
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 4 (1958)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SUR LE PRINCIPE DE FERMAT

Autor: Quan, Pham Mau

Kapitel: I. Inductions électromagnétiques ET ÉQUATIONS RELATIVISTES DE
L'ÉLECTROMAGNÉTISME

DOI: https://doi.org/10.5169/seals-34626

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 19.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-34626
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


42 PHAM MAU QUAN

repérage de l'espace et du temps, il est naturel d'avoir recours
à une variété V4 à quatre dimensions, trois d'espace et une de

temps et qui sera toile qu'à chacun de ses points corresponde
un événement déterminé. Cette variété est la variété espace-

temps de la théorie de la relativité. On la rapporte à des systèmes
de coordonnées curvilignes quelconques et on y cherche une

représentation tensorielle des lois physiques1\ Aussi nous sera-t-il
utile de rappeler certaines définitions classiques de la théorie
de la relativité; mais nous supposerons connue la théorie des

espaces de Riemann2). Nous cherchons à préciser la notion
d'inductions électromagnétiques dans le nouveau mode de

représentation afin de formuler d'une manière correcte les

équations correspondantes de la théorie de Maxwell. C'est ce

qui va faire l'objet de la première partie de notre exposé. Nous

continuerons par une étude des caractéristiques de ces équations
en établissant que les rayons électromagnétiques sont les géodé-

siques de longueur nulle d'une variété riemannienne associée V4.

L'étude géométrique des rayons électromagnétiques dans l'espace
à trois dimensions fournira l'énoncé du principe de Fermât,
dont l'existence est liée à celle d'univers stationnaire et de

mouvements permanents.
Nous utiliserons les symboles ya pour désigner les dérivées

covariantes et 2>a pour désigner les dérivées partielles ^da

I. Inductions électromagnétiques
ET ÉQUATIONS RELATIVISTES DE L'ÉLECTROMAGNÉTISME

1. La variété espace-temps.

Dans la théorie de la relativité générale, l'espace-temps est

une variété difîérentiable à quatre dimensions V4 de classe

de difîérentiabilité C2, C4 par morceaux, sur laquelle est définie

une métrique riemannienne ds2 de type hyperbolique normal,

1) Cette représentation indépendante du mode de repérage dans la variété V4 a conduit

historiquement à une meilleure intelligence des phénomènes de l'électrodynamique
des corps en mouvement.

2) Lire par exemple A. Lichnerowicz, Eléments de calcul tensoriel (A. Colin, Paris,
1950).
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à un carré positif et trois carrés négatifs. Cette métrique dite
métrique d'univers a, dans un système de coordonnées admissibles
(;xa), pour expression locale

(t-1) ds2 — g^dxadx^ (oc, ß 0, 1, 2, 3)

La variété V4 possède en chaque point un espace vectoriel
tangent du type de Minkowski.

L'équation ds2 0 définit en chaque point x de V4 un cône
réel Cx de directions tangentes à V4 dit cône élémentaire en x.
Une direction dx en x est dite orientée dans le temps ou dans
l'espace selon qu'elle est intérieure (ds2 > 0) ou extérieure
(ds2 < 0) au cône Cx. Une courbe T de V4 est orientée dans le
temps si les tangentes en ses différents points sont orientées
dans le temps. Un 3-plan tangent en x à V4 est orienté dans
l'espace si toutes ses directions sont orientées dans l'espace.
Il est orienté dans le temps s'il admet des directions orientées
dans le temps. Une hypersurface S à trois dimensions est orientée
dans le temps ou dans l'espace selon que ses éléments plans
tangents aux différents points sont orientés dans le temps ou
dans l'espace. Pour qu'une hypersurface S, définie localement
par / (xa) 0, soit orientée dans le temps, il faut et il suffit
que

AJ g^ ôa/ôp/'< 0

Pour qu'elle soit orientée dans l'espace, il faut et il suffit que
Ax / > 0.

Les dix coefficients gaß sont dits les potentiels de gravitation
relativement au système de coordonnées locales (^a), parce que
leurs écarts à la géométrie euclidienne tangente rendent compte
de la gravitation. Pour limiter la généralité de la métrique
dans le cadre de la relativité générale, le tenseur gaß est astreint
à vérifier le système des dix équations d'EiNSTEiN

Saß X Taß

qui généralisent les équations de Laplace-Poisson.
Saß est le tenseur d'EiNSTEiN de la variété riemannienne V4.

Il est d'origine géométrique. La description de l'état de la
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distribution énergétique est faite par le tenseur d'impulsion-
énergie Taß, suivant des schémas de type hydrodynamique.
On dit qu'un domaine D4 de l'espace-temps est occupé par une
distribution énergétique schématisée sous forme de fluide, si

sur le domaine D4 sont définis

1) un champ de scalaire p dit densité propre du fluide,

2) un champ de vecteur unitaire orienté dans le temps u
dit vecteur vitesse unitaire dont les trajectoires sont appelées
les lignes de courant du fluide.

On appellera repère propre en un point x du domaine D4 un
repère orthonormé dont le premier vecteur orienté dans le temps
coïncide avec le vecteur vitesse unitaire u et dont les trois
autres vecteurs orientés dans l'espace définissent le tri-plan izx

orthogonal à u qu'on appelle espace associé à la direction de

temps u.
Le repère propre précédent joue le rôle d'un repère galiléen

local par rapport auquel la matière est au repos. Il suffit d'écrire,
dans ce repère, les équations relatives à la matière au repos.
Puis, par un changement de repère, on en déduit l'expression
générale invariante des équations relativement au repère naturel
associé à un système de coordonnées locales quelconque.
Inversement, l'interprétation physique des équations se fait relativement

au repère propre dans l'espace tangent au point considéré.
On peut aussi considérer un espace-temps de la relativité
restreinte rapporté à un système de coordonnées galiléennes
réduites dans lequel la métrique a pour expression

ds2 (dx0)2 — (dx1)2 — (dx2)2 — (dx3)2

où x° et, c désignant la vitesse de propagation de la lumière
dans le vide.

2. Inductions électromagnétiques et équations de MAXWELL.

La théorie de Maxwell pour la matière fait intervenir
un champ électromagnétique variable avec le temps, défini par

—^

quatre vecteurs d'espace: champ électrique E et induction
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magnétique B, champ magnétique H et induction électrique D.
Le champ électromagnétique ainsi défini est régi par les équations

de Maxwell qui peuvent s'écrire dans un système d'unités
convenables, relativement à un repère lié à la matière au point
considéré

i ^ 1 à B
(21)

i rot E + — — °

[ div B 0

[ rj 1 Ö D
(2.2) | rot; H — — — ]?

[ div D 8

Ces équations établissent le lien entre les champs et inductions
E, H, D, B d'une part et la densité de charge S et le courant
de conduction T d'autre part. Ces diverses quantités sont de
plus liées par les relations

(2.3) D eÊ

(2.4)
—> —>

B (xH

(2.5) r aÊ

où e, [x, er représentent respectivement le pouvoir diélectrique,
la perméabilité magnétique et la condu'ctivité électrique du
milieu considéré. Le milieu est dit isotrope si e, p., a sont des
scalaires. C'est ce que nous supposerons dans la suite.

La représentation vectorielle précédente n'est bien adaptée
qu à 1 étude des transformations consistant en un déplacement
purement spatial et un changement d'origine pour le temps.
Pour avoir une représentation tensorielle indépendante du
mode de repérage dans la variété espace-temps V4, on peut
généraliser les équations de Maxwell de la manière suivante.

Considérons un domaine D4 de l'espace-temps V4 occupé
par un milieu materiel charge et conducteur, siège dès phénomènes

électromagnétiques. Soit x un point de D4 et R le repère
propre associé. En admettant que les équations rigoureuses
du champ électromagnétique se réduisent localement dans le
repère propre R aux équations classiques (2. 1), (2. 2) nous
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sommes amenés à introduire deux tenseurs antisymétriques
d'ordre 2, Haß et Gaß, dont les composantes relatives au repère

propre sont

0 Ex e2 Es

Bi 0 Bs--b2
e2 -B, 0 Bx

E3 b2 -Bx 0

<H.S> - „ » <0->

et vérifient les relations

(2.6) Goi zHoi ii Gif

'
0 Dx d2 D<

-Di 0 h3- H;

-D,--H, 0 H;

- h2 -Hx 0

Sur ces formules et dans la suite, les indices latins prennent
les valeurs 1, 2, 3 tandis que les indices grecs prennent les

valeurs 0, 1, 2, 3.
* *

Nous introduisons les tenseurs adjoints Gaß et Haß définis par

(2.7) H0"3 | r,a^s Hy8 7,^s GyS

où v)aßyS est le tenseur complètement antisymétrique attaché
à la forme élément de volume de V4. Les relations (2. 6) peuvent
alors s'écrire sous la forme invariante

<*.ß*a *Haßu«
(2.8)

(X Gaß «« Haß ua

Ces relations sont appelées les équations de liaison. Elles montrent

que les deux champs de tenseurs Haß et Gaß ne sont pas
indépendants l'un de l'autre. On peut exprimer les Gaß en
fonction des Haß. Un calcul donne

(2-9) Gaß ^ Haß + (Hoa u° Mß ~ Hsß tt«) "

Cela posé, le champ électromagnétique doit satisfaire aux
équations de Maxwell qui s'écrivent dans la variété espace-

temps

(2.10)
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(2.11) VaG«ß Jg

où Jp est le vecteur courant électrique généralisé. En tenant
compte des valeurs des composantes de J dans le repère propre,
on est conduit à faire l'hypothèse

(2.12) Jß a#0 + aw« Haß •

Le vecteur J possède ainsi une composante Su colinéaire à u
et une composante Ta up Hpa orthogonale à u. La première
représente le courant de convection et la seconder le courant
de conduction. S sera appelé densité propre de charge électrique.

Les équations (2. 10) peuvent encore s'écrire

Va Hßy + Vß Hya + Vy Haß a» 0

Elles expriment les conditions nécessaires et suffisantes pour
qu il existe localement un vecteur <pa tel que Haß soit son
rotationnel

Haß ôa 9ß — dß 9a

Enfin, on démontre que les vecteurs

(2'13> # |^YSVaHßY ®e«VaG«p

qui figurent aux premiers membres des équations (2. 10), (2. 11)
vérifient les identités

(2-14) Va «S01 0 Va ô>a 0

dites conditions de conservation relatives aux équations de
Maxwell. Elles entraînent la conservation du courant
électrique

(2-15) Va Ja s Va (S ux +a up Hpa) 0

3. L'intégration des équations de MAXWELL.

En relativité générale, les équations de l'électromagnétisme
sont constituées par l'ensemble des équations de Maxwell et
des équations d'EiNSTEiN auquel s'ajoutent les conditions de
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cons-ervation. Supposons que le milieu occupant le domaine D4
considéré soit schématisé sous forme de fluide parfait chargé
conducteur où Ton tient compte des phénomènes électromagnétiques

et thermodynamiques. Dans ce cas on peut établir
l'expression du tenseur d'impulsion-énergie

Taß (P + P)"attß- ~ K?ß + «pîa) + Taß ^«"«3

f3-1) Taß \(®paHpa) ®pa HPg

?« - * Ôp 6 [fa -"Pua)

où p est la pression et 0 la température en chaque point du
fluide, qa le vecteur courant de chaleur qui satisfait à l'hypothèse
de Fourier généralisée, x représentant la conductivité thermique,
p, p, 0 sont liés par l'équation d'état

(3.2) p 9 (p, 0)

Les équations de Maxwell-Einstein sont

(3.3) ê8 1^8 VaH^ o

(3.4) s* gapVaGp(3 8ttß + °<Haß
<3-5) Saß XTaß

auxquelles on adjoint le caractère unitaire de ua, les conditions
de conservation pour le tenseur d'impulsion-énergie, le vecteur
courant de chaleur et le vecteur courant électrique

(3-6) gaß u* u$ + 1

(3.7) VaTaß 0

(3.8) V„g« cp/öae-L»öap + J«H4^
P

(3.9) Va(S^a + aHpa) - 0

(3. 8) est l'équation de Fourier généralisée où c et l représentent
respectivement la chaleur spécifique à volume constant et la
chaleur de dilatation du fluide. Les équations (3.6), (3.7),
(3. 8) constituent un système différentiel aux lignes de courant
du fluide.
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Les scalaires x, c, l, s, jx, a qui caractérisent le fluide sont
supposés donnés. Les variables de champ sont constituées par
1 ensemble C^, (gaß, Haß, 0, ua, p, S). Le système des équations
de Maxwell-Einstein présente, comme nous allons le voir,
le caractère hyperbolique normal. On peut envisager le problème'
de leur intégration par une étude élémentaire au moyen d'une
analyse du problème de Cauchy.

Problème. — Etantdonnés sur une hypersurface S les
potentiels gaß et leurs dérivées premiè,le champ de température 0
et ses dérivées premières, etle champ électromagnétique par les

déterminer au voisinage de S les divers champs supposés
satisfaire aux équations de Maxwell-Einstein.

Il nous suffira d'étudier la possibilité de calculer sur S les
valeurs des divers champs et de leurs dérivées successives
Nous supposerons les gœg de classe (C1, C3 par morceaux), les
H

«p de classe (C°, C2 par morceaux) et 0 de classe (C2, C4 par
morceaux).

Sur l'hypersurface S représentée localement par x° 0, les
données de Cauchy sont les valeurs des quantités (gaß, ä0gaß;
e> ûo0; Hap). Nous désignerons par d.C les données de" Cauchy
ou des quantités qui peuvent s'en déduire par des opérations
algébriques et des dérivations le long de S. Si l'on cherche à
mettre en évidence les dérivées 2>00gaß, a0Haß dans les équations
de Maxwell-Einstein, on est conduit à remplacer ces équations
par le système équivalent composé des groupes d'équations

(3.10) gO __ rp0
a A a

Où les quantités S«a, & ont des valaurs connues sur S et la
quantité cp° ne dépend pas des c>0 ua et D0 Haß, et de

(3.11)

(3.12)

go ^ i di Hj.fe o

10° S u« -f a ux Hœ0

(3.13) Ry - à S'" ô«o Sa + Fa (d-C) X (Ty - i Tgy)

&k + ^(d;C) 0
(3.14)

L'Enseignement mathém., t. IV, fasc. 1.
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a>i i [gO« -(1- c y.)U°u°]d0 Hoi + i [g"i (1 - e p) «#]d0 Hj; +
r* '

r*

(3.15) + ©i^.G, ö0^a) But + aWaHai •

Une condition nécessaire pour que le problème de Cauchy
soit possible est que les équations (3.10), (3.11), (3.12) soient
satisfaites sur S par les données de Cauchy. S'il en est ainsi,
en tenant compte de l'équation d'état et du caractère unitaire
de ua, on peut calculer les quantités ua, p à l'aide des équations
(3. 10). L'équation (3. 11) exprime qu'il existe un potentiel
vecteur local pour Hi3 sur S. L'équation (3.12) donne la valeur
de S.

Les équations (3. 13) déterminent alors les valeurs sur S

de ^oo Sij si g00 0. Pour avoir les valeurs de d0 Haß, il faut
connaître celles de ^0&a. Ce sont les équations (3.6), (3.7), (3.8)
qui fournissent les d0 ua en même temps que les d0 p et à00 0.

Les équations (3.14) donnent les valeurs de d0 et les équations

(3.15) donnent les valeurs de d0 H0i sur S si g00 — (1 — ep.)
uQ u° 0. Enfin l'équation (3.9) détermine la valeur de d0 S si
u° ^ 0.

Si l'hypersurface S portant les données de Cauchy (3 n'est
pas exceptionnelle, il résulte de l'analyse précédente que les

quantités d0o?i:p ^o^aß, d0o6, P-> ^ sont bien déterminées
et nécessairement continues à la traversée de l'hypersurface S.

Les mêmes conclusions s'étendent aux dérivées d'ordre supérieur
de (g, (gaß, Haß, 0, &a, p, 8) si on suppose les données dérivables
à un ordre supérieur à celui de nos hypothèses.

Soit maintenant une solution Ç des équations du champ
correspondant aux données de Cauchy C vérifiant les équations
(3.10), (3.11), (3.12) qui peuvent encore s'écrire

Q°a 0 0 P° 0

où l'on pose Qa3 Saß — xTaß et Pa — (Swa + o»pHpa).
En vertu du caractère conservatif des premiers membres des

équations d'EiNSTEiN et de Maxwell, on a

VaQaß 0 Va^a-0 Va Pa o
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Compte tenu des équations (3. 13), (3. 14), (3. 15), les identités
précédentes se réduisent aux équations

g00à0Q°a A*^a diQ°g+ B^œ Q°p

d0 p° cô4p° + (d4 c{ — r«3 Cß) P°

d0st -r« 6*

où les A,ßa, Bßa, C" sont des fonctions continues. Ces équations
sont linéaires et homogènes par rapport aux inconnues Q°œ,

P°, <S°. Comme Q°a P° S00 sur S, elles n'admettent
pas d'autre solution que la solution identiquement nulle. Il en
résulte que si les équations (3. 10), (3. 11), (3. 12) sont vérifiées
sur S par les données de Cauchy C, elles sont également vérifiées
dans tout le domaine d'espace-temps considéré par la solution
des équations du champ.

Le problème de l'intégration des équations du champ consiste
finalement dans le choix des données de Cauchy (5 rendant
compatibles les équations (3. 10), (3. 11), (3. 12) qui permettent
de calculer ux, p,S, puis dans l'intégration du système des
équations (3. 13), (3. 14), (3. 15) et (3. 6), (3. 7), (3. 8), (3. 9)
qui permettent d'étudier l'évolution des champs g, (ga|3, Haß,
0, ii01, p, S).

II. Etude des caractéristiques
DES ÉQUATIONS DE MAXWELL

4. Les variétés caractéristiques des équations de MAXWELL.

Dans l'analyse du problème de Cauchy, on met en évidence
quatre sortes de variétés exceptionnelles:

1) les variétés g00 0 tangentes aux cônes élémentaires,
2) les variétés qui généralisent les fronts d'ondes

hydrodynamiques,

3) les variétés engendrées par les lignes de courant,
4) les variétés g«» — (1 — sp) 0 que nous allons

étudier.
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