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SUR LE PRINCIPE DE FERMAT 51

Compte tenu des équations (3. 13), (3. 14), (3. 15), les identités
précédentes se réduisent aux équations

g00à0Q°a A*^a diQ°g+ B^œ Q°p

d0 p° cô4p° + (d4 c{ — r«3 Cß) P°

d0st -r« 6*

où les A,ßa, Bßa, C" sont des fonctions continues. Ces équations
sont linéaires et homogènes par rapport aux inconnues Q°œ,

P°, <S°. Comme Q°a P° S00 sur S, elles n'admettent
pas d'autre solution que la solution identiquement nulle. Il en
résulte que si les équations (3. 10), (3. 11), (3. 12) sont vérifiées
sur S par les données de Cauchy C, elles sont également vérifiées
dans tout le domaine d'espace-temps considéré par la solution
des équations du champ.

Le problème de l'intégration des équations du champ consiste
finalement dans le choix des données de Cauchy (5 rendant
compatibles les équations (3. 10), (3. 11), (3. 12) qui permettent
de calculer ux, p,S, puis dans l'intégration du système des
équations (3. 13), (3. 14), (3. 15) et (3. 6), (3. 7), (3. 8), (3. 9)
qui permettent d'étudier l'évolution des champs g, (ga|3, Haß,
0, ii01, p, S).

II. Etude des caractéristiques
DES ÉQUATIONS DE MAXWELL

4. Les variétés caractéristiques des équations de MAXWELL.

Dans l'analyse du problème de Cauchy, on met en évidence
quatre sortes de variétés exceptionnelles:

1) les variétés g00 0 tangentes aux cônes élémentaires,
2) les variétés qui généralisent les fronts d'ondes

hydrodynamiques,

3) les variétés engendrées par les lignes de courant,
4) les variétés g«» — (1 — sp) 0 que nous allons

étudier.
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Sur les équations (3. 15), on voit que si Vhypers urface S

portant les données de Cauchy est telle que sur S

g00 — (1 — £ il) U° U° 0

les dérivées à0H0i du champ électromagnétique peuvent être
discontinues à la traversée de S. Il peut exister une infinité de

solutions distinctes des équations de Maxwell correspondant
aux mêmes données de Cauchy. La variété S est une variété
caractéristique pour les équations de Maxwell. Une telle
variété sera désignée par Yf-.

Dans un système de coordonnées locales arbitraire quelconque,
les variétés caractéristiques Yf définies par / (xa) 0, sont les

variétés satisfaisant à l'équation

(4.1) (gaß — (1 — e [l) ua u?) öa / öß / 0

Ces variétés à la traversée desquelles peuvent se produire des

discontinuités des dérivées du champ électromagnétique,
constituent l'extension relativiste des fronts d'ondes électromagnétiques

classiques. Pour qu'elles aient une signification physique,
il faut supposer que les variétés Yf soient orientées dans le

temps ou à la rigueur tangentes au cône élémentaire ds2 0

de V4. Nous verrons que cette hypothèse est bien en accord

avec les exigences de la Physique relativiste. S'il en est ainsi,

AJ « gafiàafà&f (1- «(A) KM2 < o

On en déduit
(4. 2) £[JL > 1

Ceci posé, la généralisation de l'hypothèse d'Hugoniot permet
d'évaluer ce qui constitue ici la vitesse de propagation des ondes

électromagnétiques considérées. Pour cela, considérons deux
surfaces d'ondes voisines (Vf^o et (V^)0 définies par les équations

/(*a) o /(*«) 0

et prenons 0 pour infiniment petit principal.
La ligne de courant issue du point x de (V^o coupe (Vf)e
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en un point défini aux infiniment petits d'ordre supérieur près

par x + vj &, y] étant donné par la relation

(4.3)

Soit n le vecteur normé (n2 — 1) normal en x à la surface
d'onde (Vf)0. Il a pour composantes covariantes en x

,4" ** " '

La trajectoire orthogonale des Vf- issue de x coupe (Vf)ô en un
point qui, à des infiniment petits d'ordre supérieur près, s'écrit
x + y)! ft, 7)! étant déterminé par la relation

"1i ôx / 6

On en déduit

(4.5)
6 9(/ —W —8

n*dxf g^djd^f (/-^ôa/ô3/
'

Introduisons le vecteur î ~ t(m — -qji. En vertu de (4. 3)
et (4. 4), on a

7) (un)— 7)!
et

/ -> -> />t n (rj U 7)]. raj 71 7] (w + 7h 0

Le vecteur « est donc tangent à la surface d'onde. Il est orienté
dans le temps car son carré

Y)2 (t)2 — Y)2 Y)!2 2 7) 7]x (u n) Y)2 + V
est positif.

Le vecteur rju apparaît ainsi comme la somme de deux
vecteurs, l'un orthogonal à la surface d'onde et orienté dans
l'espace, l'autre tangent à cette surface et orienté dans le temps.
La vitesse de propagation V de l'onde se trouve ainsi définie
comme la limite du rapport des modules de ces deux vecteurs,
soit

V lim
6->0
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On a ainsi

V2 lim Hi!
0->O V

soit, en remplaçant % et t]0 par leurs valeurs

V2 —_
Sp

La vitesse de propagation des ondes électromagnétiques est
donc égale à (s p) L Cette valeur appelle deux remarques.
D'abord, elle généralise la valeur obtenue en électromagnétisme
classique. De plus, dans nos hypothèses sp 1, la vitesse de
propagation V est inférieure à une vitesse limite c 1; cette
valeur coïncide avec la valeur de la vitesse de propagation des
ondes électromagnétiques dans le vide (ep 1).

5. Etude des bicaractéristiques.

L'étude des variétés caractéristiques des équations de
Maxwell fait intervenir le champ de tenseur contravariant
symétrique

gaß Saß~(l

dont la forme quadratique associée représente la forme
caractéristique des équations de Maxwell. Soit gag les coefficients de
la forme conjuguée qui a pour expression

£<xß #aß (1 ~ sTjl) U(* U$ '

Nous introduisons la métrique riemannienne dite métrique
associée

ds2 gaß dxa dxß •

Elle est de signature hyperbolique normale comme la métrique
d'univers comme on peut le vérifier par un calcul direct en
repère propre. Nous désignerons dans la suite par V4 la variété
riemannienne définie par la variété différentiable portant
l'espace-temps V4 et munie de la métrique associée ds2. Nous
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appellerons cône élémentaire associé Cx en un point x le cône

réel de directions tangentes à V4 défini par l'équation ds2 0.

Dans l'espace riemannien V4, les variétés caractéristiques
des équations de Maxwell définies localement par f (xa) — 0,
sont solutions de l'équation aux dérivées partielles du premier
ordre

(5-1) Äif gaßöa/dg/ 0

Elles sont tangentes en chaque point au cône élémentaire
associé Cx. Les cônes élémentaires Cx de V4 sont donc cônes
caractéristiques pour les équations de Maxwell et celles-ci
admettent pour variétés caractéristiques les variétés tangentes
à ces cônes.

Une variété caractéristique V^1, c'est-à-dire une solution de
(5. 1), peut être engendrée au moyen des bandes caractéristiques
de (5. 1). Une telle solution peut être engendrée au moyen
des bandes de V4 constituées par l'ensemble d'une courbe L0 et
d'une famille à un paramètre de 3-plans élémentaires tangents
à ces courbes. Les courbes L0 sont appelées les bicaractéristiques
des équations de Maxwell.

Pour les déterminer, posons

2 H =g«ßyayß

et considérons l'équation aux dérivées partielles

(5-2) Âif 2 H (*\ dßf) C

où C est une constante arbitraire. Relativement aux variables
x i fi y§ bandes caractéristiques des équations de Maxwell
sont données par les solutions du système différentiel

dx^ __ df_ __
dy0

__ _ dyz
d H ÔH 2 H dR-'" — ~àH==du
ô 2/o àyz dVo ^

qui satisfont à l'intégrale première
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pour la valeur C de la constante. Si l'on introduit la variable
auxiliaire u, les fonctions xa (u), ya (m) sont données par le

système canonique

dxa
_ à II dda

(5-3) du ~ at/« du Ô*a

relatif à la fonction hamiltonienne H (xx, y[l). Le premier groupe
des équations (5. 3) s'écrit explicitement

is.« r*«t (« - ï) -

Inversement

(5-5) 2/ß Saß*a-

Cela posé, les solutions xa (u) de (5. 3) sont extrêmales de la
fonction lagrangienne L définie par

puisque, par passage des variables (#a, xP) aux variables

canoniques (#a, y$) qui leur sont liées par (5.4) et (5.5), on a entre H

et L la relation classique

H x* — L L
à L

Ces solutions sont les extrêmales satisfaisant à l'intégrale
première

(5. 6) 2 L G

pour la valeur C de la constante. Or, d'après l'existence de cette

intégrale première, les extrêmales ainsi définies sont aussi les

extrêmales de

• <\/2L l/gaßia*ß

satisfaisant à (5. 6). Il en résulte que les x* (u) définissent des

géodésiques de V4. Si C 0, le système différentiel aux
caractéristiques de (5. 1) admet l'intégrale première / const, et
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les variétés Yf- peuvent être engendrées par les bandes de V4

définies par les géodésiques de longueur nulle L0, le 3-plan
élémentaire associé étant le plan tangent au cône élémentaire

Cx le long de la tangente à L0.
Nous avons démontré le théorème

Théorème. — Les bicaractéristiques des équations de Maxwell
sont les géodésiques de longueur nulle de la variété riemannienne

V4 munie de la métrique associée

ds2 gaß dxa dx^ •

Dans le langage de la théorie de la propagation par ondes,
les variétés caractéristiques Yf jouent le rôle de surfaces d'ondes

électromagnétiques. Les bicaractéristiques L0 sont les rayons
électromagnétiques associés. En introduisant l'indice de réfraction

n Vsfji du milieu, nous pouvons donc énoncer le résultat
suivant

Théorème. — Dans un milieu transparent isotrope d'indice
de réfraction n variable, les rayons électromagnétiques sont des

géodésiques de longueur nulle de l'espace riemannien V4 muni
de la métrique

«aß dx<X dx&(«aß — (* — ^2) »a Mß) dx&

où gaß est le tenseur métrique fondamental et ua le vecteur vitesse
unitaire d'univers définis en chaque point du milieu considéré.

III. Etude géométrique
DES RAYONS ÉLECTROMAGNÉTIQUES DANS L'ESPACE

6. Espace-temps stationnaire et mouvement permanent d'un
fluide parfait chargé.

On dit que l'espace-temps V4 est stationnaire dans un domaine
D4 si la variété riemannienne définie par D4 muni de la métrique

d'univers ds2 admet un groupe connexe à un paramètre
d'isométries globales à trajectoires z orientées dans le temps,
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