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repérage de l'espace et du temps, il est naturel d’avoir recours
a une variété V, a quatre dimensions, trois d’espace et une de
temps et qui sera telle qu’a chacun de ses points corresponde
un événement déterminé. Cette variété est la variété espace-
temps de la théorie de la relativité. On la rapporte & des systéemes
de coordonnées curvilignes quelconques et on y cherche une
représentation tensorielle des lois physiques . Aussi nous sera-t-il
utile de rappeler certaines définitions classiques de la théorie
de la relativité; mais nous supposerons connue la théorie des
espaces de Riemann 2. Nous cherchons a préciser la notion
d’inductions électromagnétiques dans le nouveau mode de
représentation afin de formuler d’une maniére correcte les
équations correspondantes de la théorie de MaxweLL. C’est ce
qui va faire I'objet de la premiere partie de notre exposé. Nous
continuerons par une étude des caractéristiques de ces équations
en établissant que les rayons électromagnétiques sont les géodé-

siques de longueur nulle d’une variété riemannienne associée V.
L’étude géométrique des rayons électromagnétiques dans I’espace
A trois dimensions fournira 1’énoncé du principe de FERMAT,
dont Dexistence est lide & celle d’univers stationnaire et de
mouvements permanents.

Nous utiliserons les symboles v, pour désigner les dérivées

covariantes et d, pour désigner les dérivées partielles (% = 32 ) -

o

I. INDUCTIONS ELECTROMAGNETIQUES
ET EQUATIONS RELATIVISTES DE L’ELECTROMAGNETISME

1. La variété espace-temps.

Dans la théorie de la relativité générale, Iespace-temps est
une variété différentiable a quatre dimensions V, de classe
de différentiabilité C2, C* par morceaux, sur laquelle est définie
une métrique riemannienne ds? de type hyperbolique normal,

1) Cette représentation indépendante du mode de repérage dans la variété V, a con-
duit historiquement & une meilleure intelligence des phénoménes de I’¢lectrodynamique
des corps en mouvement.

2) Lire par exemple A. LICHNEROWICZ, Eléments de calcul tensoriel (A. Colin, Paris,
1950).

B ——
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a un carré positif et trois carrés négatifs. Cette métrique dite
métrique d’univers a, dans un systéme de coordonnées admissibles
(z*), pour expression locale

(1.1) ds® = g,qda* da® (2, 8 = 0,1, 2,3).

La variété V, posséde en chaque point un espace vectoriel
tangent du type de MiNnkowskI.

L’équation ds? = 0 définit en chaque point 2 de V, un céne
réel G, de directions tangentes a V, dit cdne élémentaire en z.
Une direction dz en z est dite orientée dans le temps ou dans
I'espace selon qu’elle est intérieure (ds® > 0) ou extérieure
(ds?* < 0) au cone C,. Une courbe T' de V, est orientée dans le
temps si les tangentes en ses différents points sont orientées
dans le temps. Un 3-plan tangent en z & V, est orienté dans
I'espace si toutes ses directions sont orientées dans Pespace.
Il est orienté dans le temps s’il admet des directions orientées
dans le temps. Une hypersurface S & trois dimensions est orientée
dans le temps ou dans I'espace selon que ses éléments plans
tangents aux différents points sont orientés dans le temps ou
dans Pespace. Pour qu’une hypersurface S, définie localement
par f (z%) = 0, soit orientée dans le temps, il faut et il suffit
- que
Af = g™ aaf%fr< 0

Pour qu’elle soit orientée dans I’espace, il faut et il suffit que
Ay f>0.

Les dix coefficients g.p sont dits les potentiels de gravitation
relativement au systéme de coordonnées locales (%), parce que
leurs écarts a la géométrie euclidienne tangente rendent compte
de la gravitation. Pour limiter la généralité de la métrique
dans le cadre de la relativité générale, le tenseur g, est astreint
a vérifier le systéme des dix equations d’EINSTEIN

Seg = X T

qui généralisent les équations de Lapracr-Porssox.
Sap €st le tenseur d’EinsTEIN de la variété riemannienne V.,
Il est d’origine géométrique. La description de I’état de la
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distribution énergétique est faite par le tenseur d’impulsion-
énergie T, g, suivant des schémas de type hydrodynamique.
On dit qu’un domaine D, de I'espace-temps est occupé par une
distribution énergétique schématisée sous forme de fluide, si
sur le domaine D, sont définis

1) un champ de scalaire p dit densité propre du fluide,

2) un champ de vecteur unitaire orienté dans le temps u
dit vecteur vitesse unitaire dont les trajectoires sont appelées
les lignes de courant du fluide.

On appellera repére propre en un point z du domaine D, un
repéere orthonormé dont le premier vecteur orienté dans le temps
coincide avec le vecteur vitesse unitaire u et dont les trois
autres vecteurs orientés dans l'espace définissent le tri-plan =,
orthogonal a u qu’on appelle espace associé a la direction de
temps 1.

Le repére propre précédent joue le role d’un repere galiléen
local par rapport auquel la matiére est au repos. Il suffit d’écrire,
dans ce repere, les équations relatives a la matieére au repos.
Puis, par un changement de repére, on en déduit I’expression
géneérale invariante des équations relativement au repére naturel
associé a un systéeme de coordonnées locales quelconque. Inver-
sement, 'interprétation physique des équations se fait relative-
ment au repere propre dans I’espace tangent au point considéré.
On peut aussi considérer un espace-temps de la relativité res-
treinte rapporté a un systeme de coordonnées galiléennes
- réduites dans lequel la métrique a pour expression

ds® = (da)? — (dal)? — (da?)® — (da?)?

ou 2% = ct, ¢ désignant la vitesse de propagation de la lumiére
dans le vide.

2. Inductions électromagnétiques et équations de MAXWELL.

La théorie de MaxweLL pour la matiére fait intervenir
un champ électromagnétique variable avec le temps, défini par
-_

quatre vecteurs d’espace: champ électrique E et induction
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magnétique ]§’ champ magnétique H et induction électrique D.
Le champ électromagnétique ainsi défini est régi par les équa-
tions de MAXWELL qui peuvent s’écrire dans un systéme d’unités
convenables, relativement & un repére lié & la matiére au point
considéré

> 10B
o s
(2 1) JrotE—[—C p
LdiVB:O
| ' 10D =
divD = 9

Ces équations établissent le lien entre les champs et inductions

e

E, H, D, B d’une part et la densité de charge § et le courant

de conduction I' d’autre part. Ces diverses quantités sont de
plus liées par les relations

(2.3) D — R
(2.4) B = uH
(2.5) I' = 6K

ou e, p, o représentent respectivement le pouvoir diélectrique,
la perméabilité magnétique et la conductivité électrique du
milieu considéré. Le milieu est dit isotrope si e, w, o sont des
scalaires. C’est ce que nous supposerons dans la suite. ‘
La représentation vectorielle précédente n’est bien adaptée
qua I’étude des transformations consistant en un déplacement
purement spatial et un changement d’origine pour le temps.
Pour avoir une représentation tensorielle indépendante du
mode de repérage dans la variété espace-temps V,, on peut
généraliser les équations de MaxwrLL de la maniére suivante.
Considérons un domaine D, de espace-temps V, occupé
par un milieu matériel chargé et conducteur, siege des phéno-
meénes électromagnétiques. Soit 2 un point de D, et R le repére
propre associe. En admettant que les équations rigoureuses
du champ électromagnétique se réduisent localement dans le
repére propre R aux équations classiques (2. 1), (2. 2) nous




46 PHAM MAU QUAN

sommes amenés a introduire deux tenseurs antisymétriques
d’ordre 2, H,; et G,g, dont les composantes relatives au repere
propre sont

0o B, B, BE, o D, D, D,

— B. — _ _H
Hg = T2 0 BT gy =T 0 e
— E2 ——— B3 0 Bl ha— Dg _ H3 O Hl

_E, B,—B, 0 —D, H,—H, 0

et vérifient les relations

(2.6) G. —cH, uG, = H,;.

ot 0t 1) 1

Sur ces formules et dans la éuite, les indices latins prennent
les valeurs 1, 2, 3 tandis que les indices grecs prennent les
valeurs 0, 1, 2, 3.

Nous introduisons les tenseurs adjoints G,g et H,g définis par

(2.7) A = S0 H, 6% = Zea

g Y3

ou 7,q,5 €t le tenseur complétement antisymétrique attaché
& la forme élément de volume de V,. Les relations (2. 6) peuvent
alors s’écrire sous la forme invariante

G, u*=c¢H ,u* f
¢ :
(2.8) *“B L
e GaB u’“ = HocB uOf- '

Ces relations sont appelées les équations de liatson. Elles mon-
trent que les deux champs de tenseurs H,; et G, ne sont pas |
indépendants 'un de lautre. On peut exprimer les G, en
fonction des H,z. Un calcul donne :

1 —ep

1 .
(2.9) Gop = 5 H,s + (Hoou®ug — Hoguuy) -

oo

Cela posé, le champ électromagnétique doit satisfaire aux
équations de MAXWELL qui s’écrivent dans la variété espace-
temps

Lo :
(2.10) 5 10V, Hgy =0
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o

ou Jg est le vecteur courant électrique généralisé. En tenant
—

compte des valeurs des composantes de J dans le repére propre,
on est conduit a faire I’hypothése

(2.12) Jg = dug +ouH,g -

Le vecteur J posséde ainsi une composante Su colinéaire a

et une composante I', = u® H_, orthogonale a u. La premiére

représente le courant de convection et la seconde, le courant

de conduction. sera appelé densité propre de charge électrique.
Les équations (2. 10) peuvent encore s’écrire

Va HBY + VB Hyoc + V.Y HO‘B —_ 0 .

Elles expriment les conditions nécessaires et suffisantes pour
quil existe localement un vecteur o, tel que H_; soit son
rotationnel

HocB = bacpﬁ——bﬁcpa .

Enfin, on démontre que les vecteurs:

: &8 1 8
(2.43) & =30V, Hy @y = v,6%

qui figurent aux premiers membres des equations (2. 10), (2. 11)
vérifient les identités

(2.14) V. 6% = 0 Ve R* = 0

o

dites conditions de conservation relatives aux equations de
Maxwerr. Elles entrainent la conservation du courant élec-
trique

(2.15) Vo I% = V, (3u* + ou H) = 0.

3. L’intégration des équations de MAXWELL,

En relativité générale, les équations de I’électromagnétisme
sont constituées par I’ensemble des équations de MAXWELL et
des équations d’EInsTEIN auquel s’ajoutent les conditions de
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conservation. Supposons que le milieu occupant le domaine D,
considéré soit schématisé sous forme de fluide parfait chargé
conducteur ou I'on tient compte des phénoménes électroma-
gnétiques et thermodynamiques. Dans ce cas on peut établir
I'expression du tenseur d’impulsion-énergie

Topg = (o + Pluyug — pP8ug — (Uelp + Uply) + Tup — (1 —cp) Too U
1 .
(3.1) Top = 7 So (G, H*®) — G, HO
q, = ——xbp@(gg— upua>

ou p est la pression et 6 la température en chaque point du
fluide, ¢, le vecteur courant de chaleur qui satisfait & ’hypothése
de Fourier généralisée, » représentant la conductivité thermique.
e, p, 0 sont liés par I’équation d’état

(3.2) e =r¢(p,0).

Les équations de MaxweLL-EINSTEIN sont

1
(3.3) & = 57}0@%‘ Vo Hg, =0
(3.4) @Dy = gV, G g = dug + ocu” H.p
(3.5) Saﬁ == XTaB

auxquelles on adjoint le caractere unitaire de u*, les conditions
de conservation pour le tenseur d’impulsion-énergie, le vecteur
courant de chaleur et le vecteur courant électrique

(3.6)  gputub = 1

(3.7) v, T =0

38 ,vaq“=cpu“aae_éu“aan“Haﬁuﬁ
(3.9) Vo (3u* +ou, H.°°‘) =0,

(3. 8) est ’équation de FouriER généralisée ou ¢ et [ représentent
respectivement la chaleur spécifique & volume constant et la
chaleur de dilatation du fluide. Les équations (3.6), (3.7),
(3. 8) constituent un systéme différentiel aux lignes de courant
du fluide.

S e i o
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Les scalaires %, ¢, [, ¢, u, o qui caractérisent le fluide sont
supposés donnés. Les variables de champ sont constituées par
Pensemble G (g, H.g 0, u% p, 3). Le systéme des équations
de MAXwELL-EINSTEIN présente, comme nous allons le voir,
le caracteére hyperbolique normal. On peut envisager le probléme
de leur intégration par une étude élémentaire au moyen d’une
analyse du probléme de Cauchy.

ProBLEME. — Etant donnés sur une kypersurface S les
potentiels g, et leurs dérivées premicres, le champ de température 0
el ses déripées premiéres, et le champ électromagnétique par les
H g, déterminer au voisinage de S les divers champs supposés
satisfaire aux équations de MAXWELL-EINSTELN.

Il nous suffira d’étudier la possibilité de calculer sur S les
valeurs des divers champs et de leurs dérivées successives.
Nous supposerons les 8. de classe (C1, C3 par morceaux), les
H,; de classe (CO, C2 par morceaux) et 6 de classe (C2, C# par
morceaux).

Sur hypersurface S représentée localement par 2% = 0, les
données de Cauchy sont les valeurs des quantités € (g,g, ?, 8.5
0, 905 H,g). Nous désignerons par d.C les données de Cauchy
ou des quantités qui peuvent s’en déduire par des opérations
algébriques et des dérivations le long de S. Si I'on cherche &
mettre en évidence les dérivées 90084p) 09 Hyg dans les équations
de MAXWELL-EINSTEIN, on est conduit & remplacer ces équations
par le systéme équivalent composé des groupes d’équations

(310) Sooc — XToa

. s
(3.11) &0 = gn”k‘) 0, Hy = 0
(3.12) @ = Su’ + oy, H¥

ou les quantités S° &9 ont des valaurs connues sur S et la
quantité (D° ne dépend pas des oou” et 3o H g, et de
343) Ry = — g0,z + F, (d.0) — o(T. L
ij 95 %0 &y g == A 5 18y
1 .o
(3.14) &t = gn"”k 0 Hy; + ¢*(d.C) = o

L’Enseignement mathém., t. IV, fasc. 1. 4
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~ 1 1 . :
D, = —g[goo (1 — e @) u®u]o, H, -+ m [g% — (1—ep) uul]o, Hy'i -+
(3.15) + ®l (d.C ’ 00 ua) - 8 ul + (o) ua Hou .

Une condition nécessaire pour que le probléme de Cauchy
soit possible est que les équations (3.10), (3.11), (3.12) soient
satisfaites sur S par les données de Cauchy. S’il en est ainsi,
en tenant compte de 'équation d’état et du caractére unitaire
de u”, on peut calculer les quantités u*, p a 'aide des équations
(3. 10). L’équation (3. 11) exprime qu’il existe un potentiel
vecteur local pour H;; sur S. L’équation (3.12) donne la valeur
de 3. |

Les équations (3. 13) déterminent alors les valeurs sur S
de 99 g;; si g% # 0. Pour avoir les valeurs de d,H,g, il faut
connaitre celles de d,u* Ce sont les équations (3.6), (3.7), (3.8)
qui fournissent les dyu* en méme temps que les d,p et gy, 0.
Les équations (3.14) donnent les valeurs de d, Hj; et les équa-
tions (3.15) donnent les valeurs de d, Hy; sur S si g0 — (1 — ep)
u®u® = 0. Enfin 'équation (3.9) détermine la valeur de bo S si
u® £ 0.

Si I'hypersurface S portant les données de Cauchy @ n’est
pas exceptionnelle, il résulte de l'analyse précédente que les
quantités d498;;, doH,g, 2000, 298%, doP, 993 sont bien déterminées
et nécessairement continues a la traversée de I’hypersurface S.
Les mémes conclusions s’étendent aux dérivées d’ordre supérieur
de G (g,5, Hye, 6, u®, p, 3) si on suppose les données dérivables
a un ordre supérieur a celui de nos hypothéses.

Soit maintenant une solution ¢ des équations du champ
correspondant aux données de Cauchy € vérifiant les équations
(3.10), (3.11), (3.12) qui peuvent encore s’écrire

Q, =0 & = 0 P’ = 0

ou P'on pose Q.5 = Sug — x Typ et P, = D, — (3u, + oufH,,).
En vertu du caractére conservatif des premiers membres des
équations d’EINSTEIN et de MAXWELL, on a

VaQ¥% =0 v, "=0 v, P*=0.
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Compte tenu des équations (3. 13), (3. 14), (3. 15), les identités
précédentes se réduisent aux équations

800, Q°, = AT, 9, Q" + B, Q'
9 P’ = C'9; P' + (3, C* — I'%, CB) P°

§0 — . T* &0
04 &0 = Paou

ou les A  BP  C* sont des fonctions continues. Ces équations
sont linéaires et homogénes par rapport aux inconnues QO
P% &% Comme Q0 = P? = &° = 0 sur S, elles n’admettent
pas d’autre solution que la solution identiquement nulle. Il en
résulte que si les équations (3. 10), (3. 11), (3. 12) sont vérifiées
sur S par les données de Cauchy @, elles sont également vérifiées
dans tout le domaine d’espace-temps considéré par la solution
des équations du champ.

Le probleme de I'intégration des équations du champ consiste
finalement dans le choix des données de Cauchy ( rendant
compatibles les équations (3. 10), (3. 11), (3. 12) qui permettent
de calculer u” p, 3, puis dans lintégration du systéme des
équations (3. 13), (3. 14), (3. 15) et (3. 6), (3. 7), (3. 8), (3. 9)
qui permettent d’étudier I'évolution des. champs G (8. H
6, u* p, 3).

a3

II. ETUDE DES CARACTERISTIQUES
DES EQUATIONS DE MAXWELL

4. Les variétés caractéristiques des équations de MAXWELL.

Dans I'analyse du probléme de Cauchy, on met en évidence
quatre sortes de variétés exceptionnelles:

1) les variétés g% = 0 tangentes aux cones élémentaires,

2) les variétés qui généralisent les fronts d’ondes hydro-
dynamiques,

3) les variétés engendrées par les lignes de courant,

4) les variétés g% — (1 —ep) ud w0 = 0 que nous allons
etudier. |
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