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THE NORM OF A REAL LINEAR TRANSFORMATION
IN MINKOWSKI SPACE

by Angus E. Tavror, Los Angeles

(Regu le 27 féorier 1958)

1. THE DEFINITION OF NORM

By the Minkowski space [? (n) we mean the space of vectors
z = (&, ..., £,) with the norm of z defined by

||, = (;lailp)”p-

Here it is supposed that p = 1, so that ||z ||, is a norm on
[P (n).

If I? (n) and 1% (m) are Minkowski spaces of dimensions » and
m, respectively, a linear transformation A of I? (n) into 14 (m) is
determined by a matrix (a;,) of constants (j =1, ..., m, k =1,
..., n); if A transforms z into y = (v, ..., 1,,), the #’s are given
in terms of the &’s by the equations

n
N = Z aip, Ep, =1, ..,m.
R=1

If we write y = Az, the norm of A is defined as

a\!/q
HA”:maX“HA%HQZmaX<3Z ;ajkgk > |
x#0 Zllp x#0 S g, [p 1/10

(SaP)

\

We may consider all of these things with respect to the
complex field, letting the vector components &, ..., £ and the
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matrix elements a;, be complex numbers. In this case we call
[P (n) a complex Minkowski space and A a complex linear trans-
formation. But we may equally well confine our attention to
real scalars, in which case the space and the transformation are
called real.

Now, if A is a transformation determined by a matrix of real
elements a;,, the transformation can be considered either as a
real transformation or as a complex transformation, and accord-
ingly there are two possible definitions of its norm. If in (1) we
allow z to vary over all nonzero elements of the complex space
[’ (n), we get the norm of A as a complex transformation,
whereas if we restrict the vector z to have real components, we
get the norm of A as a real transformation. Let us denote these

two norms by
[Alle and [lA]].

2. THE THEOREM

We shall prove the following result:

TuroreM Let A be a transformation of I° (n) into 19 (m) deter-

mined by a matriz (a,) of real constants. Suppose ¢ = p = 1.

Then _
A=Al (2)

Proof. We first observe that when p is fixed and ¢ varies
subject to ¢ = p, || A || is a continuous function of ¢ at ¢ = p,
regardless of whether we have a real or a complex transformation.
For, let the dependence on ¢ be exhibited by writing ||A|| = M(q).
It is well known that ||y ||, does not decrease as ¢ decreases.
Hence p < g implies

[ Azlly _ Il Az ]l

llelly, = fl=ll,

whence also M (¢) = M (p). Now suppose that z is chosen
(z #% 0) so that

Az
lAlly _ o
lz]lp
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