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SUR L’EXISTENCE D’UN CERCLE
PASSANT PAR UN NOMBRE DONNE DE POINTS
AUX COORDONNEES ENTIERES

par André ScHINZEL, Varsovie

(Recu le 29 janvier 1958.)

Le but de cette Note est de démontrer ce

THEOREME: Quel que soit le nombre naturel n, il existe dans le
plan un cercle dont la circonférence contient précisément n points
aux coordonnées entiéres.

(Ce théoréme a été mentionné dans l'article de M. W. Sigr-
PINSKI paru dans ce fascicule, page 25.)

Démonstration. — Pour n impair, n = 2k + 1, ou k est un
entier > 0, le cercle au centre (—g—, O> et au rayon 5"/3 satisfait

a notre théoréme.

En effet, d’aprés un théoréme connu sur le nombre de décom-
positions en deux carrés, Péquation 22 4 y2 = 5% a 4 (2k + 1)
solutions en nombres entiers z et y. Comme 5% = 1 (mod. 3)
pour £ =0, 1, 2, ..., on démontre sans peine que dans chaque
telle solution, un et un seul des nombres z et y est divisible par 3.
Les solutions se divisent donc en 2k + 1 quadruples disjoints:
(z, y), (x, —¥), (¥, %), (— ¥, x), o x est un entier divisible par 3
et y un entier qui n’est pas divisible par 3. Dans chaque tel qua-
druple, une et une seule solution satisfait a la condition que le
premier terme de la paire = — 1 (mod. 3) et le second = 0
(mod. 3). Il existe donc précisément 2k + 1 = n solutions en
nombres entiers z et ¢ de 'équation (3z — 1) + (31)2 = 5%,

1
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c’est-a-dire de 1’équation (z —§>2 + 2 = <§—3~) . Cela prouve

quil existe précisément n points aux coordonnées entiéres sur
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le cercle déterminé par cette équation, ce qui démontre notre
théoreme pour n impair.

Pour n pair, n = 2k, ou k est un nombre naturel, le cercle
R

au centre (%, 0> et au rayon 5 * /2 satisfait a notre théoréme.

En effet, d’aprés le théoréme mentionné plus haut, I’équation
2% + y* = 5% a précisément 4k solutions en nombres entiers z
et . Or, des nombres z, y, un et un seul est pair et ainsi toutes
les solutions se divisent en 2k paires disjointes (x, y) et (y, x)
qui ne difféerent entre elles que par I’ordre de leurs termes. Dans
chaque telle paire précisément une solution satisfait a la condi-
tion que le premier élément est impair et le second pair. Il
existe donc précisément 2k = n solutions en nombres entiers
z, t de I'équation (2z — 1)% + (2t)2 = 5!, ¢’est-a-dire a I’équa-
k-1

2
: 2 2 : .
tion (z — %) + 12 = <—5§ ) , ce qui démontre notre théoréme
pour n pair.

Notre théoréme se trouve ainsi démontré.
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