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SUR LE PRINCIPE DE FERMAT 57

les variétés Yf- peuvent être engendrées par les bandes de V4

définies par les géodésiques de longueur nulle L0, le 3-plan
élémentaire associé étant le plan tangent au cône élémentaire

Cx le long de la tangente à L0.
Nous avons démontré le théorème

Théorème. — Les bicaractéristiques des équations de Maxwell
sont les géodésiques de longueur nulle de la variété riemannienne

V4 munie de la métrique associée

ds2 gaß dxa dx^ •

Dans le langage de la théorie de la propagation par ondes,
les variétés caractéristiques Yf jouent le rôle de surfaces d'ondes

électromagnétiques. Les bicaractéristiques L0 sont les rayons
électromagnétiques associés. En introduisant l'indice de réfraction

n Vsfji du milieu, nous pouvons donc énoncer le résultat
suivant

Théorème. — Dans un milieu transparent isotrope d'indice
de réfraction n variable, les rayons électromagnétiques sont des

géodésiques de longueur nulle de l'espace riemannien V4 muni
de la métrique

«aß dx<X dx&(«aß — (* — ^2) »a Mß) dx&

où gaß est le tenseur métrique fondamental et ua le vecteur vitesse
unitaire d'univers définis en chaque point du milieu considéré.

III. Etude géométrique
DES RAYONS ÉLECTROMAGNÉTIQUES DANS L'ESPACE

6. Espace-temps stationnaire et mouvement permanent d'un
fluide parfait chargé.

On dit que l'espace-temps V4 est stationnaire dans un domaine
D4 si la variété riemannienne définie par D4 muni de la métrique

d'univers ds2 admet un groupe connexe à un paramètre
d'isométries globales à trajectoires z orientées dans le temps,
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ne laissant invariant aucun point de D4, la famille des lignes z

ou lignes de temps satisfaisant aux hypothèses suivantes:

a) les lignes de temps sont homéomorphes à la droite réelle R ;

b) on peut trouver une variété différentiable à trois, dimensions

D3, satisfaisant aux mêmes hypothèses de difîérentiabilité
que V4, telle qu'il existe un homéomorphisme de même classe
de la variété D4 sur le produit topologique D3 x R dans lequel
les 2 s'appliquent sur les droites facteurs. La variété quotient
D3 sera dite simplement espace.

On peut définir dans D4 des systèmes de coordonnées locales
(#0, xl), dits adaptés au caractère stationnaire, de la manière
suivante. Les (x1) sont un système de coordonnées locales
arbitraire de D3. La donnée des (x1) détermine une ligne de

temps. Pour déterminer un point sur cette ligne, on se donne
la variété x° — const, à laquelle il appartient, ces variétés
étant homéomorphes à D3. Les potentiels gaß relatifs aux
coordonnées adaptées sont indépendants de la variable x° et le

vecteur £ générateur infinitésimal du groupe d'isométries admet
pour composantes contravariantes

£°=l g o

et a pour carré g00 > 0.

Dans la suite on n'introduit que des systèmes de coordonnées
adaptés. En effectuant la décomposition en carrés de la forme
quadratique fondamentale

(6.1) ds2 gaßdxadx®

à partir de la variable directrice dx°, nous obtenons

(6.2) ds2 ±fgoadx«y + dP
500 '

OÙ

(6.3) ds2 — £ - dxi dxi (— ^oi dxi dx^
\ êoo /

définit sur D3 une métrique riemannienne définie négative.
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Considérons maintenant un fluide parfait chargé conducteur
en mouvement dans un domaine D4. Le mouvement de ce fluide
est dit permanent si l'espace-temps associé V4 est stationnaire
dans D4 et si le groupe d'isométries laisse invariantes les quantités
(Saßt Ha(3, Gag, 0, çaJ m", p, 8).On démontre immédiatement à
partir des résultats sur le problème de Cauchy que pour quele mouvement du fluide soit permanent, il faut et il suffit que1 espace-temps riemannien associé soit stationnaire dans D4 et
que son groupe d'isométries laisse invariants les champs H „ 0
ainsi que les coefficients x, c, l, s, p, a.

Si le mouvement du fluide est permanent, les quantités

SaßSaß (l — ^2) ua uß

sont constantes le long des lignes de temps. Il en résulte quela variété nemannienne V4 définie par la variété différentiable
portant D4 et munie de la métrique associée, admet aussi
un groupe connexe à un paramètre^d'isométries globales ne
laissant invariant aucun point de V4, induit par celui de
espace-temps. Il est clair que les («®, »i) constituent un système

de coordonnées locales adapté pour V4. On peut prendre pour
générateur infinitésimal du groupe d'isométries de V4 le vecteur
Ç qui a pour composantes contravariantes Ça. Le carré
de ce vecteur a pour valeur dans V4

goo £00 — (t — )2

Cette quantité pouvant être positive, négative ou nulle les
trajectoires d'isométries de V4 peuvent être orientées dans le
temps, dans 1 espace ou être isotropes.

7. Un problème du calcul des variations.

Nous nous proposons d'interpréter géométriquement les
ayons électromagnétiques dans l'espace à trois dimensions. Aet effet, nous commençons par rappeler brièvement unproblème du calcul des variations.

P
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Etant donnée une variété difïérentiable Vn+1, soit W2(n+1)

l'espace fibré des vecteurs tangents aux différents points de

Vn+1. Si l'on adopte sur Vn+1 des coordonnées locales (x°j chaque
élément de W2(n+1) sera constitué par la réunion des coordonnées
(£a) du point x correspondant de Vn+1 et des n + 1 composantes
(i°j du vecteur x dans le repère naturel en x associé aux (xa).
Une structure de variété finslérienne sur Vn+1 est définie par la
donnée d'une fonction £ (x, x) à valeurs scalaires dans W2(n+1)
telle que pour x fixe, £ (x, Xx) — \£(x, x). En coordonnées

locales, une telle fonction est représentée par £ (xa, iß) et est

homogène et du premier degré par rapport aux xß.

Considérons une variété difïérentiable Vn+1 munie d'une
structure de variété finslérienne et supposons qu'elle admette
un groupe connexe à un paramètre d'isométries globales de

générateur Ç, ne laissant invariant aucun point de Vn+1 (Ç ^ 0).

Supposons de plus que les trajectoires 2 du groupe sont homéo-

morphes à la droite réelle R, et soit Vn la variété quotient de

Vn+1 par la relation d'équivalence définie par le groupe. Nous
identifierons Vn à l'espace dont les points z sont les trajectoires
d'isométries. Dans un système de coordonnées adapté (x°, x1),

(i 1, 2, ri), la fonction Cest localement indépendante de la
variable x°:

Nous allons montrer qu'il est possible de douer la variété
quotient Vn de structure de variété finslérienne au moyen de

fonctions L (z, z) de façon qu'aux géodésiques de Vn+1 extrêmales
de l'intégrale

correspondent par projection sur Vn des extrêmales de

C -C (x1, x°)

(7.1) J C (x x) du

(7.2)

Dans la suite, tout indice grec 0, 1, 2, n\ tout indice
latin 1, 2, n et nous supposons
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ö.. £ ^ 0 ö. ——00 a

Donnons-nous une extrêmale de (7. 1) par une représentation
paramétrique xa (u), u désignant un paramètre arbitraire. Le
système différentiel aux extrêmales de (7. 1)

(7-3) dxa -a

où xa satisfait à

d dJS ÔJ,D

est caractérisé par le fait d'admettre l'invariant intégral relatif

Ô

('S) o> V —S-dxa d • JT + ô. •

& d x k o

En vertu de 1 hypothèse — 0, on a l'intégrale première

(7.6) dö£=h.

Comme ôfJ0 ß^ 0, on peut résoudre (7.6) par rapport à x°; on
obtient l'équation équivalente

('•') x° — y xk'

où <p est une fonction homogène et de degré 1 par rapport aux
x1 et dépendant effectivement de h.

Considérons la famille des extrêmales (Eft) correspondant à
une valeur déterminée de la constante Pour cette famille
le dernier terme de « a la valeur hdx° et définit un invariant
intégral relatif. Il en résulte que cette famille d'extrêmales
admet l'invariant intégral relatif

<7-8) d.£dxk.
k

Or d'après l'homogénéité de C, on a

xkd; J? + à? d- £k 0
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Par suite, pour toute solution (7. 6) ou (7. 7), la quantité
xk jfpeut s'exprimer par une fonction L des variables xk, x\ h

(7.9) L (xk xl, h) — J?[xk af 9 &)] — ftcp xl, h)

et l'on a
ô-L t= ô • i? -)- ô • J? à - cp — /îô-çp ô • JX

k k 0 kr kr k

Ainsi, d'après (7. 8), les projections des (Eh) sur Vn sont
définies par un système différentiel qui admet l'invariant intégral
relatif

7T ô. L dxk
k

Autrement dit, elles sont extrêmales de l'intégrale

Z\
(7.10) J L (xk xl, h) du

zo

où A a la valeur choisie.
On appelle descente la correspondance qui à la fonction

£ (xk, xl, x°) fait correspondre la fonction L (xfe, ôc\ h). Le
problème inverse est possible 3).

8. Projection des géodésiques de longueur nulle de la variété
riemannienne V4.

Nous supposons que la variété V4 satisfasse aux hypothèses
du paragraphe précédent. La fonction X^est définie par la relation

(8.1) J?2

où le second membre est une forme quadratique non dégénérée

comme on peut le vérifier. Etudions d'abord les extrêmales

correspondant aux valeurs de _xa pour lesquelles le second

membre est positif. On sait d'ailleurs qu'il suffit qu'une géodésique
le rende positif en un point pour qu'il en soit de même tout le

long de la géodésique.

3) Voir A. Lichnerowicz, Théories relativistes de la gravitation et de l'électromagnétisme,

Livre II, chap, premier.
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Nous supposons que g00 ne s'annule pas dans le domaine
étudié. Le procédé de descente nous conduit à former l'équation

<8'2> YÔÔ ^^00^° + ^0 he

et à éliminer x°entre cette équation et

(8-3) L e — hx°

En décomposant C2 en carrés à partir de la variable directrice
il vient

'"'-lîfivf + M'*'
où l'on pose

~ - &oi êoj

Soo

et l'on voit que grj xlixPestnégative si g00 > 0 et positive si
goo < 0- Dans le premier cas on prendra h > max Gomme

2"')o D2 h£, on tire l'équation

(8.4) 1 /h.XX
V l — ~Soo

qui fournit Cen fonction des variables xk, xl, h. De (8. 2), ontire ensuite '

<8-5> i, =*
$00 $00

On en déduit d'après (8. 3) et en vertu de (8. 4)

(8.6)
—e l1—t) ^xl + h

y \ goo/ g00

où £ est le signe de g00.
L est bien une fonction de x\ h homogène et du premier

egre par rapport aux xl. Elle définit sur la variété quotient
V3 une structure de variété fmslérienne. Inversement, étant
donnée localement dans V3 la fonction L (x\ h) précédente
on démontré facilement qu'il existe une fonction (xk, xl,
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homogène et de degré 1 par rapport aux ia, qui par descente

reconduit à L et que cette fonction est

|/i ~a • ß

Les courbes extrêmales correspondantes sont donc des géodé-

siques de V4.

Ainsi, les géodésiques de la variété riemannienne V4 qui
correspondent à l'intégrale première 7>q.£ h se projettent sur

la variété quotient V3 selon les extrêmales de l'intégrale

(8.7| j (-[/(•- £)% •<*> +
*0

où A a la même valeur. Ces extrêmales coïncident avec celles de

z0

Le long de ces extrêmales, on a d'après l'expression de x°:

h / ï * i* i Soi**
ïooV L_*Sii ë">

V §00

Ceci étant, on peut définir les géodésiques de longueur nulle

de V4 comme les courbes limites vers lesquelles tendent les

géodésiques orientées dans le temps lorsque 0 —»• 0. De la relation

h£ g0a xa, il résulte que h->•oo lorsque —* 0 et a le

signe de g0xx*. Or

& s io(*****)'+ ° '

On en déduit que g0ai;a a une valeur non nulle et garde un signe

constant.
D'après (8. 8), les projections des géodésiques de longueur

nulle de V4 sur V3 sont les extrêmales de l'intégrale
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zi
/ p- /7 Pw T7TT

du

zi

/fcfev7 - i -j 8oix
p\. .T:1 W

gooJ ~iJ goo

En passant à la limite, on en déduit le lemme suivant

Lemme. — Les géodésiques de longueur nulle de V4 se projettent
sur V3 selon les extrëmales de V intégrale

ZI

<8-10) / U' - duJ V V «00
1

goo /
*0

où s esf Ze signe de g00 et s' Ze signe cZe g0a xa.

D'après (8. 9), le long de ces extrëmales on a

l8-11) dx0se' 1 /— J- | (fat (faj — I^L
V goo - goo

On remarquera que cZx° LeZn.

Dans le cas où g00 s'annule dans le domaine étudié, on obtient
un énoncé analogue où (8. 10) et (8. 11) sont respectivement
remplacées par

/
1

_ • • • •

Çt. syl /V.J

°l] ^ X
7f du

Z°
et

0 p qriÄ /» /» w ëAs

»

9. Le principe de FERMAT.

Nous avons établi que les rayons électromagnétiques sont
géodésiques de longueur nulle de la variété riemannienne V4.
Nous pouvons les interpréter géométriquement dans l'espace
si le mdieu considéré est en mouvement permanent. En effet,
le lemme fournit une démonstration immédiate du théorème
suivant

Théorème. — Sile mouvement du milieu considéré est
permanent et tel que g00 =£ 0, les rayons électromagnétiques dans

L'Enseignement mathém., t. IV, asc 1
5
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Vespace sont des lignes réalisant Vextrêmum de V intégrale

(9,1) f (se' J—X fy xl xi - ^X-)J\V «oo î3 «oo '
*0

pour des variations à extrémités fixes, ozi s Zc de g00 et z

le signe de gôaxa. Le temps mis par un rayon pour aller du point z0

au point z4 est donné par

Zl z%

i9'2' Jd''~J

Ce temps est extrëmum.
Dans le cas où g00 0, on obtient un énoncé analogue en

remplaçant (9. 1) et (9. 2) respectivement par

Hr g., xl x1

(9.3) / r

et
^1 _ff.. A A('rSu x'

(,4) Jdx

Par le théorème précédent se trouve démontrée l'équivalence
du principe géodésique et du principe du moindre temps.

En particulier, si l'univers est statique au sens de Levi-
Civita, c'est-à-dire si les lignes de courant coïncident avec les

lignes de temps, l'espace-temps V4 est orthogonal. Soit

ds2 U (dx0)2 + gtj dx1 dxi

la métrique d'univers de V4. Les u{ étant nuls, on en déduit la

métrique associée
U
n2

ds2 — (dx0)2 + gtf dxl dxi

On peut mettre (9. 2) sous la forme
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(9.5)

zo z0

où l'on a posé da2 — g^ dxl dx\ On voit apparaître l'influence
du champ gravitationnel sur la propagation du champ
électromagnétique.

Si U — 1, on démontre que l'espace-temps V4 est euclidien.
L'énoncé du théorème devient

z1 Zi
S J dx° S J nd a — 0

z0 Z0

Nous retrouvons l'énoncé exact du principe de Fermât en
Optique. Le théorème que nous avons établi, en constitue
donc l'énoncé généralisé en relativité. Il donne plus généralement
la loi de propagation des ondes électromagnétiques dans un
milieu en mouvement, la vitesse du milieu intervenant dans
l'expression des gaß.

10. Interprétation du signe z' de g0a xa.

L'équation

£2du2 (ß dx^Y + g. dxldx? 0
500 s ' J

représente le cône caractéristique Cx au point des équations
de Maxwell. Les deux nappes de ce cône sont symétriques
par rapport à l'hyperplan élémentaire nx

êo* dxa

Désignons par M xa)lesommet de ce cône Gr Prenons un
couple de points voisins de M, ayant pour coordonnées spatiales
(s vi -)- dx^) appartenant respectivement aux deux nappes de
Cx et symétriques par rapport à nx. Soient

Mi (x°+ dx0, x1+ dx1)Mj 0 —

On peut dire que MMX représente aux infiniment petits d'ordre
supérieur près le déplacement infinitésimal associé à un rayon
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électromagnétique allant du point d'espace A (x1) au point
d'espace A' (x1, + dx1) dans le temps dx°. De même, M^M

peut être considéré comme représentant le déplacement
infinitésimal associé à un rayon électromagnétique allant du point
A' (xl + dxl) au point A (xl) dans le temps d'#0.

Les deux points Mx et sont symétriques par rapport à

l'hyperplan 7rx, on doit avoir

2oa dx* — £oa d' *

On en déduit

gnj dx1d'= dx° + 2 — •

£00

Cette relation montre que, sauf dans le cas statique, le temps mis

par un rayon pour aller du point d'espace A (x1) au point d'espace
A' (x1 + dxl) n'est pas le même que le temps mis par un autre
rayon pour aller de A' (x1 + dx1) à A (x1).

11. Cas d'un espace-temps de MINKOWSKI et loi relativiste de

la composition des vitesses.

Plaçons-nous dans le cas d'un espace-temps sans gravitation
de Minkowski, rapporté à un système de coordonnées gali-
léennes réduites. Nous avons la métrique d'univers

(11.1) ds2 (dx0)2 — (dx1)2 — (dx2)2 — (dx0)2

u représente dans ce cas le vecteur vitesse unitaire d'univers
dont les composantes sont déterminées classiquement à partir
de la vitesse d'espace ß, la vitesse limite c étant prise comme
unité. Un calcul facile donne la métrique associée

-y2 Q2 \ "\7"2

(11.2) ds2 j—^ (dx0)2 + 2 *

_
*

2 ßi dx° — Ç (dx1)2 —

A partir de cette métrique, cherchons à exprimer le théorème
de Fermât en prenant l'arc a du rayon électromagnétique comme
paramètre. Nous avons à remplacer dans (9. 2) x1 par
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où da2 — 2 (dx1)2. Il vient
i

zi zi
(11.3) f dx•J{^ + (l-V») (PjX1)8

zo zo

et l'on peut en déduire

£ w =££' \/feilV2 - ß2 +11 - V2> (ßi *)'

Si V2 — ß2 ^ 0, cette relation donne

(11.4) 1 — ß2 — (1 — ß2) W2 — (1 — Y2) (1 — W ßi Y)2 0

-f5 >
Si on interprète V comme vitesse absolue et W comme vitesse
relative de propagation de l'onde électromagnétique considérée
dans l'espace euclidien ordinaire, on a manifestement

(11.5) V2
7

^—=5— [ß"2 + 2W.ß + (1— ß2) W2 + (W. ß)2]
(l + W. ß)2

On vérifie par un calcul direct à partir de (9.4) que cette relation
reste valable dans le cas où V2 — ß2 0.

En cherchant à mettre en évidence dans le crochet de (11. .5)

un vecteur colinéaire à ß et un autre qui lui est orthogonal,
on obtient

^ " « + 4.?)'[(' + tAr + vr=? fc ~ T^)]'
On en déduit

Î"rrrîl(,+^i)r + vr=rî,(5i,_%ïî).

C est la formule relativiste de la composition des vitesses

Faculté des Sciences, Resançon.

4) Cf. A. Lichnerowicz, Eléments de calcul tensoriel, chap. VII, pp. 173-175.
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