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matrix elements a^k be complex numbers. In this case we call
lv (n) a complex Minkowski space and A a complex linear
transformation. But we may equally well confine our attention to
real scalars, in which case the space and the transformation are
called real.

Now, if A is a transformation determined by a matrix of real
elements a^k1 the transformation can be considered either as a
real transformation or as a complex transformation, and accordingly

there are two possible definitions of its norm. If in (1) we
allow x to vary over all nonzero elements of the complex space
lp (n), we get the norm of A as a complex transformation,
whereas if we restrict the vector x to have real components, we
get the norm of A as a real transformation. Let us denote these
two norms by

11 A ||c and || A ||r

2. The theorem

We shall prove the following result:

Theorem Let A be a transformation of lv (n) into lq (m)
determined by a matrix (aJk) of real constants. Suppose q ^ p ^ 1.

Then
Il A ||c || A ||r (2)

Proof. We first observe that when p is fixed and q varies
subject to q ^ p, || A || is a continuous function of q at q p,
regardless of whether we have a real or a complex transformation.
For, let the dependence on q be exhibited by writing | |A| | M(^).
It is well known that \\y \\q does not decrease as # decreases.
Hence p < q implies

11 1 lq
<

11 ^-x lip

II® Il p IN Hp '

whence also M (q) M (p). Now suppose that x is chosen

(x 0) so that
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Keeping this x fixed, let q -> p. Then

11 Arc 11

for, || A# ||g certainly depends continuously on q. But

II Ac I

- M (q) ^ M (p) ;

hence M (q) -> M (p) when q approaches p from above.

It follows from this that it suffices to prove the theorem on
the assumption that q > p ^ 1, for the theorem will then also
be true in the limiting case q p.

It is evident that ||A||r ^ 11 A. ||c. Hence, to prove the
theorem, it is enough to prove that || A ||r < || A ||c is impossible.

We therefore start with the assumption that q > p and
that 11 A I |r < || A ||c. Let x (i^, £n) be a vector with
complex components such that x 0 and

11 Hg

_ il A m

Let

2 aik ^k + 1Bj '
k

where A,- and B3 are real. Observe that | A^ + f Bf | ^ 0 for
at least one /, for otherwise we would have || A ||c — 0, contrary
to || A ||r < || A ||c. Next, there is no real 0 such that e,-i0 ->h

is real for each k. For, if there were, we could let u (pl7pj,
where pk e~ld then u would be a real vector such that

Am IL IIA« I

I q

Il«llp IRL l|A|lc'

and this would imply || A ||r || A ||c. Now let + ßfe,
where <xfe and ßft are real. Then the real vectors (al5 an) and
(ßu ßn) are linearly independent, for if the contrary were the
case there would be a 0 such that e~ie L is real for each k.
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Now consider the function F of two real variables s, t defined
as follows:

[m \1/
2lAi + (» + ''') V

F (s, t) j=l
{Ip

21 + is + it) ßfe \p
,k=\

If w (oo-l, (ùn) is the complex vector with components

+ 5 h + ü h i

we see that

F (s, t) « IIÂHIg

Hence F (5, t) ^ || A ||c for ail s and t, while F (0,1) || A ||c.
Thus F attains its absolute maximum value at the point (0, 1).

This being the case, we arrive at a contradiction, and hence
complete the proof of the theorem, by proving the following
lemma:

Lemma. Let (a1? an) and (ßx, ßn) be two linearly independent

vectors in real n-dimensional space. Let (A1? Am) and
(Bl5 Bm) be two vectors, not both zero, in real m-dimensional
space.
Suppose 0 < p < q and let

I A- -f (s + it) B?-

F (s, t)
n̂ V/p '

(JS I pfe lp

where s and t are real variables. Then F cannot have a relative
maximum at the point s 0, t 1.

Proof. Let F, « ^,F2^ Fu F22

The proof will be accomplished if we assume that F does have a
relative maximum at (0,1) and then show that Fn + F22 > 0
at (0,1). For, with a relative maximum at (0,1) we necessarily
have Fn 0 and F22 ^ 0 at (0,1).
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Let us write

Then

P 15, t) 2 | CCk + (S + lt) ßk |P

k

Q (s, t) 2 | + (5 + \q "

Q1I<1

and we readily find that

Fl F I i^ ^ } (3)
l q Q p P J

with a similar formula for F2. The calculation of Fn yields the

result

r F f i QQii — Qi i PPn-P?l F f i Qi iPilFll Fiï Q?J P1 1 ' I Q PJ

The formula for F22 is similar.
If we now assume that F has a relative maximum at (0,1),

we know that Fx F2 0 at (0,1), and hence in this case the
value of Fu + F22 at (0,1) takes the form

Pu + P2 F{ Q (Qn + Q22) - (QI + QÎ)

q Q2

P (Pu + P22)p~
(PÎ + PI)

j (4)

Everything now depends on a careful evaluation of this expression.

For convenience in notation it is now well to assume that
af -f- ßf ^ 0 for each ft, and that Af + Bf ^ 0 for each /.
There is no loss in generality in these assumptions. For
certainly af + ßf 7^ 0 for some k. By re-indexing and diminishing

7i, if necessary, we insure that af + ßf ^ 0 for every value
of ft that is considered. Similar remarks apply to A? + Bf.

Observing that

0
I / I */\ Q I

+ 5 ßfe) ßfe
; + (s + lt) ßft —à t h I I

cck + (s -f it) j
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and

a ißt
OCh ~f* (5 -J- it)ßl.I - ;'

I «ft + ßÄ I

we easily find

Pi [s, t) 2] p I

oCfr + (s + it) ßfr Ip 2 (ak ~f~ s ß&) ß& >

k

p2 (s, t)2 p I ocft + (s+ it)ßh\P~2t ßt
k

pn (s, t) p 2 I 0tk + (s + it) 123-2 ß* + p (p — 2) 2 I Kk +
k k

+ is + ßfe jP~4 (aÄ + 5 ßfe)2 ß*

P22 (5, t) p 2 I aÄ + (5 + tf) ßfe I23"2 ß2 + p (p — 2) 2 I +
h h

+ (* + ä) ß^r4^
On putting 5 0, t 1, we find that

P11 + P22 P P2 (5)

at this point. Likewise

Q11 ~f~ Q22 <7 Q2 • (6)

We now use (5) and (6) to simplify (4) by eliminating the second
derivatives. Also, we eliminate the Q terms from (4) by means
of (3), together with the fact that Fx 0 at (0,1), and a similar
use of the fact that F2 0. In this way we arrive at the
formula

Fu + FM {pPP1-(^+Pj)}^l£j. (7)

We repeat: this holds at (0,1) as a consequence of having F± F2
there.

Since q > p and F (0,1) > 0, all that remains is to prove the
inequality

P* + P1<P PP2 (8)

at the point (0,1).
For convenience let us write

Ck — I: afe + i ßfc

p-2
I 2
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Then, at (0,1),

pi =• p24«A h>p2p 2 4 ßft »

p 24« + ßk)-
k

Now, since ck ^ 0 and the vectors (%, an), (ßl5 ßn) are
linearly independent, the vectors (cx 04, cn an) and (q ßl5

c nßn) are also linearly independent. Consequently, by Cauchy's
inequality,

|p.l<p(Ç44f(244f.
the inequality being strict because of the linear independence.
Consequently

p! <pp*244h

Then
Pi+ PÏ<pP,24bI +pp*2><

k

The right side here is exactly p P2P, and so the proof of (8) is

complete. This finishes the proof of the lemma. We have
already pointed out how the lemma leads to a proof of the
theorem.

3. Concluding remarks

In conclusion, we point out that the results we have described
were known to M. Riesz when he wrote his paper on convexity
and bilinear forms.He made a brief sketch of the arguments
in support of the results. But the intended form of Riesz's

argument has seemed obscure to some people, and the results
themselves are apparently not much known outside the circle
of those who are thoroughly familiar with Riesz's paper. Hence
it has seemed to be worth while to emphasize the results and to
put the details of the proof on record.

The University of California, Los Angeles.

M. Riesz, Sur les maxima des formes bilinéaires et sur les fonctionelles linéaires,
Acta Math. 49, 465-497 (1927).
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