes. C. R. Acad. Sei. Paris, 200, pp. 713-
715 (1935).

0 Voir Valiron, G.: Sur les fonctions entières d'ordre nul et d'ordre fini et enparticulier les fonctions à correspondance régulière (thèse, Paris, Ed. Privat Toulouse
1912, paru dans Annales Toulouse (3), 5, pp. 117-257 (1914); à ces résultats on comparera

ceux de Ostrowski, A.: Recherches sur la méthode de Graeffe et les zéros des
polynômes et des séries de Laurent, Acta Mathematica, 72, pp. 99-257 (1940-1941)notamment les pp. 107, 110, 158, 166, 170 et 173, et Ostrowski, A.: Addition à notremémoire: « Recherches sur la méthode de Graeffe et les zéros des polynômes et des séries
de Laurent », Acta Mathematica, 75, pp. 183-186 (1943), ainsi que ceux de Rey Pastor,

J. : Lecciones de Algebra, pp. 89-105, 2« édition, Madrid, 1935, et San Juan, R. :
Compléments à la méthode de Graeffe pour la résolution des équations algébriquesBull, des Sei. Math. (2), LIX, pp. 104-109 (1935), et: Complementos al método de Gräffe
para laresoluciôn de ecuaciones algébricas, Revista Mat. Hispano-Americ. (3). I, pp. 1-14
(1939), ainsi que: A propos du mémoire: « Recherches sur la méthode de Graeffe...,' etc »

par Alexandre Ostrowski, à Bale, Acta mathematica, 75, pp. 187-190 (1943).
5) Voir Valiron, G.: Théorie des fonctions (p. 388). Masson, Paris, 1942.
6) Voir Brinkmeier, H.: Ueber das Mass der Bestimmtheit des Wachstums einer

ganzen transzendenten Funktion durch die absoluten Beträge der Koeffizienten ihrer
Potenzreihe. Math. Annalen, 96, pp. 108-118 (1927).

7) Voir Valiron, G.: Sur la croissance des fonctions entières. C. R. Assoc. française
avanc. des Sei., Le Havre, 1929, pp. 110-113.

8) Pour 1 introduction de ces notions dans la théorie des fonctions entières, voir
Valiron, G.: Sur les fonctions entières d'ordre fini. Bull, des Sciences math. (Darboux
Bull.) (2), 45, pp. 258-270 (1921). La terminologie adoptée ici a été proposée par R. Ne-
vanlinna qui a étendu les résultats aux fonctions méromorphes.

9) On trouve dans Valiron, G. : Lectures on the general theory of integral functions
Ed. Privat, Toulouse, 1928, Appendix B, p. 182, l'étude de la condition pour qu'unefonction donnée par sa série de Taylor soit de la classe divergente ou convergente

10) Voir Valiron, G.: loc. cit., 5), p. 432.

n) On a donc n > | an |
P~E

pour une suite infinie de n, ce qii entraîne la divergence
o° {

de la série S pour s > 0,
1 Inj"

^ + „ ïîm log n
de sorte que 1 on a

n=00 log | an |
_ P, c'est le théorème de Borel.

12) Voir Valiron, G.: loc. cit, 4). La réciproque a été retrouvée par Titchmarch,E. C.: On integral functions with real negative zeros, Proc. London Math. Soc. (2), 26,
pp. 185-200 (1927), dans* le cas U (r) kr9 (voir Titchmarch, E. C.: The theory of
functions, 2nd edition, x-452 pages, Oxford University Press, 1939). Dans une série
de travaux récents (Delange, H.: Un théorème sur les fonctions entières à zéros
réels et négatifs, J. de Math, pures et appl., 31, pp. 55-78 (1952)), H. Delange a repris
ces questions et a étudié le cas de Tordre entier. Voir aussi un mémoire de M. Heins, M. :

Entire functions with bounded minimum modulus; subharmonic function analogues.
Annals of Math., 49, pp. 200-213 (1948).
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