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En passant a la limite, on en déduit le lemme suivant

LEMME. — Les géodésiques de longueur nulle de V, se projettent
sur V3 selon les extrémales de 1intégrale
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ou ¢ est le signe de g, et €' le signe de g, x*

D’apres (8. 9), le long de ces extrémales on a

N . I
(8.11) dz® = e’ \/~ ?1— g dx' da) — = .
oo W - Soo

On remarquera que dz® = Ldu.

Dans le cas ou g,, s’annule dans le domaine étudié, on obtient
un enoncé analogue ou (8. 10) et (8. 11) sont respectivement

remplacées par
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9. Le principe de FERMAT.

Nous avons établi que les rayons électromagnétiques sont

géodésiques de longueur nulle de la variété riemannienne V,.
Nous pouvons les interpréter géométriquement dans ’espace
st le milieu considéré est en mouvement permanent. En effet,

le lemme fournit une démonstration immédiate du théoréme
suivant

TuEOREME. — ST le mouvement du miliey consideéré est
permanent et tel que g, # 0, les rayons électromagnétiques dans

L’Enseignement mathém., t. IV, asc. 1. 5
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Uespace sont des lignes réalisant U'extrémum de U'intégrale

. . = x'l.
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pour des variations a extrémités fixes, on ¢ est le signe de go, €t €’
le signe de gy,x*. Le temps mis par un rayon pour aller du point z,
au point z, est donné par
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Ce temps est exirémum.
Dans le cas ou gy = 0, on obtient un énoncé analogue en
remplacant (9. 1) et (9. 2) respectivement par
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Par le théoréme précédent se trouve démontrée I’équivalence
du principe géodésique et du principe du moindre temps.

En particulier, si 'univers est statigue au sens de LEvi-
CiviTa, c¢’est-a-dire si les lignes de courant coincident avec les
lignes de temps, I'espace-temps V, est orthogonal. Soit

ds?* = U (d2%)® + g;; dxt da!

la métrique d’univers de V,. Les u; étant nuls, on en déduit la
métrique associée .

ds? — % (dz®)? + g dat da

On peut mettre (9. 2) sous la forme
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ou I'on a posé do? = — g,; da’ da’. On voit apparaitre I'influence
du champ gravitationnel sur la propagation du champ électro-
magnétique.

S1 U =1, on démontre que Pespace-temps V, est euclidien.
L’énoncé du théoréme devient

21 21

8fdx° = 8fndc=: 0.

%0 Zo

Nous retrouvons I’énoncé exact du principe de FERMAT en

Optique. Le théoréeme que nous avons établi, en constitue
donc I'énoncé généralisé en relativité. I1 donne plus généralement,
la loi de propagation des ondes électromagnétiques dans un
milieu en mouvement, la vitesse du milieu intervenant dans
3 : ‘
Pexpression des g,

10. Interprétation du signe ¢’ de g, x™
L’équation

Ubl,l_\

représente le cOne caractéristique C au point x des équations
de MaxweLL. Les deux nappes de ce cone sont symétriques
par rapport & hyperplan élémentaire =,

8o 42" = 0

Désignons par M (z*) le sommet de ce cone E Prenons un
couple de points voisins de M, ayant pour coordonnees spatiales
(x + da') appartenant respectivement aux deux nappes de

Cx et symétriques par rapport & . Soient
M, (20 + dad, 2t + dat) M; (20 — d’ 0 , at 4 dx’:) .

On peut dire que MM, représente aux infiniment petits d’ordre
supérieur prés le deplacement 1nﬁn1tes1ma1 associé & un rayon
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