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102 ANGUS E. TAYLOR

matrix elements a;, be complex numbers. In this case we call
[P (n) a complex Minkowski space and A a complex linear trans-
formation. But we may equally well confine our attention to
real scalars, in which case the space and the transformation are
called real.

Now, if A is a transformation determined by a matrix of real
elements a;,, the transformation can be considered either as a
real transformation or as a complex transformation, and accord-
ingly there are two possible definitions of its norm. If in (1) we
allow z to vary over all nonzero elements of the complex space
[’ (n), we get the norm of A as a complex transformation,
whereas if we restrict the vector z to have real components, we
get the norm of A as a real transformation. Let us denote these

two norms by
[Alle and [lA]].

2. THE THEOREM

We shall prove the following result:

TuroreM Let A be a transformation of I° (n) into 19 (m) deter-

mined by a matriz (a,) of real constants. Suppose ¢ = p = 1.

Then _
A=Al (2)

Proof. We first observe that when p is fixed and ¢ varies
subject to ¢ = p, || A || is a continuous function of ¢ at ¢ = p,
regardless of whether we have a real or a complex transformation.
For, let the dependence on ¢ be exhibited by writing ||A|| = M(q).
It is well known that ||y ||, does not decrease as ¢ decreases.
Hence p < g implies

[ Azlly _ Il Az ]l

llelly, = fl=ll,

whence also M (¢) = M (p). Now suppose that z is chosen
(z #% 0) so that

Az
lAlly _ o
lz]lp
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Keeping this x fixed, let ¢ ~ p. Then

|| Az ||

131

for, || Az ||, certainly depends continuously on ¢g. But

JAely _
el = (¢) = M(p) ;

hence M (¢) ~ M (p) when ¢ approaches p from above.

It follows from this that it suffices to prove the theorem on
the assumption that ¢ > p = 1, for the theorem will then also
be true in the limiting case ¢ = p.

It is evident that ||A ||, < ||A||.. Hence, to prove the
theorem, it is enough to prove that || A ||, < || A ||, is imposs-
ible. We therefore start with the assumption that ¢ > p and
that ||A ||, <||A]|,. Let z = (&, ..., £,) be a vector with
complex components such that z =~ 0 and

| Az |l

2l

= |[A]l; -
Let

| ;a,-kak = A; + iB;,

where A; and B; are real. Observe that |A; + iB; | #£0 for
at least one j, for otherwise we would have || A ||, = 0, contrary
to || A [, < [|A[l. Next, there is no real 6 such that ¢ ¢,
is real for each . For, if there were, we could let u = (py, ..., p,),
where o, = ¢ £,; then u would be a real vector such that

lAull, el
Tell, — [, — 1Al

and this would imply [[ A ||, = [| A ||, Nowlet &, = a, -+ i Br
where «, and B, are real. Then the real vectors (oy, «ovy o) and
(B4, -.-, B,) are linearly independent, for if the contrary were the
case there would be a 6 such that ¢ £, is real for each k.
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Now consider the function F of two real variables s, ¢ defined
as follows:

m . 1
(Z]Aj+ (s + it)Bj|q> &
=1

n 1/
<>Jlak+<s+it> Bkl”> p
h=1

If w = (0, ..., »,) is the complex vector with components

Fi(s,t) =

Wy, — ak—]—SBk‘-]—ltBh,
we see that

[Aw]l,

1l

Hence F (s, ) =< || A ||, for all s and ¢, while F (0,1) = || A ||.-
Thus F attains its absolute maximum value at the point (0, 1).

This being the case, we arrive at a contradiction, and hence
complete the proof of the theorem, by proving the following
lemma:

Fi(s,t) =

LemmA.  Let (o, ..., a,) and (By, ..., B,) be two linearly indepen-
dent vectors in real n-dimensional space. Let (A4, ..., A,) and
(B4, ..., B,)) be two vectors, not both zero, in real m-dimensional
space.

Suppose 0 < p < q and let

m 1
<EIA1' + (s +41) Ba’l") "

j=1

Fi(s,t) = - 7
<h2_,1l°‘k + (s + ) Bh|p>

where s and t are real variables. Then F cannot have a relative
maximum at the point s = 0, t = 1. '
oF oF ozF . 22F

PI‘OOf. Let Fl — O—S ’ F2 - —67 N Fll - F‘;E- 3 F22 = at2

The proof will be accomplished if we assume that F does have a
relative maximum at (0,1) and then show that F;; + F,, > 0
at (0,1). For, with a relative maximum at (0,1) we necessarily
have F;; < 0 and F,, < 0 at (0,1).
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Let us write

Py, t) = S‘lak—}—(s—i—it Bklpa

ZI|A + (s + ) B; |2~

Then
1
Flo ) = 37,
pl/p
and we readily find that
_ 1&“_1_&}
Fl_F{qQ p PJ’ 3)

with a similar formula for F,. The calculation of F,; yields the
result

—_P2)
b= P {1 QO LPPu_ P}y (1Q LR

The formula for F,, is similar.

If we now assume that F has a relative maximum at (0,1),
we know that F;, = F, = 0 at (0,1), and hence in this case the
value of Fy; + F,, at (0,1) takes the form

Q (Qu + Qu) — (QF + Q)
q Q?
P (P;; + Py,) — (P + P l .
p P2 J o

F11+Fzz=F{

(&)
Everything now depends on a careful evaluation of this expres-
sion. |

For convenience in notation it is now well to assume that
of + Bz # 0 for each k, and that A? + B} 5= 0 for each ;.
There is no loss in generality in these assumptions. For cer-
tainly «f + B % 0 for some k. By re-indexing and diminish-
ing n, if necessary, we insure that «. + X 5= 0 for every value

of k that is considered. Similar remarks apply to A} ++ B,
Observing that |

b .(Otk_l“sBk)Bk
Er R e Py e
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and

t By,
ey (s -l-it)ﬁk[’

0 i
a—t[ock + (s + 1) By |
we easily find.

Piis, ) = D\p|oy, + (s + 2) By |72 (% + 5 Br) Br s
R

Pyls, 1) = D\p| oy + (s + it) B |7 28],
kR

Pols, ) = p )| op + (s + it) By [P2 8, + 2 (0 — 2) D | oy, +
k kR
+ (s 4 it) B [P (o + 5 BR)2 85
Py, (s, 1) IPZIOCh‘l‘ (3+it)Bklp—zﬁZ‘l‘P(P—%Zlak‘F
kR R

+ (s 4 it) B [P By -
On putting s = 0, ¢ = 1, we find that

Py+ Pyu=pP, (5)
at this point. Likewise

Qu + Qo = ¢Q, . (6)

We now use (5) and (6) to simplify (4) by eliminating the second
derivatives. Also, we eliminate the Q terms from (4) by means
of (3), together with the fact that F, = 0 at (0,1), and a similar
use of the fact that F, = 0. In this way we arrive at the
formula

Fu+Fn = {pPP,— (Pl + P}) } 1P 50 )

We repeat: this holds at (0,1) as a consequence of having F, = F o
there.

Since ¢ > p and F (0,1) > 0, all that remains is to prove the
inequality |

P; + P; < pPP, (8)

at the point (0,1).

For convenience let us write

-2
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Then, at (0,1),

Now, since ¢, 7 0 and the vectors («y, ..., «,), (B4, .., B,) are
linearly independent, the vectors (¢; oy, ..., ¢, a,) and (¢; By, -y
¢ ,B,) are also linearly independent. Consequently, by Cauchy’s

inequality,
|Py|<p (; CZ a:)% (2 CZ BZ)% ,
R

the mequality being strict because of the linear independence.
Consequently
P} < pPZZchZ-
R

Then
P; + P, < pP, D\, % + pPy > c; By -
R

The right side here 1s exactly p P,P, and so the proof of (8) is
complete. This finishes the proof of the lemma. We have
already pointed out how the lemma leads to a proof of the
theorem.

3. CONCLUDING REMARKS

In conclusion, we point out that the results we have described
were known to M. Riesz when he wrote his paper on convexity
and bilinear forms.? He made a brief sketch of the arguments
in support of the results. But the intended form of Riesz’s
argument has seemed obscure to some people, and the results
themselves are apparently not much known outside the circle
of those who are thoroughly familiar with Riesz’s paper. Hence
it has seemed to be worth while to emphasize the results and to
put the details of the proof on record.

The University of California, Los Angeles.

1) M. R1Esz, Sur les maxima des formes bilinéaires et sur les fonctionelles linédaires,
Acta Math. 49, 465-497 (1927).
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