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SUR CERTAINES SERIES
A VALEUR IRRATIONNELLE

par Paul Erpos, Birmingham-Haifa

(Regu le 1€ april 1958)

§ 1. En décembre 1956, a Birmingham, le professeur
A. Oppenheim (Singapour) m’a posé le probléme suivant. Soit
Py 2 =1,2 .., la suite des nombres premiers, la somme des
séries

zl'U
3>

1,2,8, ..., (1)

est-elle irrationnelle ?
A ce sujet, je- rappellera1 le fait connu [1] que tout reel £,

0 <t <1, peut s’exprimer d’une et une seule maniére sous la
forme

avec 0 <c¢, < n pour tout n et ¢, > 0 pour une infinité de
valeurs de n, et que ¢ est rationnel si et seulement si

¢p =n—1 pour tout n=>n,.

Dans notre cas, ce théoréme n’est pas applicable, puisque
P, > n pour tout n. Toutefois la somme des séries (1) est bien
irrationnelle; la démonstration étant assez compliquée pour
k> 1, je ne donnerai au § 2 que la démonstration pour k — 1.
Par contre, je démontrerai au § 3 un théoréme qui généralise
cette aﬁirmatlon les dénominateurs dans (1) étant remplacés par

les produits des termes d'une suite croissante d’entiers quel-
conques.
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. Enfin, je tiens & souligner que je n’ai pas réussi & démontrer
llrratlonnahte de la somme des séries !

gpn”!’ g_n Z | !

Pour ce qu1 concerne lirrationnalité des séries semblables,
voir [2].

§ 2. La démonstration de Dirrationnalité de la série (1)
repose sur le fait que I’ensemble des nombres

—], n=1,23, ... (2)

est dense dans D’intervalle (O, 1), ce que nous démontrerons a

la fin de ce paragraphe. é
Ceci posé, supposons par 'absurde que la valeur de la série 1),

pour k& = 1, est rationnelle, ¢’est-a-dire que i

avec a et b entiers.
Soit k > b; il est alors évident que

Pp | Ppy . Ppig
k" k(k+1) " k(k+1)(k+ 2

a

est un entier positif et par suite

Py Pp Priq
7“‘[7]+m7>+ et

Puisque la suite % — []%J est dense dans (0, 1) il existe une

infinité de & tels que
Py

k

Pr 1
7' <3

on aura donc pour ces valeurs de £k,

Priy 4 Prio
k(k+1) " k(k+1) (k+1)

. P

I
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Or cette inégalité ne peut avoir lieu pour % suffisamment grand
puisque p, = o (k?), notre affirmation est ainsi démontrée.

- Remarquons que nous avons incidemment démontré la pro-
position générale suivante:

Soit ¢, une suite d’entiers > 0 tels que

-2 .
n"c,—>0, n—ow;

toutes les fois que la suite

ne tend pas vers Uunité, la somme de la série
© o
25
n=1
est irrationnelle. | ’
Amsi, il suffit d’établir que la suite (3) ne tend pas vers
'unité; or, pour ¢, = Py, O peut méme montrer que la suite (2)
est dense dans (0, 1), mais on est obligé de recourir au théoréme

des nombres premiers avec 1’évaluation suivante du reste [3;
pp. 46-51, 193-197, 238-242, 328-333]

’ X
2

aussi il y aurait intérét & voir si on peut obtenir une démons-
‘ration plus élémentaire. |

Quant & la démonstration du fait que la suite (2) est dense
dans (0, 1) on peut le déduire de la proposition connue [4; p. 17,
Aufgaben 100-102]: ‘
la suite

an—[a,], n=1,2, ...,

est dense dans (0, 1) si

an —> 0

Py —a, < o(1) lorsque 7 —» oo |
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- .\ " ‘ p
‘Pour vérifier cette derniére condition dans le cas o a, = —=,

du fait que
Ppit Pn - Ppit — Pn

n -+ 1 n n ’

il suffit de montrer que

Ppog —Pp<ofn), n— .
Or, de
Dn+1 ‘d D p
. . _ _at L "

1== (pn+1) T (Pn) — log ¢ T 8 (log2 pn+1> To <1082 pn) =

bn

e e Toa? 7)) °
logp.., = °\iog® pn

1l résulte

Pnlog Py log p,

et puisque p, ~ nlog n, n — o, 'affirmation en découle.

§ 3. L’extension mentionnée de la proposition précédente
exige une évaluation encore plus précise du reste dans le théo-
réme des nombres premiers et qui est donnée par

JTL (loggi :c) ’ 5

quel que soit r > 0. En outre, contrairement au cas traité au
§ 2, la démonstration de ce théoréme utilise pleinement le fait
que les p, sont premiers.

TutorEME. — Soit 1 < ¢; < g, < ... < q, <'.. une suite
d’entiers telle que pour un certain k > 0 on ait
gn > 0 ( ik ) (5
" logk n/’ )

et p, la suite des nombres premiers; alors la somme t de la série

o0 pn
=2 i (6)
n=1 q1 92 Qn -
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est rationnelle st et seulement st
Gn = qPp + 1
pour un entier q > 1 fize et tout n > n,,.
DEmonsTRATION. — Posons
1q1gs - Gy = Ny + 1y, =12, -,

ou, d’aprés (6), les N, sont des entiers et

Pn Ppit
s = e owwa
" %+%%y‘
Alors, d’apres (5),
Pn pn)
= — — 7
=0 (). (7
puisque p, ~ n log n; d’autre part
rn+1_rn<0(1)’ n— ©, | (8)

par le fait que

' — P — P
< Priq " ) n+1 Foen
qn Qn qn-}-i

et que, d’aprés un calcul analogue & celui du paragraphe pré-
cédent, la relation (4), avec r = k -+ 2, entraine

an-—pn:—_o(nlog"hn), n— . (9)

Ceci établi, montrons en premier lieu qu’aucun des points
daccumulation de la suite Pr/g, ne peut étre a valeur irration-
nelle. A cet effet, supposons par I'absurde qu’on puisse extraire
une suite partielle Pm/q,,, m =n;, i =1, 2, ..., qui tende vers un
nombre irrationnel «. Dans ce cas, on aurait, d’apres (7),

t%qz~-%m1==N@—%Eﬁ%—ocﬁ>==Nm%-a+—ouh
Im Im
¢e qui est impossible lorsque ¢ est rationnel.

En second lieu, montrons que la suite Pnlq, ne peut avoir

deux points d’accumulation distincts. En effet, si u et ¢ étaient
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deux tels points, puisque d’aprés (5) et (9),

Ppit L ﬁt < Ppyt — Pn

>~ — 0 (1) y
Qn+1 Qn Qn

il résulterait que tous les points situés entre u et ¢ seraient des
points d’accumulation [4; p. 17, Aufgaben 100-102], ce qui est
en contradiction avec le fait démontré plus haut.

~ En troisiéme lieu, montrons que Pn/q, tend nécessairement
vers une limite finie. A cet effet, supposons par Pabsurde que
la suite Pn/g, ne reste pas bornee n’ayant qu’'un seul point
d’accumulation, cette suite, et par suite r,, devrait tendre vers
Pinfini. Or, d’aprés (8) et la proposition citée au § 2, la suite
r, — [r,] serait dense dans (0, 1); il existerait donc une suite
d’indices n; = m telle que

| P — [rm] — 3,
avec 3 irrationnel, et 'on aurait
10192~ Gy = Ny & [r] + 7y — [1] = Ny + [fm] + B+ o(1),

ce qui est impossible pour ¢ rationnel.
Ainsi, on peut poser

avec ¢ et ¢ entiers, et tels que (¢, ¢9) = 1 si ¢ > 1, ou bien ¢
arbitraire = 0 si ¢ = 0, et, d’aprés (7), on obtient

Par suite,
c
(018 Gy = N+ 0 (1)
et cette relation ne peut avoir lieu pour les grandes valeurs de n
que si

c
1414z - - 9 = Nﬁ_{_?’




SUR CERTAINES SERIES A VALEUR IRRATIONNELLE 99

pour tout n > n,. Il s’en suit que, pour n > n,,
c pn, & 1
r:—:—+_+o<_>7
"4 dm o In
d’ou
¢qn = gqpp +c¢c+o(1).
Or cette relation ne pouvant avoir lieu non plus que si

Cqp = qpp + ¢

a partir d’un certain n, il en découle que ¢ > 1, et, puisque
(c,q) = 1 et p, est premier, il faut que ¢ = 1; on a donc

4n = 4Py + 1

pour un ¢ > 1 fixe et & partir d’un n suffisamment grand.
C.q.f.d.
Je remarquerai enfin que la borne inférieure de la croissance
des ¢, donnée par (5), n’est pas la plus précise possible et qu’elle
dépend de I’évaluation du reste du théoréme des nombres pre-
miers. D’apres Tatuzawa [5], le résultat le plus précis connu
jusqu’a présent est

avec

. 4 3
¢ (¥) = exp (— a (log z) 7 (log log ) 7)

et ou a est une constante positive, ce qui permet de remplacer
(5) par |
gy >0 <n log? n/<P (n)> .

Toutefois, il est fort probable que le théoréme reste vrai sous
P'unique hypothése
1< gu<g <o

mais, déja, le cas ot ¢, =2, n =1, 2, ..., m’échappe entiére-
ment.
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