
B. The classical équation $x^2 + 21 = 10x$.
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Bernheimer, La Bibliofilia,XXVI, pp. 300-25, 1924/25).
Through the kindness of Prof. S. Gandz, use has also been made
of his autograph copy of a copy made by Dr. Joseph Weinberg
who made a German translation, " Die Algebra des Abu Kämil
Soga' ben Aslam " (München, 1935).

B. The classical equation -f 21 ICte.

From Euclid, we have the geometric solution of the equation

x2-f- bax. According to the Commentary of Proclus
(ed. Friedlein, p. 44), this is an ancient proposition and a
discovery of the Muse of the Pythagoreans.

" If a straight lines be cut into equal and unequal
segments, the rectangle contained by the unequal segments of
the whole together with the square on the straight line
between the points of section is equal to the square on the

" For let a straight line AB be cut into equal segments
at G and into unequal segments at D ; I say that the rectangle
contained by AD, DB together with the square on CD is
equal to the square on CB." [6]

1. Euclid Book II, proposition 5.

half."
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In the geometric algebra of Euclid, addition and subtraction
of simple numbers are, of course, performed by increasing and

decreasing the lengths of lines. Multiplication is effected by
construction of a rectangle using factors equivalent to the

adjacent sides.

2. Heron's solution.

Heron proved many of the propositions of Book II by the

algebraic method with the use of one line as a figure. The

following excerpt is from a later Arabic commentary [1].

" Then if we wish to demonstrate Heron's proof of this

proposition, and the reasoning, we must show that the area

outlined by the two parts AD and DB together with the

square on line GD is equal to the square on line GB. We

take two lines; one of them AD, is divided by point G, and

the other line, DB, is not divided. In the proof of proposition

1 of (Book) II, the area that is outlined by the two
lines AD and DB is equal to the sum of the two areas, each

outlined by line BD with the two divisions AG and GD

respectively. Since AG equals GB, then the sum of the

two areas, bounded respectively by the two lines GB and

BD, and the two lines GD and DB, are equal to the area

outlined by the two lines AD and DB. Thus, there remains

to us the square on GD. We distribute it as to partners
(add it to both sides equally). Then the sum of the two

areas bounded by the lines GB and BD, and the lines GD

and DB respectively, together with the square on GD is equal

to the area outlined by the two lines AD and DB plus the

square on GD. But the area that it outlined by the two
lines GD and DB plus the square on GD is equal to the area

outlined by the two lines BG and GD, from proposition 3 of

(Book) II [8]. The sum of the two areas, one outlined by
lines BG and GD, and the other by the two lines GB and

BD is equal to" the area outlined by the two lines AD and

DB plus the square on GD. But the demonstration of

proposition 2 of (Book) II, the sum of the two areas, outlined

respectively by the two lines GB and BD, and the two lines

BG and GD, is equal to the square on line GB. The square
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on line GB thus is equal to the area that is outlined by the

two divisions AD and DB plus the square on GD. This is

what we wished to demonstrate."

B D G A
I 1 1 1

Fig.1a

In modern symbols, the demonstration of Heron would
proceed as follows:

To prove ÄD DB + GD2 GB2.

Given AD AG + GD and D another point on the

line AB.

By II, 1, AD DB BD AG + BD GD.

But AB GB is given.
Then GB BD + GD DB AD DB.

Add GD2 to both sides of the equation:

GB BD + GD DB + GD2 AD DB + GD2.

But by II, 3, GD DB + GD2 BG GD.

Hence BG GD -f- GD BD AD DB + GD2.

But, by II, 2, GB BD + BG GD GB2.

.-. GB2 ÄD DB + GD2.

Abü Kämil does not hesitate to utilize a variation of this
procedure at a number of points. For example, he demonstrates
its use in his solution of the equations + 10, 4
(x > y) [9]; and for x + y10, xy 21 [10]. In the latter
case, Abü Kämil [11] has the following explanation:

"AG times GB equals twenty one. You divide line AB
into two equal parts at point H. Then the product of AG
by GB plus H G multiplied by itself equals HB multiplied
by itself. The product of BH multiplied by itself is twenty
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five. AG times GB is twenty one. Then the remainder is

HG multiplied by itself, or four; or HG is two. HB is five.

Then GB remains as three and AG is seven."

Fig. 2

3. Al-KhwärizmVs solution.

Although al-Khwârizmï does not make use of the more

abstract one line proof of Heron, nevertheless it is evident that
he leans on the concrete concept of root [12] already known in

ancient Babylonian times. In his discussion of the equation
x2 + 21 Hte, al-Khwârizmï [13] makes it evident that he is

utilizing a concept extremely practical in geometric terms.

" When a square plus twenty one dirhems are equal to
ten roots, we depict the square as a square surface AD of

unknown sides. Then we join it to a parallelogram, HB,
whose width, HN, is equal to one of the sides of AD. The

length of the two surfaces together is equal to the side HC.

We know its length to be ten numbers since every square has

equal sides and angles; and if one of its sides is multiplied

by one, this gives the root of the surface, and if by two,
two of its roots. When it is declared that the square plus

twenty one equals ten of its roots, we know that the length
of the side HC equals ten numbers because the side CD is a

root of the square figure. We divide the line CH into two
halves on the point G. Then you know that line HG equals

line GC, and that line GT equals line CD. Then we extend

line GT a distance equal to the difference between line CG

and line GT to make the quadrilateral. Then line TK equals

line KM, making a quadrilateral MT of equal sides and

angles. We know that the line TK and the other sides

equals five. Its surface is twenty five obtained by the
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multiplication of the half of the roots by itself, or five by
five equals twenty five. We know that the surface HB is

the twenty one that is added to the square. From the

surface HB, we cut off line TK, one of the sides of the

surface MT, leaving the surface TA. We take from the line

KM line KL which is equal to line GK. We know that
line TG equals line ML and that line LK cut from line MK

equals line KG. Then the surface MR equals surface TA.

We know that surface HT plus surface MR equals surface HB,

or twenty one. But surface MT is twenty five. And so, we

subtract from surface MT, surface HT and surface MR, both

equal to twenty one. We have remaining a small surface,

RK, or twenty five less twenty one, or four. Its root,
line RG, is equal to line GA, or two. If we subtract it from
line CG, which is half of the roots, there remains line AC, or
three. This is the root of the first square. If it is added

to line GC, which is half of the roots, it comes to seven, or
line RC, the root of a larger square. If twenty one is added

to it, the result is ten of its roots. This is the figure."
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N T B D

Fig. 3

The algebra of al-Khwârizmï admits the double solution
and has a novel manner of utilizing geometry for algebra.
Al-Khwârizmî shows the three Arabic types of quadratic equa-
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tions! In reality, this classification is comparable with the

standardized types which had long before been set up by the

Babylonians [14]. It is interesting that Al-Khwârizmï shows no

evidence of acquaintance with the work of the great Greek

algebraist, Diophantus [15].

4. Abu KämiVs solution.

Shüja' [16] also discusses the solution of the question x2 + 21

l(te, the problem treated by al-Khwârizmï. He solves the

equation algebraically in the following steps. Modern symbols

have been substituted for the sake of brevity.

The equation is also solved directly for the two values of x2:

2, 9

1Î! — 21 + \Jl(f)' - 10" 21 49

Then he gives the following demonstration for the equation:

" I shall explain all this. I take the number, twenty one,

which is together with the square and larger than the square.

I construct the square as a square surface, ABGD, and add

to it the twenty one which is the surface ABHL. This

surface is greater than surface ABGD. Then, because of

this, line BL is greater than line BD. The surface HD equals

ten of the roots of ABGD. Then line LD is ten and the

surface HB is twenty one, or equal to the product of LB and

BD for BD equals BA. Line LD is then divided into two
halves by the point X. It had already been divided into

two unequal parts by point B. Therefore, the product of

LB by BD added to the square on XB is equal to the square
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on XD. So says Euclid in his book, part two. But the

product of line XD by itself is twenty five for its length is

five. Line LB times BD is twenty one as has been shown.

H

K

B M

Fig. 4

N

Then the square on the line XB is four, and its side is two.
But line XD is five. Then there remains line BD which
equals three. This is the root of the square; the square is

nine. If you wish that I prove what I have said, I construct
a square on line XD, or surface KD equal to twenty five
since line XD is five. Surface XG equals surface XH since
line LX equals line XD. Surface AX equals surface AN.
Therefore, the three surfaces AX, AD and AN together equal
surface HB which is the product of LB by BD, or twenty one.
So, surface KA remains equal to four. It is a square since
line KN equals line KX, and line XS equals line NM. There
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remains line KS equal to line KM, equal to two. This is
equal to line BX, also equal to two. Then line BD is three.
This is the root of the square which is equal to nine.

" I shall explain this question. When you take half of
the roots then the result of its multiplication by itself is more
than the number, twenty one, that was placed with the
square, and less than the square. I set the square as a
square surface ABGD and add twenty one, which is the
surface ABHW, to it. Surface AD is greater than
surface AW as constructed, and line DB is longer than line BW.

D X BIV

S

G K A H

Fig. 5

The surface WG [17] equals ten of the roots of the surface AD.
And so line DW is ten. The product of WB [18] by BD is
twenty one. You divide line WD into two halves by the
point X. Already it is divided into two unequal parts by
point B. Thus, the product of WB by BD plus the product
of BX by itself equals the product of XD by itself, as in
Euclid's book, part two. The product of XD by itself is
twenty five. The product of WB by BD is twenty one.
There is left the product of line XB by itself, or four. The
line XB is the root of four, or two. You add it to line XD
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which is five. The line BD is then sëven, and it is the root
of the square; the square is then forty nine. We have
explained to you that when we set the square as less than the
number, then we get the result by subtraction ; when we set
it greater than the number, then we get the result by
addition.

" If you wish proof of all that we have said, you draw a

square surface WN, on the line WX. Extend line XN out
to point K. The surface (BN is equal to) surface NH since
LN equals line NX, and line KN [19] equals line NS [20] since
the surface AN is a square, as we said. Surface WN is
twenty five and surface AW is twenty one. Surface AN
remains as four and is a square figure since line AB equals
line AG, and line KG equals BS since KG equals XD [21] and
XD equals XW, and also XW equals XN, and XN equals
BS. Therefore BS equals line KG, and line AK remains
equal to AS. The surface AN is a square and line SN equals
BX, equals two. You add it to line XD which is five to give
line BD as seven. This is the root of the square which is
forty nine."

Abu. Kämil then goes on with a geometric discussion of the
equation x2+ 25 10a:, a special case where the square equals
the number and the root of the square is equal to half of the root
on the right side of the equation.

In Book II, Euclid has geometric demonstrations of algebraic
formulas while, on the other hand, the works of the above
mentioned Muslims are primarily algebraic with geometric explanations.

It has been shown already that Greek geometry and
algebra had no direct influence upon al-Khwârizmi [22], The
fact that geometric algebra is found in Euclid in such seemingly
different form would tend to strengthen this idea. Moreover,
on closer examination of Euclid, we find that "... the proofs
of all the first ten propositions of Book II are practically
independent of each other ..." Heath then asks and answers
the question, " what then was Euclid's intention, first in inserting
some propositions not immediately required, and secondly in
making the proofs of the first ten independent of each other
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surely the object was to show the power of the method of
geometrical algebra as much as to arrive at results " [23].

With the Babylonian accent on the algebraic form of
geometry and the ensuing dependence of al-Khwârizmï upon this
source, the latter's form of geometric algebra is fully expected.
Thus, from the works of al-Khwârizmï and both Heron and
Euclid, respectively representing the Babylonian and Greek
forms of algebra, Abü Kämil presented algebra on a unique level.
This admits of theoretical explanation and demonstration, and
provides the means of integrating Babylonian practice with
Greek theory into a more virile approach [24].

C. Other examples of Abu KImil's methodology.

Abü Kämil was the earliest algebraist to work out the
solutions directly for the square of the unknown. In the problem
quoted above he makes use of the following solutions:

and for the second value

The addition and substraction of [25] radicals was effected
rhetorically by means of the relation now known as

Va±Vb Va+ 2 -\J~ab

An example of this is given in V9 — y74, whose solution is

determined to be (/9 + 4 — 2y/36 1 in the following [26]:
" On subtraction of roots from each other.
" When you wish to subtract (the root of) four from the

root of nine so that the difference of the roots be another
number, you add nine to four to give thirteen [27]. Then
multiply nine by four to give thirty six [28]. Take two roots
of it to give twelve. You subtract it from thirteen to get one.
The root of one is the difference between the root of nine and
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