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distribution énergétique est faite par le tenseur d'impulsion-
énergie Taß, suivant des schémas de type hydrodynamique.
On dit qu'un domaine D4 de l'espace-temps est occupé par une
distribution énergétique schématisée sous forme de fluide, si

sur le domaine D4 sont définis

1) un champ de scalaire p dit densité propre du fluide,

2) un champ de vecteur unitaire orienté dans le temps u
dit vecteur vitesse unitaire dont les trajectoires sont appelées
les lignes de courant du fluide.

On appellera repère propre en un point x du domaine D4 un
repère orthonormé dont le premier vecteur orienté dans le temps
coïncide avec le vecteur vitesse unitaire u et dont les trois
autres vecteurs orientés dans l'espace définissent le tri-plan izx

orthogonal à u qu'on appelle espace associé à la direction de

temps u.
Le repère propre précédent joue le rôle d'un repère galiléen

local par rapport auquel la matière est au repos. Il suffit d'écrire,
dans ce repère, les équations relatives à la matière au repos.
Puis, par un changement de repère, on en déduit l'expression
générale invariante des équations relativement au repère naturel
associé à un système de coordonnées locales quelconque.
Inversement, l'interprétation physique des équations se fait relativement

au repère propre dans l'espace tangent au point considéré.
On peut aussi considérer un espace-temps de la relativité
restreinte rapporté à un système de coordonnées galiléennes
réduites dans lequel la métrique a pour expression

ds2 (dx0)2 — (dx1)2 — (dx2)2 — (dx3)2

où x° et, c désignant la vitesse de propagation de la lumière
dans le vide.

2. Inductions électromagnétiques et équations de MAXWELL.

La théorie de Maxwell pour la matière fait intervenir
un champ électromagnétique variable avec le temps, défini par

—^

quatre vecteurs d'espace: champ électrique E et induction
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magnétique B, champ magnétique H et induction électrique D.
Le champ électromagnétique ainsi défini est régi par les équations

de Maxwell qui peuvent s'écrire dans un système d'unités
convenables, relativement à un repère lié à la matière au point
considéré

i ^ 1 à B
(21)

i rot E + — — °

[ div B 0

[ rj 1 Ö D
(2.2) | rot; H — — — ]?

[ div D 8

Ces équations établissent le lien entre les champs et inductions
E, H, D, B d'une part et la densité de charge S et le courant
de conduction T d'autre part. Ces diverses quantités sont de
plus liées par les relations

(2.3) D eÊ

(2.4)
—> —>

B (xH

(2.5) r aÊ

où e, [x, er représentent respectivement le pouvoir diélectrique,
la perméabilité magnétique et la condu'ctivité électrique du
milieu considéré. Le milieu est dit isotrope si e, p., a sont des
scalaires. C'est ce que nous supposerons dans la suite.

La représentation vectorielle précédente n'est bien adaptée
qu à 1 étude des transformations consistant en un déplacement
purement spatial et un changement d'origine pour le temps.
Pour avoir une représentation tensorielle indépendante du
mode de repérage dans la variété espace-temps V4, on peut
généraliser les équations de Maxwell de la manière suivante.

Considérons un domaine D4 de l'espace-temps V4 occupé
par un milieu materiel charge et conducteur, siège dès phénomènes

électromagnétiques. Soit x un point de D4 et R le repère
propre associé. En admettant que les équations rigoureuses
du champ électromagnétique se réduisent localement dans le
repère propre R aux équations classiques (2. 1), (2. 2) nous
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sommes amenés à introduire deux tenseurs antisymétriques
d'ordre 2, Haß et Gaß, dont les composantes relatives au repère

propre sont

0 Ex e2 Es

Bi 0 Bs--b2
e2 -B, 0 Bx

E3 b2 -Bx 0

<H.S> - „ » <0->

et vérifient les relations

(2.6) Goi zHoi ii Gif

'
0 Dx d2 D<

-Di 0 h3- H;

-D,--H, 0 H;

- h2 -Hx 0

Sur ces formules et dans la suite, les indices latins prennent
les valeurs 1, 2, 3 tandis que les indices grecs prennent les

valeurs 0, 1, 2, 3.
* *

Nous introduisons les tenseurs adjoints Gaß et Haß définis par

(2.7) H0"3 | r,a^s Hy8 7,^s GyS

où v)aßyS est le tenseur complètement antisymétrique attaché
à la forme élément de volume de V4. Les relations (2. 6) peuvent
alors s'écrire sous la forme invariante

<*.ß*a *Haßu«
(2.8)

(X Gaß «« Haß ua

Ces relations sont appelées les équations de liaison. Elles montrent

que les deux champs de tenseurs Haß et Gaß ne sont pas
indépendants l'un de l'autre. On peut exprimer les Gaß en
fonction des Haß. Un calcul donne

(2-9) Gaß ^ Haß + (Hoa u° Mß ~ Hsß tt«) "

Cela posé, le champ électromagnétique doit satisfaire aux
équations de Maxwell qui s'écrivent dans la variété espace-

temps

(2.10)
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(2.11) VaG«ß Jg

où Jp est le vecteur courant électrique généralisé. En tenant
compte des valeurs des composantes de J dans le repère propre,
on est conduit à faire l'hypothèse

(2.12) Jß a#0 + aw« Haß •

Le vecteur J possède ainsi une composante Su colinéaire à u
et une composante Ta up Hpa orthogonale à u. La première
représente le courant de convection et la seconder le courant
de conduction. S sera appelé densité propre de charge électrique.

Les équations (2. 10) peuvent encore s'écrire

Va Hßy + Vß Hya + Vy Haß a» 0

Elles expriment les conditions nécessaires et suffisantes pour
qu il existe localement un vecteur <pa tel que Haß soit son
rotationnel

Haß ôa 9ß — dß 9a

Enfin, on démontre que les vecteurs

(2'13> # |^YSVaHßY ®e«VaG«p

qui figurent aux premiers membres des équations (2. 10), (2. 11)
vérifient les identités

(2-14) Va «S01 0 Va ô>a 0

dites conditions de conservation relatives aux équations de
Maxwell. Elles entraînent la conservation du courant
électrique

(2-15) Va Ja s Va (S ux +a up Hpa) 0

3. L'intégration des équations de MAXWELL.

En relativité générale, les équations de l'électromagnétisme
sont constituées par l'ensemble des équations de Maxwell et
des équations d'EiNSTEiN auquel s'ajoutent les conditions de
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