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Considérons maintenant un fluide parfait chargé conducteur
en mouvement dans un domaine D,. Le mouvement de ce fluide
est dit permanent si Pespace-temps associé V, est stationnaire
dans D, et si le groupe d’isométries laisse invariantes les quantités
(8upr Hogy Gug, 0, g, w%, p, ). On démontre immeédiatement &
partir des résultats sur le probléme de Cauchy que pour que
le mouvement du fluide soit permanent, il faut et il suffit que
Pespace-temps riemannien associé soit stationnaire dans D, et
que son groupe d’isométries laisse invariants les champs H_g, 6
ainsi que les coefficients % ¢l g, u, o.

Si le mouvement du fluide est permanent, les quantités

_ 1
gocB == gaB% (1‘—;2_ u’ocuB

sont constantes le long des ligneéwde temps. Il en résulte que

la variété riemannienne V, définie par la variété différentiable
portant D, et munie de la métrique associée, admet aussi
un groupe connexe a un parameétre d’isométries globales ne

laissant invariant aucun point de \74, induit par celui de
I'espace-temps. I1 est clair que les (2°, i) constituent un systéme

de coordonnées locales adapté pour \74. On peut prendre pour
générateur infinitésimal du groupe d’isométries de {7—4 le vecteur
Z qul a pour composantes contravariantes C* = E* le carré
de ce vecteur a pour valeur dans \74 |

2 1

(C)2 = Lo = gop — (1‘ ‘) ()2 .

n2

Cette quantité pouvant étre positive, négative ou nulle, les

trajectoires d’isométries de V4 peuvent étre orientées dans le
temps, dans 'espace ou étre 1sotropes.

7. Un prebléme du caleul des variations.

Nous nous proposons d’interpréter géométriquement leg
rayons électromagnétiques dans I'espace & trois dimensions. A
cet effet, nous commencons par rappeler briévement un pro-
bléme du calcul des variations.
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Etant donnée une variété différentiable V, ., soit Wy, .,
Iespace fibré des vecteurs tangents aux différents points de
V,.1- SiVon adopte sur V, ., des coordonnées locales (z*) chaque
élément de Wy, , sera constitué par la réunion des coordonnées
(z*) du point = correspondant de V,,, et des n 4 1 composantes
(z*) du vecteur x dans le repére naturel en z associé aux (z%).
Une structure de variété finslérienne sur V, ., est définie par la
donnée d’une fonction 2 (x, x) & valeurs scalaires dans Wy, 4,
telle que pour « fixe, £2(x, Ax) = A2 (x, 2). En coordonnées
locales, une telle fonction est représentée par £ (2% z°) et est
homogéne et du premier degré par rapport aux z*.

Considérons une variété différentiable V,,, munie d’une
structure de variété finslérienne et supposons qu’elle admette
un groupe connexe a un parameétre d’isométries globales de

générateur C ne laissant invariant aucun point de V_, (C # 0).
Supposons de plus que les trajectoires z du groupe sont homéo-
morphes a la droite réelle R, et soit V, la variété quotient de
V... par la relation d’équivalence définie par le groupe. Nous
identifierons V, a P'espace dont les points z sont les trajectoires
d’isométries. Dans un systéme de coordonnées adapté (z°, z%),
(i =1, 2, ..., n), la fonction 2 est localement indépendante de la

variable z°:
g ] ) 0
L =£’(x1,x7,x) .

Nous allons montrer qu’il est possible de douer la variété
quotient V, de structure de variété finslérienne au moyen de
fonctions L (z, z) de facon qu’aux géodésiques de V, ., extrémales
de I'intégrale

(7.1) TJ? (z, z)du <x = %)

correspondent par projection sur V, des extrémales de

1 .
(7.2) (LG, ) du ( _ z_i) .
2 '
Dans la suite, tout indice grec = 0, 1, 2, ..., n; tout indice

latin = 1, 2, ..., n et nous supposons
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Donnons-nous une extrémale de (7. 1) par une représentation
parametrique z* (u), u désignant un paramétre arbitraire. Le
systéme différentiel aux extrémales de (7. 1)

{7.3) ‘ | dz o
ou z* satisfait &

(7.4) du d 2% 3%

est caractérisé par le fait d’admettre I'invariant intégral relatif

oL . . N R
{(7.5) o = 2 dx* = éé.L dx™ -+ 66 £2dx0 .

«d z*
En vertu de '’hypothése 3,2 = 0, on a I'intégrale premiére

0. L =h.
(7.6) o h

Gomme ?d;; £2 % 0, on peut résoudre (7.6) par rapport & z°; on
obtient I'équation équivalente

(7.7) 2’ = ¢ (a, 2l, h)

ou ¢ est une fonction homogene et de degré 1 par rapport aux
2! et dépendant effectivement de 4.

Considérons la famille des extrémales (E) correspondant &
une valeur déterminée de la constante . Pour cette famille,
le dernier terme de w a la valeur hdz® et définit un invariant
intégral relatif. Il en résulte que cette famille d’extrémales
admet I'invariant intégral relatif

(7.8) 0. £ da®

Or d’aprés ’lhomogénéité de £, on a

"3 o * 0 ol o
R 0
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Par suite, pour toute solution (7. 6) ou (7. 7), la quantité
z* 9 42 peut s’exprimer par une fonction L des variables 2%, 2, A

(7,9) L2k, 2t, h) = £k, 2, o (o, 24, )] — ho(a®, 2, h)

et 'on a
a‘L prmmmmns a'.l‘o -,}_:0 . —— . —_— » D
G s + 60 qu; hakcp bkl. )

Ainsi, d’aprés (7. 8), les projections des (E;) sur V, sont
définies par un systeme différentiel qui admet I'invariant intégral
relatif

T = Ol;b L dz* .

Autrement dit, elles sont extrémales de I'intégrale
Z1 .

(7.10) fL (2F, 2t h) du
Z0

ou A a la valeur choisie.

On appelle descente la correspondance qui a la fonction
2 (z*, 2, 2°) fait correspondre la fonction L (z*, 2, k). Le pro-
bléme inverse est possible 3.

8. Projection des géodésiques de longueur nulle de la variété
riemannienne V ,.

Nous supposons que la variété V4 satisfasse aux hypothéses
du paragraphe précédent. La fonction f? est définie par la relation

(8.1) L8 = Byt eP

ou le second membre est une forme quadratique non dégénérée
comme on peut le vérifier. Etudions d’abord les extrémales
correspondant aux valeurs de z* pour lesquelles le  second
membre est positif. On sait d’ailleurs qu’il suffit qu’une géodésique
le rende positif en un point pour qu’il en soit de méme tout le
long de la géodésique.

3) Voir A. LicuNEROWICZ, Théories relativistes de la gravitation et de I’électromagné-
tisme, Livre II, chap. premier.
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