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SUR LE PRINCIPE DE FERMAT 51

Compte tenu des équations (3. 13), (3. 14), (3. 15), les identités
précédentes se réduisent aux équations

800, Q°, = AT, 9, Q" + B, Q'
9 P’ = C'9; P' + (3, C* — I'%, CB) P°

§0 — . T* &0
04 &0 = Paou

ou les A  BP  C* sont des fonctions continues. Ces équations
sont linéaires et homogénes par rapport aux inconnues QO
P% &% Comme Q0 = P? = &° = 0 sur S, elles n’admettent
pas d’autre solution que la solution identiquement nulle. Il en
résulte que si les équations (3. 10), (3. 11), (3. 12) sont vérifiées
sur S par les données de Cauchy @, elles sont également vérifiées
dans tout le domaine d’espace-temps considéré par la solution
des équations du champ.

Le probleme de I'intégration des équations du champ consiste
finalement dans le choix des données de Cauchy ( rendant
compatibles les équations (3. 10), (3. 11), (3. 12) qui permettent
de calculer u” p, 3, puis dans lintégration du systéme des
équations (3. 13), (3. 14), (3. 15) et (3. 6), (3. 7), (3. 8), (3. 9)
qui permettent d’étudier I'évolution des. champs G (8. H
6, u* p, 3).

a3

II. ETUDE DES CARACTERISTIQUES
DES EQUATIONS DE MAXWELL

4. Les variétés caractéristiques des équations de MAXWELL.

Dans I'analyse du probléme de Cauchy, on met en évidence
quatre sortes de variétés exceptionnelles:

1) les variétés g% = 0 tangentes aux cones élémentaires,

2) les variétés qui généralisent les fronts d’ondes hydro-
dynamiques,

3) les variétés engendrées par les lignes de courant,

4) les variétés g% — (1 —ep) ud w0 = 0 que nous allons
etudier. |
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Sur les équations (3. 15), on voit que si I’hypersurface S
portant les données de Cauchy est telle que sur S

g0 — (1 —ep)u'u®=0

les dérivées d,Hy; du champ électromagnétique peuvent étre
discontinues a la traversée de S. Il peut exister une infinité de
solutions distinctes des équations de MAxXxweLL correspondant
aux memes données de Cauchy. La variété S est une variété
caractéristique pour les équations de MaxwerLr. Une telle
variété sera désignée par V.

Dans un systéme de coordonnées locales arbltralre quelconque
les variétés caractéristiques V3 définies par f (z*) = 0, sont les
variétés satisfaisant a 1’,equat10n

(&.1) (6 — (1 —euwu*uP)o, fo f = 0.

Ces variétés a la traversée desquelles peuvent se produire des
discontinuités des dérivées du champ électromagnétique, cons-
tituent I'extension relativiste des fronts d’ondes électromagné-
tiques classiques. Pour qu’elles aient une signification physique,
il faut supposer que les variétés VI soient orientées dans le
temps ou a la rigueur tangentes au cone élémentaire ds? = 0
de V,. Nous verrons que cette hypothése est bien en accord
avec les exigences de la Physique relativiste. S'il en est ainsi,

At = g%0,f05f = (1— cy) (u*d,f)?

On en déduit

(4. 2) e >1.

V

Ceci posé, la généralisation de I’hypothése d’ Hugoniot permet
d’évaluer ce qui constitue ici la vitesse de propagation des ondes
électromagnétiques considérées. Pour cela, considérons deux
surfaces d’ondes voisines (VI), et (V3), définies par les équations

et prenons 6 pour infiniment petit principal.
La ligne de courant issue du point z de (Vi), coupe (VI),
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en un point défini aux infiniment petits d’ordre supérieur prés
par z + vﬁz, 7 étant donné par la relation

(4.3) qutd,f =6 .

. —-> r »2 by
Soit n le vecteur normé (n*> = — 1) normal en z a la surface
d’onde (V}),. Il a pour composantes covariantes en z

0, f
(4.4) n, = = :
V' — g% 0,10,

La trajectoire orthogonale des VI issue de z coupe (VI), en un
point qui, & des infiniment petits d’ordre supérieur prés, s’écrit
z + my 1, 1, 6tant déterminé par la relation

'qlnkc‘)lf = 0.
On en déduit
65w — Ae :ﬁl/—g‘?‘ﬁéaf%f: — 9 |
Y LW D R Ve TRTN

Introduisons le vecteur ¢ = . — . En vertu de (4. 3)
et (4. 4), on a

> >

7(u.n)

|

— M
et

>

T = (n;—nln).n:n(z.;)—}—mzo.

Le vecteur ¢ est donc tangent a la surface d’onde. Il est orienté
dans le temps car son carré

n = (1) =0 —2nn (u.n) = 22 + 92

est positif. |

Le vecteur wmu apparait ainsi comme la somme de deux
vecteurs, 'un orthogonal & la surface d’onde et orienté dans
Pespace, 'autre tangent a cette surface et orienté dans le temps.
La vitesse de propagation V de I'onde se trouve ainsi définie
comme la limite du rapport des modules de ces deux vecteurs,
soit
Ui

V = lim
60 | 7o




~
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On a ainsi

s ;
V2 = lim —1—2 |
6—>0 "o

soit, en remplagant », et =, par leurs valeurs
ve — 1.
sy

La vitesse de propagation des ondes électromagnétiques est
donc égale a (cp)* Cette valeur appelle deux remarques.
D’abord, elle généralise la valeur obtenue en électromagnétisme
classique. De plus, dans nos hypothéses ep. > 1, la vitesse de
propagation V est inférieure & une vitesse limite ¢ = 1; cette
valeur coincide avec la valeur de la vitesse de propagation des
ondes électromagnétiques dans le vide (ep = 1). |

5. Etude des bicaractéristiques.

L’étude des variétés caractéristiques des équations de
Maxwerr fait intervenir le champ de tenseur contravariant
symétrique

g = — (1 —cp) uuf

dont la forme quadratique associée représente la forme carac-
téristique des équations de MAXwELL. Soit g, les coefficients de
la forme conjuguée qui a pour expression

_ (1
gaﬁ—gaﬁ—— ’—a uauB.
Nous introduisons la métrique riemannienne dite métrique
associée
ds? = Foqda* da® -

Elle est de signature hyperbolique normale comme la métrique
d’univers comme on peut le vérifier par un calcul direct en

repere propre. Nous désignerons dans la suite par V, la variété
riemannienne définie par la variété différentiable portant
Pespace-temps V, et munie de la métrique associée ds2. Nous
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appellerons cone élémentaire associé C, en un point z le cone
réel de directions tangentes & V,l défini par I’équation ds? = 0.

~ Dans l'espace riemannien V,, les variétés caractéristiques
des équations de MaxweLL définies localement par f (z%) = 0,
sont solutions de I’équation aux dérivées partielles du premier
ordre

(5.1) : Zlf;_g“ﬁaafbefz,o.

Elles sont tangentes en chaque point au cone élémentaire

associé C,. Les coOnes élémentaires C, de V, sont donc cdnes
caractéristiques pour les équations de MaxweLL et celles-ci
admettent pour variétés caractéristiques les variétés tangentes
a ces coOnes.

Une variété caractéristique V3, c¢’est-a-dire une solution de
(5. 1), peut étre engendrée au moyen des bandes caractéristiques
de (5.1). Une telle solution peut é&tre engendrée au moyen

des bandes de V, constituées par 'ensemble d’une courbe L et
d’une famille & un paramétre de 3-plans élémentaires tangents

a ces courbes. Les courbes L, sont appelées les bicaractéristiques
des équations de MAXWELL.
Pour les déterminer, posons

2H (2, y,) = 8%y, y,
et considérons I’équation aux dérivées partielles
(5.2) Af = 2H (2%, 0,f) =

ou G est une constante arbitraire. Relativement aux variables
2%, f, yu les bandes caractéristiques des equations de MAXwWELL
sont données par les solutions du systéme différentiel

13

l &.
&
)
IS8
R
<

:---:——:—]c—:—%——...—__i—du
o H 0H ~ 2. OH = T T3H T
0 Yo 0ys d 2° 0 23

qui satisfont & P’intégrale premiére

2H<x7‘,yu) =G
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pour la valeur C de la constante. Si I'on introduit la variable
auxiliaire u, les fonctions z* (u), y, (1) sont données par le
systeme canonique

dz* o H dy, oH

5. — = — AL SR e
(5-3) du 0¥, du o z*

relatif 4 la fonction hamiltonienne H (2%, y,). Le premier groupe
des équations (5. 3) s’écrit explicitement

) e - dz*

o _ —af o __
(5.4) i = gy, (x _ 717)'
Inversement
(55) yB — gaB'{Ua .

Cela posé, les solutions z* (u) de (5. 3) sont extrémales de la
fonction lagrangienne L définie par

2L = g% ab

puisque, par passage des variables (x% 2?) aux variables cano-
niques (2%, ¥g) qui leur sont liées par (5.4) et (5.5), on a entre H
et L la relation classique

Ces solutions sont les extrémales satisfaisant & l'intégrale
premiere

(5. 6) 2L = C

pour la valeur C de la constante. Or, d’apres I'existence de cette
intégrale premiére, les extrémales ainsi définies sont aussi les
extrémales de

. AL = |/ gypa”a

satisfaisant a (5. 6). Il en résulte que les z* (u) définissent des

géodésiques de V4. Si C = 0, le systéme différentiel aux carac-
téristiques de (5. 1) admet l'intégrale premiére f = const. et
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les variétés Vi peuvent étre engendrées par les bandes de v,
définies par les géodésiques de longueur nulle EO, le 3-plan
élémentaire associé étant le plan tangent au coOne élémentaire
Ex le long de la tangente a L.

Nous avons démontré le théoréme

THEOREME. — Les bicaractéristiques des équations de MAXWELL
sont les géodésiques de longueur nulle de la variété riemannienne

V, munie de la métrigue associée

ds® = gop da* daP -

Dans le langage de la théorie de la propagation par ondes,
les variétés caractéristiques VI jouent le role de surfaces d’ondes

électromagnétiques. Les bicaractéristiques L, sont les rayons
électromagnétiques associés. En introduisant I'indice de réfrac-
tion n = 4/eu du milieu, nous pouvons donc énoncer le résultat
suivant

TuEorEME. — Dans un miliew transparent isotrope d’indice
de réfraction n variable, les rayons électromagnétiques sont des

géodésiques de longueur nulle de l'espace riemannien V, muni
de la métrique

ou g,q est le tenseur métrique fondamental et u, le vecteur vitesse
unitaire d’univers définis en chaque point du milien considéré.

III. ETUDE GEOMETRIQUE
DES RAYONS ELECTROMAGNETIQUES DANS L’ESPAGE

6. Espace-temps stationnaire et mouvement permanent d’un
fluide parfait chargé.

On dit que 'espace-temps V, est stationnaire dans un domaine
D, si la variété riemannienne définie par D, muni de la métri-
que d’univers ds® admet un groupe connexe & un paramétre
d’isométries globales & trajectoires z orientées dans le temps,
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