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THE NORM OF A REAL LINEAR TRANSFORMATION
IN MINKOWSKI SPACE

by Angus E. Taylor, Los Angeles

(Reçu le 27 février 1958)

1. The definition of norm

By the Minkowski space lp (n) we mean the space of vectors
x (Çl5 £n) with the norm of x defined by

Here it is supposed that p ^ 1, so that \\x \ \p is a norm on

If lp (n) and lq (m) are Minkowski spaces of dimensions n and

m, respectively, a linear transformation A of lp (n) into lq (m) is
determined by a matrix (aok) of constants (/ — 1, m, A 1,

ri) \ if A transforms x into y (%, v)m), the t)'s are given
in terms of the £'s by the equations

lp (n).

n

S aih Zk i L -, m

If we write y Ax, the norm of A is defined as

We may consider all of these things with respect to the
complex field, letting the vector components and the
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matrix elements a^k be complex numbers. In this case we call
lv (n) a complex Minkowski space and A a complex linear
transformation. But we may equally well confine our attention to
real scalars, in which case the space and the transformation are
called real.

Now, if A is a transformation determined by a matrix of real
elements a^k1 the transformation can be considered either as a
real transformation or as a complex transformation, and accordingly

there are two possible definitions of its norm. If in (1) we
allow x to vary over all nonzero elements of the complex space
lp (n), we get the norm of A as a complex transformation,
whereas if we restrict the vector x to have real components, we
get the norm of A as a real transformation. Let us denote these
two norms by

11 A ||c and || A ||r

2. The theorem

We shall prove the following result:

Theorem Let A be a transformation of lv (n) into lq (m)
determined by a matrix (aJk) of real constants. Suppose q ^ p ^ 1.

Then
Il A ||c || A ||r (2)

Proof. We first observe that when p is fixed and q varies
subject to q ^ p, || A || is a continuous function of q at q p,
regardless of whether we have a real or a complex transformation.
For, let the dependence on q be exhibited by writing | |A| | M(^).
It is well known that \\y \\q does not decrease as # decreases.
Hence p < q implies

11 1 lq
<

11 ^-x lip

II® Il p IN Hp '

whence also M (q) M (p). Now suppose that x is chosen

(x 0) so that
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