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SUR L'EXISTENCE D'UN CERCLE

PASSANT PAR UN NOMBRE DONNÉ DE POINTS

AUX COORDONNÉES ENTIÈRES

par André Schinzel, Varsovie

(Reçu le 29 janvier 1958.)

Le but de cette Note est de démontrer ce

Théorème: Quel que soit le nombre naturel n, il existe dans le

plan un cercle dont la circonférence contient précisément n points
aux coordonnées entières.

(Ce théorème a été mentionné dans l'article de M. W. Sier-
pinski paru dans ce fascicule, page 25.)

Démonstration. — Pour n impair, » + 1, où A: est un
entier > 0, le cercle au centre (J-, Oj et au rayon 5fe/3 satisfait
à notre théorème.

En effet, d'après un théorème connu sur le nombre de
décompositions en deux carrés, l'équation -f 52ft a 4 (2k -f- 1)
solutions en nombres entiers x et y. Comme 52fe 1 (mod. 3)
pour k— 0, 1, 2, on démontre sans peine que dans chaque
telle solution, un et un seul des nombres et est divisible par 3.
Les solutions se divisent donc en + 1 quadruples disjoints:
(x> y), (x, — y),(y, x),(—y,x), où x est un entier divisible par 3
et y un entier qui n'est pas divisible par 3. Dans chaque tel
quadruple, une et une seule solution satisfait a la condition que le
premier terme de la paire — 1 (mod. 3) et le second 0
(mod. 3). Il existe donc précisément 1 solutions en
nombres entiers 2 et tdel'équation (32 — l)2 -f (3 52fe,

c'est-à-dire de l'équation (2 — + t2 Cela prouve
qu il existe précisément n points aux coordonnées entières sur
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le cercle déterminé par cette équation, ce qui démontre notre
théorème pour n impair.

Pour n pair, n — 2&, où k est un nombre naturel, le cercle
h-1

En effet, d'après le théorème mentionné plus haut, l'équation
x2 - y2 5fe_1 a précisément 4k solutions en nombres entiers x
et y. Or, des nombres x1 y, un et un seul est pair et ainsi toutes
les solutions se divisent en 2k paires disjointes (x, y) et (y, x)
qui ne diffèrent entre elles que par l'ordre de leurs termes. Dans
chaque telle paire précisément une solution satisfait à la condition

que le premier élément est impair et le second pair. Il
existe donc précisément 2k — n solutions en nombres entiers
z, t de l'équation (2z — l)2 + (2z)2 bh~\ c'est-à-dire à l'équa-

/ tt\2
tion (z — + t2 J i ce qui démontre notre théorème

pour n pair.
Notre théorème se trouve ainsi démontré.

au centre rayon 5 2
/2 satisfait à notre théorème.
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