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SUR LE PRINCIPE DE FERMAT

par Pham Mau Quan, Paris

(Reçu le 31 septembre 1957)

Introduction

On peut donner au principe de Fermât en Optique l'énoncé
suivant qui le rapproche du principe de Maupertuis ou de moindre
action:

Dans un milieu transparent isotrope d'indice de réfraction
n variable, les rayons lumineux sont les extrêmales du chemin
optique défini par l'intégrale

ZI

J nd g
zo

OÙ z0, z1 sont deux points quelconques du milieu et da, l'élément
linéaire du rayon lumineux passant par ces deux points.

Nous proposons dans cet article une démonstration de ce
principe en lui donnant un énoncé plus général. Notre idée
est la suivante.

La lumière est un phénomène électromagnétique gouverné
par les équations de Maxwell qui sont un système d'équations
aux dérivées partielles auxquelles doivent satisfaire les vecteurs
champs et inductions électromagnétiques. Les variétés
caractéristiques de ces équations représentent les surfaces d'ondes
électromagnétiques et les bicaractéristiques, les rayons associés.
Leur étude permet donc de trouver les lois de propagation du
champ électromagnétique et en particulier de la lumière. Et
le principe de Fermât en est une conséquence.

Pour représenter les phénomènes de la Mécanique et de
Electromagnétisme d'une manière indépendante du mode de
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repérage de l'espace et du temps, il est naturel d'avoir recours
à une variété V4 à quatre dimensions, trois d'espace et une de

temps et qui sera toile qu'à chacun de ses points corresponde
un événement déterminé. Cette variété est la variété espace-

temps de la théorie de la relativité. On la rapporte à des systèmes
de coordonnées curvilignes quelconques et on y cherche une

représentation tensorielle des lois physiques1\ Aussi nous sera-t-il
utile de rappeler certaines définitions classiques de la théorie
de la relativité; mais nous supposerons connue la théorie des

espaces de Riemann2). Nous cherchons à préciser la notion
d'inductions électromagnétiques dans le nouveau mode de

représentation afin de formuler d'une manière correcte les

équations correspondantes de la théorie de Maxwell. C'est ce

qui va faire l'objet de la première partie de notre exposé. Nous

continuerons par une étude des caractéristiques de ces équations
en établissant que les rayons électromagnétiques sont les géodé-

siques de longueur nulle d'une variété riemannienne associée V4.

L'étude géométrique des rayons électromagnétiques dans l'espace
à trois dimensions fournira l'énoncé du principe de Fermât,
dont l'existence est liée à celle d'univers stationnaire et de

mouvements permanents.
Nous utiliserons les symboles ya pour désigner les dérivées

covariantes et 2>a pour désigner les dérivées partielles ^da

I. Inductions électromagnétiques
ET ÉQUATIONS RELATIVISTES DE L'ÉLECTROMAGNÉTISME

1. La variété espace-temps.

Dans la théorie de la relativité générale, l'espace-temps est

une variété difîérentiable à quatre dimensions V4 de classe

de difîérentiabilité C2, C4 par morceaux, sur laquelle est définie

une métrique riemannienne ds2 de type hyperbolique normal,

1) Cette représentation indépendante du mode de repérage dans la variété V4 a conduit

historiquement à une meilleure intelligence des phénomènes de l'électrodynamique
des corps en mouvement.

2) Lire par exemple A. Lichnerowicz, Eléments de calcul tensoriel (A. Colin, Paris,
1950).
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à un carré positif et trois carrés négatifs. Cette métrique dite
métrique d'univers a, dans un système de coordonnées admissibles
(;xa), pour expression locale

(t-1) ds2 — g^dxadx^ (oc, ß 0, 1, 2, 3)

La variété V4 possède en chaque point un espace vectoriel
tangent du type de Minkowski.

L'équation ds2 0 définit en chaque point x de V4 un cône
réel Cx de directions tangentes à V4 dit cône élémentaire en x.
Une direction dx en x est dite orientée dans le temps ou dans
l'espace selon qu'elle est intérieure (ds2 > 0) ou extérieure
(ds2 < 0) au cône Cx. Une courbe T de V4 est orientée dans le
temps si les tangentes en ses différents points sont orientées
dans le temps. Un 3-plan tangent en x à V4 est orienté dans
l'espace si toutes ses directions sont orientées dans l'espace.
Il est orienté dans le temps s'il admet des directions orientées
dans le temps. Une hypersurface S à trois dimensions est orientée
dans le temps ou dans l'espace selon que ses éléments plans
tangents aux différents points sont orientés dans le temps ou
dans l'espace. Pour qu'une hypersurface S, définie localement
par / (xa) 0, soit orientée dans le temps, il faut et il suffit
que

AJ g^ ôa/ôp/'< 0

Pour qu'elle soit orientée dans l'espace, il faut et il suffit que
Ax / > 0.

Les dix coefficients gaß sont dits les potentiels de gravitation
relativement au système de coordonnées locales (^a), parce que
leurs écarts à la géométrie euclidienne tangente rendent compte
de la gravitation. Pour limiter la généralité de la métrique
dans le cadre de la relativité générale, le tenseur gaß est astreint
à vérifier le système des dix équations d'EiNSTEiN

Saß X Taß

qui généralisent les équations de Laplace-Poisson.
Saß est le tenseur d'EiNSTEiN de la variété riemannienne V4.

Il est d'origine géométrique. La description de l'état de la
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distribution énergétique est faite par le tenseur d'impulsion-
énergie Taß, suivant des schémas de type hydrodynamique.
On dit qu'un domaine D4 de l'espace-temps est occupé par une
distribution énergétique schématisée sous forme de fluide, si

sur le domaine D4 sont définis

1) un champ de scalaire p dit densité propre du fluide,

2) un champ de vecteur unitaire orienté dans le temps u
dit vecteur vitesse unitaire dont les trajectoires sont appelées
les lignes de courant du fluide.

On appellera repère propre en un point x du domaine D4 un
repère orthonormé dont le premier vecteur orienté dans le temps
coïncide avec le vecteur vitesse unitaire u et dont les trois
autres vecteurs orientés dans l'espace définissent le tri-plan izx

orthogonal à u qu'on appelle espace associé à la direction de

temps u.
Le repère propre précédent joue le rôle d'un repère galiléen

local par rapport auquel la matière est au repos. Il suffit d'écrire,
dans ce repère, les équations relatives à la matière au repos.
Puis, par un changement de repère, on en déduit l'expression
générale invariante des équations relativement au repère naturel
associé à un système de coordonnées locales quelconque.
Inversement, l'interprétation physique des équations se fait relativement

au repère propre dans l'espace tangent au point considéré.
On peut aussi considérer un espace-temps de la relativité
restreinte rapporté à un système de coordonnées galiléennes
réduites dans lequel la métrique a pour expression

ds2 (dx0)2 — (dx1)2 — (dx2)2 — (dx3)2

où x° et, c désignant la vitesse de propagation de la lumière
dans le vide.

2. Inductions électromagnétiques et équations de MAXWELL.

La théorie de Maxwell pour la matière fait intervenir
un champ électromagnétique variable avec le temps, défini par

—^

quatre vecteurs d'espace: champ électrique E et induction
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magnétique B, champ magnétique H et induction électrique D.
Le champ électromagnétique ainsi défini est régi par les équations

de Maxwell qui peuvent s'écrire dans un système d'unités
convenables, relativement à un repère lié à la matière au point
considéré

i ^ 1 à B
(21)

i rot E + — — °

[ div B 0

[ rj 1 Ö D
(2.2) | rot; H — — — ]?

[ div D 8

Ces équations établissent le lien entre les champs et inductions
E, H, D, B d'une part et la densité de charge S et le courant
de conduction T d'autre part. Ces diverses quantités sont de
plus liées par les relations

(2.3) D eÊ

(2.4)
—> —>

B (xH

(2.5) r aÊ

où e, [x, er représentent respectivement le pouvoir diélectrique,
la perméabilité magnétique et la condu'ctivité électrique du
milieu considéré. Le milieu est dit isotrope si e, p., a sont des
scalaires. C'est ce que nous supposerons dans la suite.

La représentation vectorielle précédente n'est bien adaptée
qu à 1 étude des transformations consistant en un déplacement
purement spatial et un changement d'origine pour le temps.
Pour avoir une représentation tensorielle indépendante du
mode de repérage dans la variété espace-temps V4, on peut
généraliser les équations de Maxwell de la manière suivante.

Considérons un domaine D4 de l'espace-temps V4 occupé
par un milieu materiel charge et conducteur, siège dès phénomènes

électromagnétiques. Soit x un point de D4 et R le repère
propre associé. En admettant que les équations rigoureuses
du champ électromagnétique se réduisent localement dans le
repère propre R aux équations classiques (2. 1), (2. 2) nous
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sommes amenés à introduire deux tenseurs antisymétriques
d'ordre 2, Haß et Gaß, dont les composantes relatives au repère

propre sont

0 Ex e2 Es

Bi 0 Bs--b2
e2 -B, 0 Bx

E3 b2 -Bx 0

<H.S> - „ » <0->

et vérifient les relations

(2.6) Goi zHoi ii Gif

'
0 Dx d2 D<

-Di 0 h3- H;

-D,--H, 0 H;

- h2 -Hx 0

Sur ces formules et dans la suite, les indices latins prennent
les valeurs 1, 2, 3 tandis que les indices grecs prennent les

valeurs 0, 1, 2, 3.
* *

Nous introduisons les tenseurs adjoints Gaß et Haß définis par

(2.7) H0"3 | r,a^s Hy8 7,^s GyS

où v)aßyS est le tenseur complètement antisymétrique attaché
à la forme élément de volume de V4. Les relations (2. 6) peuvent
alors s'écrire sous la forme invariante

<*.ß*a *Haßu«
(2.8)

(X Gaß «« Haß ua

Ces relations sont appelées les équations de liaison. Elles montrent

que les deux champs de tenseurs Haß et Gaß ne sont pas
indépendants l'un de l'autre. On peut exprimer les Gaß en
fonction des Haß. Un calcul donne

(2-9) Gaß ^ Haß + (Hoa u° Mß ~ Hsß tt«) "

Cela posé, le champ électromagnétique doit satisfaire aux
équations de Maxwell qui s'écrivent dans la variété espace-

temps

(2.10)
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(2.11) VaG«ß Jg

où Jp est le vecteur courant électrique généralisé. En tenant
compte des valeurs des composantes de J dans le repère propre,
on est conduit à faire l'hypothèse

(2.12) Jß a#0 + aw« Haß •

Le vecteur J possède ainsi une composante Su colinéaire à u
et une composante Ta up Hpa orthogonale à u. La première
représente le courant de convection et la seconder le courant
de conduction. S sera appelé densité propre de charge électrique.

Les équations (2. 10) peuvent encore s'écrire

Va Hßy + Vß Hya + Vy Haß a» 0

Elles expriment les conditions nécessaires et suffisantes pour
qu il existe localement un vecteur <pa tel que Haß soit son
rotationnel

Haß ôa 9ß — dß 9a

Enfin, on démontre que les vecteurs

(2'13> # |^YSVaHßY ®e«VaG«p

qui figurent aux premiers membres des équations (2. 10), (2. 11)
vérifient les identités

(2-14) Va «S01 0 Va ô>a 0

dites conditions de conservation relatives aux équations de
Maxwell. Elles entraînent la conservation du courant
électrique

(2-15) Va Ja s Va (S ux +a up Hpa) 0

3. L'intégration des équations de MAXWELL.

En relativité générale, les équations de l'électromagnétisme
sont constituées par l'ensemble des équations de Maxwell et
des équations d'EiNSTEiN auquel s'ajoutent les conditions de
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cons-ervation. Supposons que le milieu occupant le domaine D4
considéré soit schématisé sous forme de fluide parfait chargé
conducteur où Ton tient compte des phénomènes électromagnétiques

et thermodynamiques. Dans ce cas on peut établir
l'expression du tenseur d'impulsion-énergie

Taß (P + P)"attß- ~ K?ß + «pîa) + Taß ^«"«3

f3-1) Taß \(®paHpa) ®pa HPg

?« - * Ôp 6 [fa -"Pua)

où p est la pression et 0 la température en chaque point du
fluide, qa le vecteur courant de chaleur qui satisfait à l'hypothèse
de Fourier généralisée, x représentant la conductivité thermique,
p, p, 0 sont liés par l'équation d'état

(3.2) p 9 (p, 0)

Les équations de Maxwell-Einstein sont

(3.3) ê8 1^8 VaH^ o

(3.4) s* gapVaGp(3 8ttß + °<Haß
<3-5) Saß XTaß

auxquelles on adjoint le caractère unitaire de ua, les conditions
de conservation pour le tenseur d'impulsion-énergie, le vecteur
courant de chaleur et le vecteur courant électrique

(3-6) gaß u* u$ + 1

(3.7) VaTaß 0

(3.8) V„g« cp/öae-L»öap + J«H4^
P

(3.9) Va(S^a + aHpa) - 0

(3. 8) est l'équation de Fourier généralisée où c et l représentent
respectivement la chaleur spécifique à volume constant et la
chaleur de dilatation du fluide. Les équations (3.6), (3.7),
(3. 8) constituent un système différentiel aux lignes de courant
du fluide.
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Les scalaires x, c, l, s, jx, a qui caractérisent le fluide sont
supposés donnés. Les variables de champ sont constituées par
1 ensemble C^, (gaß, Haß, 0, ua, p, S). Le système des équations
de Maxwell-Einstein présente, comme nous allons le voir,
le caractère hyperbolique normal. On peut envisager le problème'
de leur intégration par une étude élémentaire au moyen d'une
analyse du problème de Cauchy.

Problème. — Etantdonnés sur une hypersurface S les
potentiels gaß et leurs dérivées premiè,le champ de température 0
et ses dérivées premières, etle champ électromagnétique par les

déterminer au voisinage de S les divers champs supposés
satisfaire aux équations de Maxwell-Einstein.

Il nous suffira d'étudier la possibilité de calculer sur S les
valeurs des divers champs et de leurs dérivées successives
Nous supposerons les gœg de classe (C1, C3 par morceaux), les
H

«p de classe (C°, C2 par morceaux) et 0 de classe (C2, C4 par
morceaux).

Sur l'hypersurface S représentée localement par x° 0, les
données de Cauchy sont les valeurs des quantités (gaß, ä0gaß;
e> ûo0; Hap). Nous désignerons par d.C les données de" Cauchy
ou des quantités qui peuvent s'en déduire par des opérations
algébriques et des dérivations le long de S. Si l'on cherche à
mettre en évidence les dérivées 2>00gaß, a0Haß dans les équations
de Maxwell-Einstein, on est conduit à remplacer ces équations
par le système équivalent composé des groupes d'équations

(3.10) gO __ rp0
a A a

Où les quantités S«a, & ont des valaurs connues sur S et la
quantité cp° ne dépend pas des c>0 ua et D0 Haß, et de

(3.11)

(3.12)

go ^ i di Hj.fe o

10° S u« -f a ux Hœ0

(3.13) Ry - à S'" ô«o Sa + Fa (d-C) X (Ty - i Tgy)

&k + ^(d;C) 0
(3.14)

L'Enseignement mathém., t. IV, fasc. 1.
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a>i i [gO« -(1- c y.)U°u°]d0 Hoi + i [g"i (1 - e p) «#]d0 Hj; +
r* '

r*

(3.15) + ©i^.G, ö0^a) But + aWaHai •

Une condition nécessaire pour que le problème de Cauchy
soit possible est que les équations (3.10), (3.11), (3.12) soient
satisfaites sur S par les données de Cauchy. S'il en est ainsi,
en tenant compte de l'équation d'état et du caractère unitaire
de ua, on peut calculer les quantités ua, p à l'aide des équations
(3. 10). L'équation (3. 11) exprime qu'il existe un potentiel
vecteur local pour Hi3 sur S. L'équation (3.12) donne la valeur
de S.

Les équations (3. 13) déterminent alors les valeurs sur S

de ^oo Sij si g00 0. Pour avoir les valeurs de d0 Haß, il faut
connaître celles de ^0&a. Ce sont les équations (3.6), (3.7), (3.8)
qui fournissent les d0 ua en même temps que les d0 p et à00 0.

Les équations (3.14) donnent les valeurs de d0 et les équations

(3.15) donnent les valeurs de d0 H0i sur S si g00 — (1 — ep.)
uQ u° 0. Enfin l'équation (3.9) détermine la valeur de d0 S si
u° ^ 0.

Si l'hypersurface S portant les données de Cauchy (3 n'est
pas exceptionnelle, il résulte de l'analyse précédente que les

quantités d0o?i:p ^o^aß, d0o6, P-> ^ sont bien déterminées
et nécessairement continues à la traversée de l'hypersurface S.

Les mêmes conclusions s'étendent aux dérivées d'ordre supérieur
de (g, (gaß, Haß, 0, &a, p, 8) si on suppose les données dérivables
à un ordre supérieur à celui de nos hypothèses.

Soit maintenant une solution Ç des équations du champ
correspondant aux données de Cauchy C vérifiant les équations
(3.10), (3.11), (3.12) qui peuvent encore s'écrire

Q°a 0 0 P° 0

où l'on pose Qa3 Saß — xTaß et Pa — (Swa + o»pHpa).
En vertu du caractère conservatif des premiers membres des

équations d'EiNSTEiN et de Maxwell, on a

VaQaß 0 Va^a-0 Va Pa o
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Compte tenu des équations (3. 13), (3. 14), (3. 15), les identités
précédentes se réduisent aux équations

g00à0Q°a A*^a diQ°g+ B^œ Q°p

d0 p° cô4p° + (d4 c{ — r«3 Cß) P°

d0st -r« 6*

où les A,ßa, Bßa, C" sont des fonctions continues. Ces équations
sont linéaires et homogènes par rapport aux inconnues Q°œ,

P°, <S°. Comme Q°a P° S00 sur S, elles n'admettent
pas d'autre solution que la solution identiquement nulle. Il en
résulte que si les équations (3. 10), (3. 11), (3. 12) sont vérifiées
sur S par les données de Cauchy C, elles sont également vérifiées
dans tout le domaine d'espace-temps considéré par la solution
des équations du champ.

Le problème de l'intégration des équations du champ consiste
finalement dans le choix des données de Cauchy (5 rendant
compatibles les équations (3. 10), (3. 11), (3. 12) qui permettent
de calculer ux, p,S, puis dans l'intégration du système des
équations (3. 13), (3. 14), (3. 15) et (3. 6), (3. 7), (3. 8), (3. 9)
qui permettent d'étudier l'évolution des champs g, (ga|3, Haß,
0, ii01, p, S).

II. Etude des caractéristiques
DES ÉQUATIONS DE MAXWELL

4. Les variétés caractéristiques des équations de MAXWELL.

Dans l'analyse du problème de Cauchy, on met en évidence
quatre sortes de variétés exceptionnelles:

1) les variétés g00 0 tangentes aux cônes élémentaires,
2) les variétés qui généralisent les fronts d'ondes

hydrodynamiques,

3) les variétés engendrées par les lignes de courant,
4) les variétés g«» — (1 — sp) 0 que nous allons

étudier.
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Sur les équations (3. 15), on voit que si Vhypers urface S

portant les données de Cauchy est telle que sur S

g00 — (1 — £ il) U° U° 0

les dérivées à0H0i du champ électromagnétique peuvent être
discontinues à la traversée de S. Il peut exister une infinité de

solutions distinctes des équations de Maxwell correspondant
aux mêmes données de Cauchy. La variété S est une variété
caractéristique pour les équations de Maxwell. Une telle
variété sera désignée par Yf-.

Dans un système de coordonnées locales arbitraire quelconque,
les variétés caractéristiques Yf définies par / (xa) 0, sont les

variétés satisfaisant à l'équation

(4.1) (gaß — (1 — e [l) ua u?) öa / öß / 0

Ces variétés à la traversée desquelles peuvent se produire des

discontinuités des dérivées du champ électromagnétique,
constituent l'extension relativiste des fronts d'ondes électromagnétiques

classiques. Pour qu'elles aient une signification physique,
il faut supposer que les variétés Yf soient orientées dans le

temps ou à la rigueur tangentes au cône élémentaire ds2 0

de V4. Nous verrons que cette hypothèse est bien en accord

avec les exigences de la Physique relativiste. S'il en est ainsi,

AJ « gafiàafà&f (1- «(A) KM2 < o

On en déduit
(4. 2) £[JL > 1

Ceci posé, la généralisation de l'hypothèse d'Hugoniot permet
d'évaluer ce qui constitue ici la vitesse de propagation des ondes

électromagnétiques considérées. Pour cela, considérons deux
surfaces d'ondes voisines (Vf^o et (V^)0 définies par les équations

/(*a) o /(*«) 0

et prenons 0 pour infiniment petit principal.
La ligne de courant issue du point x de (V^o coupe (Vf)e
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en un point défini aux infiniment petits d'ordre supérieur près

par x + vj &, y] étant donné par la relation

(4.3)

Soit n le vecteur normé (n2 — 1) normal en x à la surface
d'onde (Vf)0. Il a pour composantes covariantes en x

,4" ** " '

La trajectoire orthogonale des Vf- issue de x coupe (Vf)ô en un
point qui, à des infiniment petits d'ordre supérieur près, s'écrit
x + y)! ft, 7)! étant déterminé par la relation

"1i ôx / 6

On en déduit

(4.5)
6 9(/ —W —8

n*dxf g^djd^f (/-^ôa/ô3/
'

Introduisons le vecteur î ~ t(m — -qji. En vertu de (4. 3)
et (4. 4), on a

7) (un)— 7)!
et

/ -> -> />t n (rj U 7)]. raj 71 7] (w + 7h 0

Le vecteur « est donc tangent à la surface d'onde. Il est orienté
dans le temps car son carré

Y)2 (t)2 — Y)2 Y)!2 2 7) 7]x (u n) Y)2 + V
est positif.

Le vecteur rju apparaît ainsi comme la somme de deux
vecteurs, l'un orthogonal à la surface d'onde et orienté dans
l'espace, l'autre tangent à cette surface et orienté dans le temps.
La vitesse de propagation V de l'onde se trouve ainsi définie
comme la limite du rapport des modules de ces deux vecteurs,
soit

V lim
6->0
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On a ainsi

V2 lim Hi!
0->O V

soit, en remplaçant % et t]0 par leurs valeurs

V2 —_
Sp

La vitesse de propagation des ondes électromagnétiques est
donc égale à (s p) L Cette valeur appelle deux remarques.
D'abord, elle généralise la valeur obtenue en électromagnétisme
classique. De plus, dans nos hypothèses sp 1, la vitesse de
propagation V est inférieure à une vitesse limite c 1; cette
valeur coïncide avec la valeur de la vitesse de propagation des
ondes électromagnétiques dans le vide (ep 1).

5. Etude des bicaractéristiques.

L'étude des variétés caractéristiques des équations de
Maxwell fait intervenir le champ de tenseur contravariant
symétrique

gaß Saß~(l

dont la forme quadratique associée représente la forme
caractéristique des équations de Maxwell. Soit gag les coefficients de
la forme conjuguée qui a pour expression

£<xß #aß (1 ~ sTjl) U(* U$ '

Nous introduisons la métrique riemannienne dite métrique
associée

ds2 gaß dxa dxß •

Elle est de signature hyperbolique normale comme la métrique
d'univers comme on peut le vérifier par un calcul direct en
repère propre. Nous désignerons dans la suite par V4 la variété
riemannienne définie par la variété différentiable portant
l'espace-temps V4 et munie de la métrique associée ds2. Nous
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appellerons cône élémentaire associé Cx en un point x le cône

réel de directions tangentes à V4 défini par l'équation ds2 0.

Dans l'espace riemannien V4, les variétés caractéristiques
des équations de Maxwell définies localement par f (xa) — 0,
sont solutions de l'équation aux dérivées partielles du premier
ordre

(5-1) Äif gaßöa/dg/ 0

Elles sont tangentes en chaque point au cône élémentaire
associé Cx. Les cônes élémentaires Cx de V4 sont donc cônes
caractéristiques pour les équations de Maxwell et celles-ci
admettent pour variétés caractéristiques les variétés tangentes
à ces cônes.

Une variété caractéristique V^1, c'est-à-dire une solution de
(5. 1), peut être engendrée au moyen des bandes caractéristiques
de (5. 1). Une telle solution peut être engendrée au moyen
des bandes de V4 constituées par l'ensemble d'une courbe L0 et
d'une famille à un paramètre de 3-plans élémentaires tangents
à ces courbes. Les courbes L0 sont appelées les bicaractéristiques
des équations de Maxwell.

Pour les déterminer, posons

2 H =g«ßyayß

et considérons l'équation aux dérivées partielles

(5-2) Âif 2 H (*\ dßf) C

où C est une constante arbitraire. Relativement aux variables
x i fi y§ bandes caractéristiques des équations de Maxwell
sont données par les solutions du système différentiel

dx^ __ df_ __
dy0

__ _ dyz
d H ÔH 2 H dR-'" — ~àH==du
ô 2/o àyz dVo ^

qui satisfont à l'intégrale première
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pour la valeur C de la constante. Si l'on introduit la variable
auxiliaire u, les fonctions xa (u), ya (m) sont données par le

système canonique

dxa
_ à II dda

(5-3) du ~ at/« du Ô*a

relatif à la fonction hamiltonienne H (xx, y[l). Le premier groupe
des équations (5. 3) s'écrit explicitement

is.« r*«t (« - ï) -

Inversement

(5-5) 2/ß Saß*a-

Cela posé, les solutions xa (u) de (5. 3) sont extrêmales de la
fonction lagrangienne L définie par

puisque, par passage des variables (#a, xP) aux variables

canoniques (#a, y$) qui leur sont liées par (5.4) et (5.5), on a entre H

et L la relation classique

H x* — L L
à L

Ces solutions sont les extrêmales satisfaisant à l'intégrale
première

(5. 6) 2 L G

pour la valeur C de la constante. Or, d'après l'existence de cette

intégrale première, les extrêmales ainsi définies sont aussi les

extrêmales de

• <\/2L l/gaßia*ß

satisfaisant à (5. 6). Il en résulte que les x* (u) définissent des

géodésiques de V4. Si C 0, le système différentiel aux
caractéristiques de (5. 1) admet l'intégrale première / const, et
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les variétés Yf- peuvent être engendrées par les bandes de V4

définies par les géodésiques de longueur nulle L0, le 3-plan
élémentaire associé étant le plan tangent au cône élémentaire

Cx le long de la tangente à L0.
Nous avons démontré le théorème

Théorème. — Les bicaractéristiques des équations de Maxwell
sont les géodésiques de longueur nulle de la variété riemannienne

V4 munie de la métrique associée

ds2 gaß dxa dx^ •

Dans le langage de la théorie de la propagation par ondes,
les variétés caractéristiques Yf jouent le rôle de surfaces d'ondes

électromagnétiques. Les bicaractéristiques L0 sont les rayons
électromagnétiques associés. En introduisant l'indice de réfraction

n Vsfji du milieu, nous pouvons donc énoncer le résultat
suivant

Théorème. — Dans un milieu transparent isotrope d'indice
de réfraction n variable, les rayons électromagnétiques sont des

géodésiques de longueur nulle de l'espace riemannien V4 muni
de la métrique

«aß dx<X dx&(«aß — (* — ^2) »a Mß) dx&

où gaß est le tenseur métrique fondamental et ua le vecteur vitesse
unitaire d'univers définis en chaque point du milieu considéré.

III. Etude géométrique
DES RAYONS ÉLECTROMAGNÉTIQUES DANS L'ESPACE

6. Espace-temps stationnaire et mouvement permanent d'un
fluide parfait chargé.

On dit que l'espace-temps V4 est stationnaire dans un domaine
D4 si la variété riemannienne définie par D4 muni de la métrique

d'univers ds2 admet un groupe connexe à un paramètre
d'isométries globales à trajectoires z orientées dans le temps,
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ne laissant invariant aucun point de D4, la famille des lignes z

ou lignes de temps satisfaisant aux hypothèses suivantes:

a) les lignes de temps sont homéomorphes à la droite réelle R ;

b) on peut trouver une variété différentiable à trois, dimensions

D3, satisfaisant aux mêmes hypothèses de difîérentiabilité
que V4, telle qu'il existe un homéomorphisme de même classe
de la variété D4 sur le produit topologique D3 x R dans lequel
les 2 s'appliquent sur les droites facteurs. La variété quotient
D3 sera dite simplement espace.

On peut définir dans D4 des systèmes de coordonnées locales
(#0, xl), dits adaptés au caractère stationnaire, de la manière
suivante. Les (x1) sont un système de coordonnées locales
arbitraire de D3. La donnée des (x1) détermine une ligne de

temps. Pour déterminer un point sur cette ligne, on se donne
la variété x° — const, à laquelle il appartient, ces variétés
étant homéomorphes à D3. Les potentiels gaß relatifs aux
coordonnées adaptées sont indépendants de la variable x° et le

vecteur £ générateur infinitésimal du groupe d'isométries admet
pour composantes contravariantes

£°=l g o

et a pour carré g00 > 0.

Dans la suite on n'introduit que des systèmes de coordonnées
adaptés. En effectuant la décomposition en carrés de la forme
quadratique fondamentale

(6.1) ds2 gaßdxadx®

à partir de la variable directrice dx°, nous obtenons

(6.2) ds2 ±fgoadx«y + dP
500 '

OÙ

(6.3) ds2 — £ - dxi dxi (— ^oi dxi dx^
\ êoo /

définit sur D3 une métrique riemannienne définie négative.
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Considérons maintenant un fluide parfait chargé conducteur
en mouvement dans un domaine D4. Le mouvement de ce fluide
est dit permanent si l'espace-temps associé V4 est stationnaire
dans D4 et si le groupe d'isométries laisse invariantes les quantités
(Saßt Ha(3, Gag, 0, çaJ m", p, 8).On démontre immédiatement à
partir des résultats sur le problème de Cauchy que pour quele mouvement du fluide soit permanent, il faut et il suffit que1 espace-temps riemannien associé soit stationnaire dans D4 et
que son groupe d'isométries laisse invariants les champs H „ 0
ainsi que les coefficients x, c, l, s, p, a.

Si le mouvement du fluide est permanent, les quantités

SaßSaß (l — ^2) ua uß

sont constantes le long des lignes de temps. Il en résulte quela variété nemannienne V4 définie par la variété différentiable
portant D4 et munie de la métrique associée, admet aussi
un groupe connexe à un paramètre^d'isométries globales ne
laissant invariant aucun point de V4, induit par celui de
espace-temps. Il est clair que les («®, »i) constituent un système

de coordonnées locales adapté pour V4. On peut prendre pour
générateur infinitésimal du groupe d'isométries de V4 le vecteur
Ç qui a pour composantes contravariantes Ça. Le carré
de ce vecteur a pour valeur dans V4

goo £00 — (t — )2

Cette quantité pouvant être positive, négative ou nulle les
trajectoires d'isométries de V4 peuvent être orientées dans le
temps, dans 1 espace ou être isotropes.

7. Un problème du calcul des variations.

Nous nous proposons d'interpréter géométriquement les
ayons électromagnétiques dans l'espace à trois dimensions. Aet effet, nous commençons par rappeler brièvement unproblème du calcul des variations.

P



60 PHAM MAU QUAN

Etant donnée une variété difïérentiable Vn+1, soit W2(n+1)

l'espace fibré des vecteurs tangents aux différents points de

Vn+1. Si l'on adopte sur Vn+1 des coordonnées locales (x°j chaque
élément de W2(n+1) sera constitué par la réunion des coordonnées
(£a) du point x correspondant de Vn+1 et des n + 1 composantes
(i°j du vecteur x dans le repère naturel en x associé aux (xa).
Une structure de variété finslérienne sur Vn+1 est définie par la
donnée d'une fonction £ (x, x) à valeurs scalaires dans W2(n+1)
telle que pour x fixe, £ (x, Xx) — \£(x, x). En coordonnées

locales, une telle fonction est représentée par £ (xa, iß) et est

homogène et du premier degré par rapport aux xß.

Considérons une variété difïérentiable Vn+1 munie d'une
structure de variété finslérienne et supposons qu'elle admette
un groupe connexe à un paramètre d'isométries globales de

générateur Ç, ne laissant invariant aucun point de Vn+1 (Ç ^ 0).

Supposons de plus que les trajectoires 2 du groupe sont homéo-

morphes à la droite réelle R, et soit Vn la variété quotient de

Vn+1 par la relation d'équivalence définie par le groupe. Nous
identifierons Vn à l'espace dont les points z sont les trajectoires
d'isométries. Dans un système de coordonnées adapté (x°, x1),

(i 1, 2, ri), la fonction Cest localement indépendante de la
variable x°:

Nous allons montrer qu'il est possible de douer la variété
quotient Vn de structure de variété finslérienne au moyen de

fonctions L (z, z) de façon qu'aux géodésiques de Vn+1 extrêmales
de l'intégrale

correspondent par projection sur Vn des extrêmales de

C -C (x1, x°)

(7.1) J C (x x) du

(7.2)

Dans la suite, tout indice grec 0, 1, 2, n\ tout indice
latin 1, 2, n et nous supposons
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ö.. £ ^ 0 ö. ——00 a

Donnons-nous une extrêmale de (7. 1) par une représentation
paramétrique xa (u), u désignant un paramètre arbitraire. Le
système différentiel aux extrêmales de (7. 1)

(7-3) dxa -a

où xa satisfait à

d dJS ÔJ,D

est caractérisé par le fait d'admettre l'invariant intégral relatif

Ô

('S) o> V —S-dxa d • JT + ô. •

& d x k o

En vertu de 1 hypothèse — 0, on a l'intégrale première

(7.6) dö£=h.

Comme ôfJ0 ß^ 0, on peut résoudre (7.6) par rapport à x°; on
obtient l'équation équivalente

('•') x° — y xk'

où <p est une fonction homogène et de degré 1 par rapport aux
x1 et dépendant effectivement de h.

Considérons la famille des extrêmales (Eft) correspondant à
une valeur déterminée de la constante Pour cette famille
le dernier terme de « a la valeur hdx° et définit un invariant
intégral relatif. Il en résulte que cette famille d'extrêmales
admet l'invariant intégral relatif

<7-8) d.£dxk.
k

Or d'après l'homogénéité de C, on a

xkd; J? + à? d- £k 0
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Par suite, pour toute solution (7. 6) ou (7. 7), la quantité
xk jfpeut s'exprimer par une fonction L des variables xk, x\ h

(7.9) L (xk xl, h) — J?[xk af 9 &)] — ftcp xl, h)

et l'on a
ô-L t= ô • i? -)- ô • J? à - cp — /îô-çp ô • JX

k k 0 kr kr k

Ainsi, d'après (7. 8), les projections des (Eh) sur Vn sont
définies par un système différentiel qui admet l'invariant intégral
relatif

7T ô. L dxk
k

Autrement dit, elles sont extrêmales de l'intégrale

Z\
(7.10) J L (xk xl, h) du

zo

où A a la valeur choisie.
On appelle descente la correspondance qui à la fonction

£ (xk, xl, x°) fait correspondre la fonction L (xfe, ôc\ h). Le
problème inverse est possible 3).

8. Projection des géodésiques de longueur nulle de la variété
riemannienne V4.

Nous supposons que la variété V4 satisfasse aux hypothèses
du paragraphe précédent. La fonction X^est définie par la relation

(8.1) J?2

où le second membre est une forme quadratique non dégénérée

comme on peut le vérifier. Etudions d'abord les extrêmales

correspondant aux valeurs de _xa pour lesquelles le second

membre est positif. On sait d'ailleurs qu'il suffit qu'une géodésique
le rende positif en un point pour qu'il en soit de même tout le

long de la géodésique.

3) Voir A. Lichnerowicz, Théories relativistes de la gravitation et de l'électromagnétisme,

Livre II, chap, premier.
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Nous supposons que g00 ne s'annule pas dans le domaine
étudié. Le procédé de descente nous conduit à former l'équation

<8'2> YÔÔ ^^00^° + ^0 he

et à éliminer x°entre cette équation et

(8-3) L e — hx°

En décomposant C2 en carrés à partir de la variable directrice
il vient

'"'-lîfivf + M'*'
où l'on pose

~ - &oi êoj

Soo

et l'on voit que grj xlixPestnégative si g00 > 0 et positive si
goo < 0- Dans le premier cas on prendra h > max Gomme

2"')o D2 h£, on tire l'équation

(8.4) 1 /h.XX
V l — ~Soo

qui fournit Cen fonction des variables xk, xl, h. De (8. 2), ontire ensuite '

<8-5> i, =*
$00 $00

On en déduit d'après (8. 3) et en vertu de (8. 4)

(8.6)
—e l1—t) ^xl + h

y \ goo/ g00

où £ est le signe de g00.
L est bien une fonction de x\ h homogène et du premier

egre par rapport aux xl. Elle définit sur la variété quotient
V3 une structure de variété fmslérienne. Inversement, étant
donnée localement dans V3 la fonction L (x\ h) précédente
on démontré facilement qu'il existe une fonction (xk, xl,
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homogène et de degré 1 par rapport aux ia, qui par descente

reconduit à L et que cette fonction est

|/i ~a • ß

Les courbes extrêmales correspondantes sont donc des géodé-

siques de V4.

Ainsi, les géodésiques de la variété riemannienne V4 qui
correspondent à l'intégrale première 7>q.£ h se projettent sur

la variété quotient V3 selon les extrêmales de l'intégrale

(8.7| j (-[/(•- £)% •<*> +
*0

où A a la même valeur. Ces extrêmales coïncident avec celles de

z0

Le long de ces extrêmales, on a d'après l'expression de x°:

h / ï * i* i Soi**
ïooV L_*Sii ë">

V §00

Ceci étant, on peut définir les géodésiques de longueur nulle

de V4 comme les courbes limites vers lesquelles tendent les

géodésiques orientées dans le temps lorsque 0 —»• 0. De la relation

h£ g0a xa, il résulte que h->•oo lorsque —* 0 et a le

signe de g0xx*. Or

& s io(*****)'+ ° '

On en déduit que g0ai;a a une valeur non nulle et garde un signe

constant.
D'après (8. 8), les projections des géodésiques de longueur

nulle de V4 sur V3 sont les extrêmales de l'intégrale
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zi
/ p- /7 Pw T7TT

du

zi

/fcfev7 - i -j 8oix
p\. .T:1 W

gooJ ~iJ goo

En passant à la limite, on en déduit le lemme suivant

Lemme. — Les géodésiques de longueur nulle de V4 se projettent
sur V3 selon les extrëmales de V intégrale

ZI

<8-10) / U' - duJ V V «00
1

goo /
*0

où s esf Ze signe de g00 et s' Ze signe cZe g0a xa.

D'après (8. 9), le long de ces extrëmales on a

l8-11) dx0se' 1 /— J- | (fat (faj — I^L
V goo - goo

On remarquera que cZx° LeZn.

Dans le cas où g00 s'annule dans le domaine étudié, on obtient
un énoncé analogue où (8. 10) et (8. 11) sont respectivement
remplacées par

/
1

_ • • • •

Çt. syl /V.J

°l] ^ X
7f du

Z°
et

0 p qriÄ /» /» w ëAs

»

9. Le principe de FERMAT.

Nous avons établi que les rayons électromagnétiques sont
géodésiques de longueur nulle de la variété riemannienne V4.
Nous pouvons les interpréter géométriquement dans l'espace
si le mdieu considéré est en mouvement permanent. En effet,
le lemme fournit une démonstration immédiate du théorème
suivant

Théorème. — Sile mouvement du milieu considéré est
permanent et tel que g00 =£ 0, les rayons électromagnétiques dans

L'Enseignement mathém., t. IV, asc 1
5
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Vespace sont des lignes réalisant Vextrêmum de V intégrale

(9,1) f (se' J—X fy xl xi - ^X-)J\V «oo î3 «oo '
*0

pour des variations à extrémités fixes, ozi s Zc de g00 et z

le signe de gôaxa. Le temps mis par un rayon pour aller du point z0

au point z4 est donné par

Zl z%

i9'2' Jd''~J

Ce temps est extrëmum.
Dans le cas où g00 0, on obtient un énoncé analogue en

remplaçant (9. 1) et (9. 2) respectivement par

Hr g., xl x1

(9.3) / r

et
^1 _ff.. A A('rSu x'

(,4) Jdx

Par le théorème précédent se trouve démontrée l'équivalence
du principe géodésique et du principe du moindre temps.

En particulier, si l'univers est statique au sens de Levi-
Civita, c'est-à-dire si les lignes de courant coïncident avec les

lignes de temps, l'espace-temps V4 est orthogonal. Soit

ds2 U (dx0)2 + gtj dx1 dxi

la métrique d'univers de V4. Les u{ étant nuls, on en déduit la

métrique associée
U
n2

ds2 — (dx0)2 + gtf dxl dxi

On peut mettre (9. 2) sous la forme
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(9.5)

zo z0

où l'on a posé da2 — g^ dxl dx\ On voit apparaître l'influence
du champ gravitationnel sur la propagation du champ
électromagnétique.

Si U — 1, on démontre que l'espace-temps V4 est euclidien.
L'énoncé du théorème devient

z1 Zi
S J dx° S J nd a — 0

z0 Z0

Nous retrouvons l'énoncé exact du principe de Fermât en
Optique. Le théorème que nous avons établi, en constitue
donc l'énoncé généralisé en relativité. Il donne plus généralement
la loi de propagation des ondes électromagnétiques dans un
milieu en mouvement, la vitesse du milieu intervenant dans
l'expression des gaß.

10. Interprétation du signe z' de g0a xa.

L'équation

£2du2 (ß dx^Y + g. dxldx? 0
500 s ' J

représente le cône caractéristique Cx au point des équations
de Maxwell. Les deux nappes de ce cône sont symétriques
par rapport à l'hyperplan élémentaire nx

êo* dxa

Désignons par M xa)lesommet de ce cône Gr Prenons un
couple de points voisins de M, ayant pour coordonnées spatiales
(s vi -)- dx^) appartenant respectivement aux deux nappes de
Cx et symétriques par rapport à nx. Soient

Mi (x°+ dx0, x1+ dx1)Mj 0 —

On peut dire que MMX représente aux infiniment petits d'ordre
supérieur près le déplacement infinitésimal associé à un rayon
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électromagnétique allant du point d'espace A (x1) au point
d'espace A' (x1, + dx1) dans le temps dx°. De même, M^M

peut être considéré comme représentant le déplacement
infinitésimal associé à un rayon électromagnétique allant du point
A' (xl + dxl) au point A (xl) dans le temps d'#0.

Les deux points Mx et sont symétriques par rapport à

l'hyperplan 7rx, on doit avoir

2oa dx* — £oa d' *

On en déduit

gnj dx1d'= dx° + 2 — •

£00

Cette relation montre que, sauf dans le cas statique, le temps mis

par un rayon pour aller du point d'espace A (x1) au point d'espace
A' (x1 + dxl) n'est pas le même que le temps mis par un autre
rayon pour aller de A' (x1 + dx1) à A (x1).

11. Cas d'un espace-temps de MINKOWSKI et loi relativiste de

la composition des vitesses.

Plaçons-nous dans le cas d'un espace-temps sans gravitation
de Minkowski, rapporté à un système de coordonnées gali-
léennes réduites. Nous avons la métrique d'univers

(11.1) ds2 (dx0)2 — (dx1)2 — (dx2)2 — (dx0)2

u représente dans ce cas le vecteur vitesse unitaire d'univers
dont les composantes sont déterminées classiquement à partir
de la vitesse d'espace ß, la vitesse limite c étant prise comme
unité. Un calcul facile donne la métrique associée

-y2 Q2 \ "\7"2

(11.2) ds2 j—^ (dx0)2 + 2 *

_
*

2 ßi dx° — Ç (dx1)2 —

A partir de cette métrique, cherchons à exprimer le théorème
de Fermât en prenant l'arc a du rayon électromagnétique comme
paramètre. Nous avons à remplacer dans (9. 2) x1 par



SUR LE PRINCIPE DE FERMAT 69

où da2 — 2 (dx1)2. Il vient
i

zi zi
(11.3) f dx•J{^ + (l-V») (PjX1)8

zo zo

et l'on peut en déduire

£ w =££' \/feilV2 - ß2 +11 - V2> (ßi *)'

Si V2 — ß2 ^ 0, cette relation donne

(11.4) 1 — ß2 — (1 — ß2) W2 — (1 — Y2) (1 — W ßi Y)2 0

-f5 >
Si on interprète V comme vitesse absolue et W comme vitesse
relative de propagation de l'onde électromagnétique considérée
dans l'espace euclidien ordinaire, on a manifestement

(11.5) V2
7

^—=5— [ß"2 + 2W.ß + (1— ß2) W2 + (W. ß)2]
(l + W. ß)2

On vérifie par un calcul direct à partir de (9.4) que cette relation
reste valable dans le cas où V2 — ß2 0.

En cherchant à mettre en évidence dans le crochet de (11. .5)

un vecteur colinéaire à ß et un autre qui lui est orthogonal,
on obtient

^ " « + 4.?)'[(' + tAr + vr=? fc ~ T^)]'
On en déduit

Î"rrrîl(,+^i)r + vr=rî,(5i,_%ïî).

C est la formule relativiste de la composition des vitesses

Faculté des Sciences, Resançon.

4) Cf. A. Lichnerowicz, Eléments de calcul tensoriel, chap. VII, pp. 173-175.



70 PHAM MAU QUAN

BIBLIOGRAPHIE

1. E. Cartan, Leçons sur les invariants intégraux (Paris, Hermann, 1922).
2. G. Darmois, Les équations de la gravitation einsteinienne. (Mémorial

des Sc. math., fasc. XXV, 1927).
3. W. Gordon, Zur Lichtfortpflanzung nach der Relativitätstheorie.

(Ann. Physik, 72, pp. 421-456, 1923).
4. A. Lichnerowicz, Eléments de calcul tensoriel. Armand Colin, 1951).
5. Théories relativistes de la gravitation et de Vélectromagnétisme.

(Masson, 1955).
6. Pham Mau Quan, Etude électromagnétique et thermodynamique d'un

fluide relativiste chargé. (Jour. Rational Mechanics and Analysis,
vol. 5, No. 3, 1956, pp. 473-538).


	SUR LE PRINCIPE DE FERMAT
	Introduction
	I. Inductions électromagnétiques ET ÉQUATIONS RELATIVISTES DE L'ÉLECTROMAGNÉTISME
	1. La variété espace-temps.
	2. Inductions électromagnétiques et équations de MAXWELL.
	3. L'intégration des équations de MAXWELL.

	II. Etude des caractéristiques DES ÉQUATIONS DE MAXWELL
	4. Les variétés caractéristiques des équations de MAXWELL
	5. Etude des bicaractéristiques.

	III. Etude géométrique DES RAYONS ÉLECTROMAGNÉTIQUES DANS L'ESPACE
	6. Espace-temps stationnaire et mouvement permanent d'un fluide parfait chargé.
	7. Un problème du calcul des variations
	8. Projection des géodésiques de longueur nulle de la variété riemannienne $\bar{V}_4$.
	9. Le principe de FERMAT
	10. Interprétation du signe ε' de $\bar{g}_{0\alpha}x^\alpha$.
	11. Cas d'un espace-temps de MINKOWSKI et loi relativiste de la composition des vitesses.

	...


