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SUR LE PRINCIPE DE FERMAT 57

les variétés Vi peuvent étre engendrées par les bandes de v,
définies par les géodésiques de longueur nulle EO, le 3-plan
élémentaire associé étant le plan tangent au coOne élémentaire
Ex le long de la tangente a L.

Nous avons démontré le théoréme

THEOREME. — Les bicaractéristiques des équations de MAXWELL
sont les géodésiques de longueur nulle de la variété riemannienne

V, munie de la métrigue associée

ds® = gop da* daP -

Dans le langage de la théorie de la propagation par ondes,
les variétés caractéristiques VI jouent le role de surfaces d’ondes

électromagnétiques. Les bicaractéristiques L, sont les rayons
électromagnétiques associés. En introduisant I'indice de réfrac-
tion n = 4/eu du milieu, nous pouvons donc énoncer le résultat
suivant

TuEorEME. — Dans un miliew transparent isotrope d’indice
de réfraction n variable, les rayons électromagnétiques sont des

géodésiques de longueur nulle de l'espace riemannien V, muni
de la métrique

ou g,q est le tenseur métrique fondamental et u, le vecteur vitesse
unitaire d’univers définis en chaque point du milien considéré.

III. ETUDE GEOMETRIQUE
DES RAYONS ELECTROMAGNETIQUES DANS L’ESPAGE

6. Espace-temps stationnaire et mouvement permanent d’un
fluide parfait chargé.

On dit que 'espace-temps V, est stationnaire dans un domaine
D, si la variété riemannienne définie par D, muni de la métri-
que d’univers ds® admet un groupe connexe & un paramétre
d’isométries globales & trajectoires z orientées dans le temps,
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ne laissant invariant aucun point de D,, la famille des lignes z
ou lignes de temps satisfaisant aux hypothéses suivantes:

a) les lignes de temps sont homéomorphes a la droite réelle R;

b) on peut trouver une variété différentiable & trois. dimen-
sions D, satisfaisant aux mémes hypothéses de différentiabilité
que V,, telle qu’il existe un homéomorphisme de méme classe
de la variété D, sur le produit topologique D; X R dans lequel
les z s’appliquent sur les droites facteurs. La variété quotient
D; sera dite simplement espace.

On peut définir dans D, des systémes de coordonnées locales
(x° «'), dits adaptés au caractére stationnaire, de la maniére
suivante. Les (z!) sont un systéme de coordonnées locales
arbitraire de D;. La donnée des (z!) détermine une ligne de
temps. Pour déterminer un point sur cette ligne, on se donne
la variété 2% = const. a laquelle il appartient, ces variétés
étant homéomorphes & D;. Les potentiels g g relatifs aux coor-
données adaptées sont indépendants de la variable 2° et le

—_—
vecteur & générateur infinitésimal du groupe d’isométries admet
pour composantes contravariantes

=1 £ =0

et a pour carré £2 = g,, > 0.

Dans la suite on n’introduit que des systémes de coordonnées
adaptes En effectuant la décomposition en carrés de la forme
quadratique fondamentale

(6.1) ds? = g,q da* da®

a partir de la variable directrice dz° nous obtenons

(6.2) ds* = L (8 d™)? + d5?
£oo
ou )
A i g i 8oi 8oj i
(6.3) ds® = g datdx) = (g; — dz* da?
g00

définit sur D; une métrique riemannienne définie négative.
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Considérons maintenant un fluide parfait chargé conducteur
en mouvement dans un domaine D,. Le mouvement de ce fluide
est dit permanent si Pespace-temps associé V, est stationnaire
dans D, et si le groupe d’isométries laisse invariantes les quantités
(8upr Hogy Gug, 0, g, w%, p, ). On démontre immeédiatement &
partir des résultats sur le probléme de Cauchy que pour que
le mouvement du fluide soit permanent, il faut et il suffit que
Pespace-temps riemannien associé soit stationnaire dans D, et
que son groupe d’isométries laisse invariants les champs H_g, 6
ainsi que les coefficients % ¢l g, u, o.

Si le mouvement du fluide est permanent, les quantités

_ 1
gocB == gaB% (1‘—;2_ u’ocuB

sont constantes le long des ligneéwde temps. Il en résulte que

la variété riemannienne V, définie par la variété différentiable
portant D, et munie de la métrique associée, admet aussi
un groupe connexe a un parameétre d’isométries globales ne

laissant invariant aucun point de \74, induit par celui de
I'espace-temps. I1 est clair que les (2°, i) constituent un systéme

de coordonnées locales adapté pour \74. On peut prendre pour
générateur infinitésimal du groupe d’isométries de {7—4 le vecteur
Z qul a pour composantes contravariantes C* = E* le carré
de ce vecteur a pour valeur dans \74 |

2 1

(C)2 = Lo = gop — (1‘ ‘) ()2 .

n2

Cette quantité pouvant étre positive, négative ou nulle, les

trajectoires d’isométries de V4 peuvent étre orientées dans le
temps, dans 'espace ou étre 1sotropes.

7. Un prebléme du caleul des variations.

Nous nous proposons d’interpréter géométriquement leg
rayons électromagnétiques dans I'espace & trois dimensions. A
cet effet, nous commencons par rappeler briévement un pro-
bléme du calcul des variations.
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Etant donnée une variété différentiable V, ., soit Wy, .,
Iespace fibré des vecteurs tangents aux différents points de
V,.1- SiVon adopte sur V, ., des coordonnées locales (z*) chaque
élément de Wy, , sera constitué par la réunion des coordonnées
(z*) du point = correspondant de V,,, et des n 4 1 composantes
(z*) du vecteur x dans le repére naturel en z associé aux (z%).
Une structure de variété finslérienne sur V, ., est définie par la
donnée d’une fonction 2 (x, x) & valeurs scalaires dans Wy, 4,
telle que pour « fixe, £2(x, Ax) = A2 (x, 2). En coordonnées
locales, une telle fonction est représentée par £ (2% z°) et est
homogéne et du premier degré par rapport aux z*.

Considérons une variété différentiable V,,, munie d’une
structure de variété finslérienne et supposons qu’elle admette
un groupe connexe a un parameétre d’isométries globales de

générateur C ne laissant invariant aucun point de V_, (C # 0).
Supposons de plus que les trajectoires z du groupe sont homéo-
morphes a la droite réelle R, et soit V, la variété quotient de
V... par la relation d’équivalence définie par le groupe. Nous
identifierons V, a P'espace dont les points z sont les trajectoires
d’isométries. Dans un systéme de coordonnées adapté (z°, z%),
(i =1, 2, ..., n), la fonction 2 est localement indépendante de la

variable z°:
g ] ) 0
L =£’(x1,x7,x) .

Nous allons montrer qu’il est possible de douer la variété
quotient V, de structure de variété finslérienne au moyen de
fonctions L (z, z) de facon qu’aux géodésiques de V, ., extrémales
de I'intégrale

(7.1) TJ? (z, z)du <x = %)

correspondent par projection sur V, des extrémales de

1 .
(7.2) (LG, ) du ( _ z_i) .
2 '
Dans la suite, tout indice grec = 0, 1, 2, ..., n; tout indice

latin = 1, 2, ..., n et nous supposons
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0
. ﬁ ¢ = ———— s
600 70, aoc o L&

Donnons-nous une extrémale de (7. 1) par une représentation
parametrique z* (u), u désignant un paramétre arbitraire. Le
systéme différentiel aux extrémales de (7. 1)

{7.3) ‘ | dz o
ou z* satisfait &

(7.4) du d 2% 3%

est caractérisé par le fait d’admettre I'invariant intégral relatif

oL . . N R
{(7.5) o = 2 dx* = éé.L dx™ -+ 66 £2dx0 .

«d z*
En vertu de '’hypothése 3,2 = 0, on a I'intégrale premiére

0. L =h.
(7.6) o h

Gomme ?d;; £2 % 0, on peut résoudre (7.6) par rapport & z°; on
obtient I'équation équivalente

(7.7) 2’ = ¢ (a, 2l, h)

ou ¢ est une fonction homogene et de degré 1 par rapport aux
2! et dépendant effectivement de 4.

Considérons la famille des extrémales (E) correspondant &
une valeur déterminée de la constante . Pour cette famille,
le dernier terme de w a la valeur hdz® et définit un invariant
intégral relatif. Il en résulte que cette famille d’extrémales
admet I'invariant intégral relatif

(7.8) 0. £ da®

Or d’aprés ’lhomogénéité de £, on a

"3 o * 0 ol o
R 0
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Par suite, pour toute solution (7. 6) ou (7. 7), la quantité
z* 9 42 peut s’exprimer par une fonction L des variables 2%, 2, A

(7,9) L2k, 2t, h) = £k, 2, o (o, 24, )] — ho(a®, 2, h)

et 'on a
a‘L prmmmmns a'.l‘o -,}_:0 . —— . —_— » D
G s + 60 qu; hakcp bkl. )

Ainsi, d’aprés (7. 8), les projections des (E;) sur V, sont
définies par un systeme différentiel qui admet I'invariant intégral
relatif

T = Ol;b L dz* .

Autrement dit, elles sont extrémales de I'intégrale
Z1 .

(7.10) fL (2F, 2t h) du
Z0

ou A a la valeur choisie.

On appelle descente la correspondance qui a la fonction
2 (z*, 2, 2°) fait correspondre la fonction L (z*, 2, k). Le pro-
bléme inverse est possible 3.

8. Projection des géodésiques de longueur nulle de la variété
riemannienne V ,.

Nous supposons que la variété V4 satisfasse aux hypothéses
du paragraphe précédent. La fonction f? est définie par la relation

(8.1) L8 = Byt eP

ou le second membre est une forme quadratique non dégénérée
comme on peut le vérifier. Etudions d’abord les extrémales
correspondant aux valeurs de z* pour lesquelles le  second
membre est positif. On sait d’ailleurs qu’il suffit qu’une géodésique
le rende positif en un point pour qu’il en soit de méme tout le
long de la géodésique.

3) Voir A. LicuNEROWICZ, Théories relativistes de la gravitation et de I’électromagné-
tisme, Livre II, chap. premier.

]
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Nous supposons que gy, ne s’annule pas dans le domaine
étudié. Le procédé de descente nous conduit a former Péquation

1 =B ey R
(8.2) 505 £? = B + 8ol = hi

et & éliminer 2° entre cette équation et
(8.3) L = £—h.
En décomposant 172 en carrés a partir de la variable directrice z9,
il vient
1 /1 2 A
L2 — [ .42 o.. pt oyl
8oo (260 ) T8
ou l'on pose
?\ — F. — g'oi goj
% K gOO
et I'on voit que gj; 4% 27 est négative si gy > 0 et positive si
goo << 0. Dans le premier cas on prendra 4 > max Zoo- Comme

1 . , )
593422 = h /2, on tire ’équation
9 0 I q

o g xt 2
(8.4) ﬂ—\\i_m

qui fournit £ en fonction des variables a®, z*, h. De (8. 2), on
tire ensuite |

(8.5) = 2 BT
8oo 800
On en déduit d’apres (8. 3) et en vertu de (8. 4)
s ’i
8.6) L \/<1_ﬁ>—a. gl g gt
8» 800 A * 8o

ou e est le signe de gy,

L est bien une fonction de 2*, 3, 1 homogéne et du premier
g_egré par rapport aux z. Elle définit sur la variété quotient
Vs une structure de variété finslérienne. Inversement, étant

donnée localement dans V; la fonction L (z* a', h) précédente,
on démontre facilement qu’il existe une fonction £2 (%, &, 20
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homogéne et de degré 1 par rapport aux 2%, qui par descente
reconduit & L et que cette fonction est

L= l/gaB z* j:B ’

Les courbes extrémales correspondantes sont donc des géodé-
siques de V,_l.

Ainsi, les géodésiques de la variété riemannienne \—/4 qui
correspondent a l’mtegrale premiére ;7 = h se-projettent sur
la variété quotient V selon les extrémales de l'intégrale

” h? A es s —g(n x'l
8.7 / <—s\/('1——_—) Lxta) - h— )du
8.7) §oo 8ij 8oo

ol A a la méme valeur. Ces extrémales coincident avec celles de

Z3

52 2 ng B '
8.8 f(s \/(1—_—> g xtal — — )du.
(88) h 8oo & 8o

29

Le long de ces extrémales, on a d’aprés ’expression de z°:

8,9 dz® = — dat dad — == -
(8.9) 800 1— _}fi g” 800

goo

Ceci étant, on peut définir les géodésiques de longueur nulle

de {74 comme les courbes limites vers lesquelles tendent les
geodemques orientées dans le temps lorsque £ — O De la relation
B = gy, 2%, il résulte que h — oo lorsque £2— 0 et hoale
signe de gy, z* Or

22 =

-

(gOac P+ g atal =0,

gqq,a

On en déduit que gy,,2* a une valeur non nulle et garde un signe
constant. |

D’aprés (8. 8), les projections des géodésiques de longueur
nulle de V, sur V, sont les extrémales de I'intégrale
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21

] - ——— _-L'Ei
f[lim (i\/(1__h_2)g..x%x?_g_‘l’ >]du.
h—>w \h 8oo/ Y 800

20

En passant a la limite, on en déduit le lemme suivant

LEMME. — Les géodésiques de longueur nulle de V, se projettent
sur V3 selon les extrémales de 1intégrale

21 L
8.10 < ’\/~—_— o - S )du
( ) / = 8oo 8ij §oo0

29

ou ¢ est le signe de g, et €' le signe de g, x*

D’apres (8. 9), le long de ces extrémales on a

N . I
(8.11) dz® = e’ \/~ ?1— g dx' da) — = .
oo W - Soo

On remarquera que dz® = Ldu.

Dans le cas ou g,, s’annule dans le domaine étudié, on obtient
un enoncé analogue ou (8. 10) et (8. 11) sont respectivement

remplacées par
Zy ca e
2 Ew xl x]
— —du
28,
Zo

g e
gt @

et

dxl =— — du .

2g,
9. Le principe de FERMAT.

Nous avons établi que les rayons électromagnétiques sont

géodésiques de longueur nulle de la variété riemannienne V,.
Nous pouvons les interpréter géométriquement dans ’espace
st le milieu considéré est en mouvement permanent. En effet,

le lemme fournit une démonstration immédiate du théoréme
suivant

TuEOREME. — ST le mouvement du miliey consideéré est
permanent et tel que g, # 0, les rayons électromagnétiques dans

L’Enseignement mathém., t. IV, asc. 1. 5
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Uespace sont des lignes réalisant U'extrémum de U'intégrale

. . = x'l.
(9,1) /(es’ \/—— :1— g xtal — g?.l >du
oo Y 8oo

pour des variations a extrémités fixes, on ¢ est le signe de go, €t €’
le signe de gy,x*. Le temps mis par un rayon pour aller du point z,
au point z, est donné par

Z1 Z1
L ' _- 'L
(9.2) dx® = (ss’ — :/1— goatal — ggz ? >du
oo U 8oo
2 Zp

Ce temps est exirémum.
Dans le cas ou gy = 0, on obtient un énoncé analogue en
remplacant (9. 1) et (9. 2) respectivement par

741

s —g'xl xy
(9.3) /'— 77 gy
e QEOixl
20
et ‘

2

J

(9.4) dx" __f_ 8@ @
28,

Par le théoréme précédent se trouve démontrée I’équivalence
du principe géodésique et du principe du moindre temps.

En particulier, si 'univers est statigue au sens de LEvi-
CiviTa, c¢’est-a-dire si les lignes de courant coincident avec les
lignes de temps, I'espace-temps V, est orthogonal. Soit

ds?* = U (d2%)® + g;; dxt da!

la métrique d’univers de V,. Les u; étant nuls, on en déduit la
métrique associée .

ds? — % (dz®)? + g dat da

On peut mettre (9. 2) sous la forme
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Z]i V41
n
9.5 dz? = f —do
(9.5 / I
2 2

ou I'on a posé do? = — g,; da’ da’. On voit apparaitre I'influence
du champ gravitationnel sur la propagation du champ électro-
magnétique.

S1 U =1, on démontre que Pespace-temps V, est euclidien.
L’énoncé du théoréme devient

21 21

8fdx° = 8fndc=: 0.

%0 Zo

Nous retrouvons I’énoncé exact du principe de FERMAT en

Optique. Le théoréeme que nous avons établi, en constitue
donc I'énoncé généralisé en relativité. I1 donne plus généralement,
la loi de propagation des ondes électromagnétiques dans un
milieu en mouvement, la vitesse du milieu intervenant dans
3 : ‘
Pexpression des g,

10. Interprétation du signe ¢’ de g, x™
L’équation

Ubl,l_\

représente le cOne caractéristique C au point x des équations
de MaxweLL. Les deux nappes de ce cone sont symétriques
par rapport & hyperplan élémentaire =,

8o 42" = 0

Désignons par M (z*) le sommet de ce cone E Prenons un
couple de points voisins de M, ayant pour coordonnees spatiales
(x + da') appartenant respectivement aux deux nappes de

Cx et symétriques par rapport & . Soient
M, (20 + dad, 2t + dat) M; (20 — d’ 0 , at 4 dx’:) .

On peut dire que MM, représente aux infiniment petits d’ordre
supérieur prés le deplacement 1nﬁn1tes1ma1 associé & un rayon
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électromagnétique allant du point d’espace A (z!) au point
d’espace A’ (2' + dz') dans le temps dx®. De méme, MM
peut étre considéré comme représentant le déplacement infini-
tésimal associé a un rayon électromagnétique allant du point
A’ (#* + dz*) au point A (2f) dans le temps d’z°.

Les deux points M, et M, sont symétriques par rapport a
I'hyperplan =, on doit avoir

Zoo dz* = — Zoo d z* .

On en déduit
7. dat
d’ 20 = da® - g 80 7%

8oo

Cette relation montre que, sauf dans le cas statique, le temps mis
par un rayon pour aller du point d’espace A (x) au point d’espace
A’ (x' + da') n’est pas le méme que le temps mis par un autre
rayon pour aller de A’ (2 + dz') & A ().

11. Cas d’un espace-temps de MINKOWSKI et loi relativiste de
la composition des vitesses.

Placons-nous dans le cas d’un espace-temps sans gravitation
de MiNkowskl, rapporté a un systéme de coordonnées gali-
léennes réduites. Nous avons la métrique d’univers

(11.1) ds? = (da%)? — (da)? — (da?)? — (da?)? .
u représente dans ce cas le vecteur vitesse unitaire d’univers
dont les composantes sont déterminées classiquement & partir

. + . . . ’ .
de la vitesse d’espace {3, la vitesse limite ¢ étant prise comme
unité. Un calcul facile donne la métrique associée

(11.2) ds® =

A partir de cette métrique, cherchons a exprimer le théoréme
de FERMAT en prenant I’arc ¢ du rayon électromagnétique comme
paramétre. Nous avons a remplacer dans (9. 2) z* par

dat

7\i=——

do

- o]

e e
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ol do® = — 3 (dz)2 T vient
(11.3) fdxo :f{as' \/viz—?_ig [V2— B2 + (1— V2) (B, %)’

et on peut en déduire

dz® 1 , 1— g i\2
d—-xG:W:ss\/ 382[\72—-5 (1-—V2) (B; 2

S1 V2 — B2 £ 0, cette relation donne
(11.4) 14— — (1 — B W2 — (1— V) (1 — W) = 0.

- —_—
Si on interpréte V comme vitesse absolue et W comme vitesse
relative de propagation de I'onde électromagnétique considérée
dans I’espace euclidien ordinaire, on a manifestement

(11.5) V? = 1 —[B* +2W.B +(1—py W = (W.5)7.
(1+W.g)

On vérifie par un calcul direct a partir de (9.4) que cette relation
reste valable dans le cas ou V2 — 82 = (.

En cherchant & mettre en évidence dans le crochet de (11. 5)
un vecteur colinéaire a E et un autre qui lui est orthogonal,
on obtient

9 . 1 Wg = = V?E%)jl?
11.6) V? = ——— |1+ —; T— B {W— —3
(11.6) (1+W-B)2[< 3 )B+\/ B( P
On en déduit ,
> 1 W.p VVE—>)]
V=——" {1+ — B .
1+Vv,gl( 8 ) \/1 B( 2 B.

C’est la formule relativiste de la composition des vitesses 2.

Faculté des Sciences, Besangon.

4) Cf. A. LicaNEROWICZ, Elémenis de calcul tensoriel, chap. VII, pp. 173-175.
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