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SUR LE PRINCIPE DE FERMAT

par Puam Mavu Quan, Paris

(Recu le 31 septembre 1957)

INTRODUCTION

On peut donner au principe de FERMAT en Optique 1’énoncé
suivant qui le rapproche du principe de Maupertuis ou de moindre
action: .

Dans un milieu transparent isotrope d’indice de réfraction
n variable, les rayons lumineux sont les extrémales du chemin
optique défini par I'intégrale

Z1
f nd o
2

ou 2y, z; sont deux points quelconques du milieu et do, 1’6lément
linéaire du rayon lumineux passant par ces deux points.

Nous proposons dans cet article une démonstration de ce
principe en lui donnant un énoncé plus général. Notre idée
est la suivante.

La lumiére est un phénomeéne électromagnétique gouverné
par les équations de MAXWELL qui sont un systeme d’équations
aux derivées partielles auxquelles doivent satisfaire les vecteurs
champs et inductions électromagnétiques. Les variétés carac-
téristiques de ces équations représentent les surfaces d’ondes
électromagnétiques et les bicaractéristiques, les rayons associés.
Leur étude permet donc de trouver les lois de propagation du
champ électromagnétique et en particulier de la lumiére. Et
le principe de FErRMAT en est une conséquence.

Pour représenter les phénomeénes de la Mécanique et de
PElectromagnétisme d’une maniére indépendante du mode de
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repérage de l'espace et du temps, il est naturel d’avoir recours
a une variété V, a quatre dimensions, trois d’espace et une de
temps et qui sera telle qu’a chacun de ses points corresponde
un événement déterminé. Cette variété est la variété espace-
temps de la théorie de la relativité. On la rapporte & des systéemes
de coordonnées curvilignes quelconques et on y cherche une
représentation tensorielle des lois physiques . Aussi nous sera-t-il
utile de rappeler certaines définitions classiques de la théorie
de la relativité; mais nous supposerons connue la théorie des
espaces de Riemann 2. Nous cherchons a préciser la notion
d’inductions électromagnétiques dans le nouveau mode de
représentation afin de formuler d’une maniére correcte les
équations correspondantes de la théorie de MaxweLL. C’est ce
qui va faire I'objet de la premiere partie de notre exposé. Nous
continuerons par une étude des caractéristiques de ces équations
en établissant que les rayons électromagnétiques sont les géodé-

siques de longueur nulle d’une variété riemannienne associée V.
L’étude géométrique des rayons électromagnétiques dans I’espace
A trois dimensions fournira 1’énoncé du principe de FERMAT,
dont Dexistence est lide & celle d’univers stationnaire et de
mouvements permanents.

Nous utiliserons les symboles v, pour désigner les dérivées

covariantes et d, pour désigner les dérivées partielles (% = 32 ) -

o

I. INDUCTIONS ELECTROMAGNETIQUES
ET EQUATIONS RELATIVISTES DE L’ELECTROMAGNETISME

1. La variété espace-temps.

Dans la théorie de la relativité générale, Iespace-temps est
une variété différentiable a quatre dimensions V, de classe
de différentiabilité C2, C* par morceaux, sur laquelle est définie
une métrique riemannienne ds? de type hyperbolique normal,

1) Cette représentation indépendante du mode de repérage dans la variété V, a con-
duit historiquement & une meilleure intelligence des phénoménes de I’¢lectrodynamique
des corps en mouvement.

2) Lire par exemple A. LICHNEROWICZ, Eléments de calcul tensoriel (A. Colin, Paris,
1950).

B ——
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a un carré positif et trois carrés négatifs. Cette métrique dite
métrique d’univers a, dans un systéme de coordonnées admissibles
(z*), pour expression locale

(1.1) ds® = g,qda* da® (2, 8 = 0,1, 2,3).

La variété V, posséde en chaque point un espace vectoriel
tangent du type de MiNnkowskI.

L’équation ds? = 0 définit en chaque point 2 de V, un céne
réel G, de directions tangentes a V, dit cdne élémentaire en z.
Une direction dz en z est dite orientée dans le temps ou dans
I'espace selon qu’elle est intérieure (ds® > 0) ou extérieure
(ds?* < 0) au cone C,. Une courbe T' de V, est orientée dans le
temps si les tangentes en ses différents points sont orientées
dans le temps. Un 3-plan tangent en z & V, est orienté dans
I'espace si toutes ses directions sont orientées dans Pespace.
Il est orienté dans le temps s’il admet des directions orientées
dans le temps. Une hypersurface S & trois dimensions est orientée
dans le temps ou dans I'espace selon que ses éléments plans
tangents aux différents points sont orientés dans le temps ou
dans Pespace. Pour qu’une hypersurface S, définie localement
par f (z%) = 0, soit orientée dans le temps, il faut et il suffit
- que
Af = g™ aaf%fr< 0

Pour qu’elle soit orientée dans I’espace, il faut et il suffit que
Ay f>0.

Les dix coefficients g.p sont dits les potentiels de gravitation
relativement au systéme de coordonnées locales (%), parce que
leurs écarts a la géométrie euclidienne tangente rendent compte
de la gravitation. Pour limiter la généralité de la métrique
dans le cadre de la relativité générale, le tenseur g, est astreint
a vérifier le systéme des dix equations d’EINSTEIN

Seg = X T

qui généralisent les équations de Lapracr-Porssox.
Sap €st le tenseur d’EinsTEIN de la variété riemannienne V.,
Il est d’origine géométrique. La description de I’état de la
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distribution énergétique est faite par le tenseur d’impulsion-
énergie T, g, suivant des schémas de type hydrodynamique.
On dit qu’un domaine D, de I'espace-temps est occupé par une
distribution énergétique schématisée sous forme de fluide, si
sur le domaine D, sont définis

1) un champ de scalaire p dit densité propre du fluide,

2) un champ de vecteur unitaire orienté dans le temps u
dit vecteur vitesse unitaire dont les trajectoires sont appelées
les lignes de courant du fluide.

On appellera repére propre en un point z du domaine D, un
repéere orthonormé dont le premier vecteur orienté dans le temps
coincide avec le vecteur vitesse unitaire u et dont les trois
autres vecteurs orientés dans l'espace définissent le tri-plan =,
orthogonal a u qu’on appelle espace associé a la direction de
temps 1.

Le repére propre précédent joue le role d’un repere galiléen
local par rapport auquel la matiére est au repos. Il suffit d’écrire,
dans ce repere, les équations relatives a la matieére au repos.
Puis, par un changement de repére, on en déduit I’expression
géneérale invariante des équations relativement au repére naturel
associé a un systéeme de coordonnées locales quelconque. Inver-
sement, 'interprétation physique des équations se fait relative-
ment au repere propre dans I’espace tangent au point considéré.
On peut aussi considérer un espace-temps de la relativité res-
treinte rapporté a un systeme de coordonnées galiléennes
- réduites dans lequel la métrique a pour expression

ds® = (da)? — (dal)? — (da?)® — (da?)?

ou 2% = ct, ¢ désignant la vitesse de propagation de la lumiére
dans le vide.

2. Inductions électromagnétiques et équations de MAXWELL.

La théorie de MaxweLL pour la matiére fait intervenir
un champ électromagnétique variable avec le temps, défini par
-_

quatre vecteurs d’espace: champ électrique E et induction
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magnétique ]§’ champ magnétique H et induction électrique D.
Le champ électromagnétique ainsi défini est régi par les équa-
tions de MAXWELL qui peuvent s’écrire dans un systéme d’unités
convenables, relativement & un repére lié & la matiére au point
considéré

> 10B
o s
(2 1) JrotE—[—C p
LdiVB:O
| ' 10D =
divD = 9

Ces équations établissent le lien entre les champs et inductions

e

E, H, D, B d’une part et la densité de charge § et le courant

de conduction I' d’autre part. Ces diverses quantités sont de
plus liées par les relations

(2.3) D — R
(2.4) B = uH
(2.5) I' = 6K

ou e, p, o représentent respectivement le pouvoir diélectrique,
la perméabilité magnétique et la conductivité électrique du
milieu considéré. Le milieu est dit isotrope si e, w, o sont des
scalaires. C’est ce que nous supposerons dans la suite. ‘
La représentation vectorielle précédente n’est bien adaptée
qua I’étude des transformations consistant en un déplacement
purement spatial et un changement d’origine pour le temps.
Pour avoir une représentation tensorielle indépendante du
mode de repérage dans la variété espace-temps V,, on peut
généraliser les équations de MaxwrLL de la maniére suivante.
Considérons un domaine D, de espace-temps V, occupé
par un milieu matériel chargé et conducteur, siege des phéno-
meénes électromagnétiques. Soit 2 un point de D, et R le repére
propre associe. En admettant que les équations rigoureuses
du champ électromagnétique se réduisent localement dans le
repére propre R aux équations classiques (2. 1), (2. 2) nous
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sommes amenés a introduire deux tenseurs antisymétriques
d’ordre 2, H,; et G,g, dont les composantes relatives au repere
propre sont

0o B, B, BE, o D, D, D,

— B. — _ _H
Hg = T2 0 BT gy =T 0 e
— E2 ——— B3 0 Bl ha— Dg _ H3 O Hl

_E, B,—B, 0 —D, H,—H, 0

et vérifient les relations

(2.6) G. —cH, uG, = H,;.

ot 0t 1) 1

Sur ces formules et dans la éuite, les indices latins prennent
les valeurs 1, 2, 3 tandis que les indices grecs prennent les
valeurs 0, 1, 2, 3.

Nous introduisons les tenseurs adjoints G,g et H,g définis par

(2.7) A = S0 H, 6% = Zea

g Y3

ou 7,q,5 €t le tenseur complétement antisymétrique attaché
& la forme élément de volume de V,. Les relations (2. 6) peuvent
alors s’écrire sous la forme invariante

G, u*=c¢H ,u* f
¢ :
(2.8) *“B L
e GaB u’“ = HocB uOf- '

Ces relations sont appelées les équations de liatson. Elles mon-
trent que les deux champs de tenseurs H,; et G, ne sont pas |
indépendants 'un de lautre. On peut exprimer les G, en
fonction des H,z. Un calcul donne :

1 —ep

1 .
(2.9) Gop = 5 H,s + (Hoou®ug — Hoguuy) -

oo

Cela posé, le champ électromagnétique doit satisfaire aux
équations de MAXWELL qui s’écrivent dans la variété espace-
temps

Lo :
(2.10) 5 10V, Hgy =0
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o

ou Jg est le vecteur courant électrique généralisé. En tenant
—

compte des valeurs des composantes de J dans le repére propre,
on est conduit a faire I’hypothése

(2.12) Jg = dug +ouH,g -

Le vecteur J posséde ainsi une composante Su colinéaire a

et une composante I', = u® H_, orthogonale a u. La premiére

représente le courant de convection et la seconde, le courant

de conduction. sera appelé densité propre de charge électrique.
Les équations (2. 10) peuvent encore s’écrire

Va HBY + VB Hyoc + V.Y HO‘B —_ 0 .

Elles expriment les conditions nécessaires et suffisantes pour
quil existe localement un vecteur o, tel que H_; soit son
rotationnel

HocB = bacpﬁ——bﬁcpa .

Enfin, on démontre que les vecteurs:

: &8 1 8
(2.43) & =30V, Hy @y = v,6%

qui figurent aux premiers membres des equations (2. 10), (2. 11)
vérifient les identités

(2.14) V. 6% = 0 Ve R* = 0

o

dites conditions de conservation relatives aux equations de
Maxwerr. Elles entrainent la conservation du courant élec-
trique

(2.15) Vo I% = V, (3u* + ou H) = 0.

3. L’intégration des équations de MAXWELL,

En relativité générale, les équations de I’électromagnétisme
sont constituées par I’ensemble des équations de MAXWELL et
des équations d’EInsTEIN auquel s’ajoutent les conditions de
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conservation. Supposons que le milieu occupant le domaine D,
considéré soit schématisé sous forme de fluide parfait chargé
conducteur ou I'on tient compte des phénoménes électroma-
gnétiques et thermodynamiques. Dans ce cas on peut établir
I'expression du tenseur d’impulsion-énergie

Topg = (o + Pluyug — pP8ug — (Uelp + Uply) + Tup — (1 —cp) Too U
1 .
(3.1) Top = 7 So (G, H*®) — G, HO
q, = ——xbp@(gg— upua>

ou p est la pression et 6 la température en chaque point du
fluide, ¢, le vecteur courant de chaleur qui satisfait & ’hypothése
de Fourier généralisée, » représentant la conductivité thermique.
e, p, 0 sont liés par I’équation d’état

(3.2) e =r¢(p,0).

Les équations de MaxweLL-EINSTEIN sont

1
(3.3) & = 57}0@%‘ Vo Hg, =0
(3.4) @Dy = gV, G g = dug + ocu” H.p
(3.5) Saﬁ == XTaB

auxquelles on adjoint le caractere unitaire de u*, les conditions
de conservation pour le tenseur d’impulsion-énergie, le vecteur
courant de chaleur et le vecteur courant électrique

(3.6)  gputub = 1

(3.7) v, T =0

38 ,vaq“=cpu“aae_éu“aan“Haﬁuﬁ
(3.9) Vo (3u* +ou, H.°°‘) =0,

(3. 8) est ’équation de FouriER généralisée ou ¢ et [ représentent
respectivement la chaleur spécifique & volume constant et la
chaleur de dilatation du fluide. Les équations (3.6), (3.7),
(3. 8) constituent un systéme différentiel aux lignes de courant
du fluide.

S e i o
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Les scalaires %, ¢, [, ¢, u, o qui caractérisent le fluide sont
supposés donnés. Les variables de champ sont constituées par
Pensemble G (g, H.g 0, u% p, 3). Le systéme des équations
de MAXwELL-EINSTEIN présente, comme nous allons le voir,
le caracteére hyperbolique normal. On peut envisager le probléme
de leur intégration par une étude élémentaire au moyen d’une
analyse du probléme de Cauchy.

ProBLEME. — Etant donnés sur une kypersurface S les
potentiels g, et leurs dérivées premicres, le champ de température 0
el ses déripées premiéres, et le champ électromagnétique par les
H g, déterminer au voisinage de S les divers champs supposés
satisfaire aux équations de MAXWELL-EINSTELN.

Il nous suffira d’étudier la possibilité de calculer sur S les
valeurs des divers champs et de leurs dérivées successives.
Nous supposerons les 8. de classe (C1, C3 par morceaux), les
H,; de classe (CO, C2 par morceaux) et 6 de classe (C2, C# par
morceaux).

Sur hypersurface S représentée localement par 2% = 0, les
données de Cauchy sont les valeurs des quantités € (g,g, ?, 8.5
0, 905 H,g). Nous désignerons par d.C les données de Cauchy
ou des quantités qui peuvent s’en déduire par des opérations
algébriques et des dérivations le long de S. Si I'on cherche &
mettre en évidence les dérivées 90084p) 09 Hyg dans les équations
de MAXWELL-EINSTEIN, on est conduit & remplacer ces équations
par le systéme équivalent composé des groupes d’équations

(310) Sooc — XToa

. s
(3.11) &0 = gn”k‘) 0, Hy = 0
(3.12) @ = Su’ + oy, H¥

ou les quantités S° &9 ont des valaurs connues sur S et la
quantité (D° ne dépend pas des oou” et 3o H g, et de
343) Ry = — g0,z + F, (d.0) — o(T. L
ij 95 %0 &y g == A 5 18y
1 .o
(3.14) &t = gn"”k 0 Hy; + ¢*(d.C) = o

L’Enseignement mathém., t. IV, fasc. 1. 4
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~ 1 1 . :
D, = —g[goo (1 — e @) u®u]o, H, -+ m [g% — (1—ep) uul]o, Hy'i -+
(3.15) + ®l (d.C ’ 00 ua) - 8 ul + (o) ua Hou .

Une condition nécessaire pour que le probléme de Cauchy
soit possible est que les équations (3.10), (3.11), (3.12) soient
satisfaites sur S par les données de Cauchy. S’il en est ainsi,
en tenant compte de 'équation d’état et du caractére unitaire
de u”, on peut calculer les quantités u*, p a 'aide des équations
(3. 10). L’équation (3. 11) exprime qu’il existe un potentiel
vecteur local pour H;; sur S. L’équation (3.12) donne la valeur
de 3. |

Les équations (3. 13) déterminent alors les valeurs sur S
de 99 g;; si g% # 0. Pour avoir les valeurs de d,H,g, il faut
connaitre celles de d,u* Ce sont les équations (3.6), (3.7), (3.8)
qui fournissent les dyu* en méme temps que les d,p et gy, 0.
Les équations (3.14) donnent les valeurs de d, Hj; et les équa-
tions (3.15) donnent les valeurs de d, Hy; sur S si g0 — (1 — ep)
u®u® = 0. Enfin 'équation (3.9) détermine la valeur de bo S si
u® £ 0.

Si I'hypersurface S portant les données de Cauchy @ n’est
pas exceptionnelle, il résulte de l'analyse précédente que les
quantités d498;;, doH,g, 2000, 298%, doP, 993 sont bien déterminées
et nécessairement continues a la traversée de I’hypersurface S.
Les mémes conclusions s’étendent aux dérivées d’ordre supérieur
de G (g,5, Hye, 6, u®, p, 3) si on suppose les données dérivables
a un ordre supérieur a celui de nos hypothéses.

Soit maintenant une solution ¢ des équations du champ
correspondant aux données de Cauchy € vérifiant les équations
(3.10), (3.11), (3.12) qui peuvent encore s’écrire

Q, =0 & = 0 P’ = 0

ou P'on pose Q.5 = Sug — x Typ et P, = D, — (3u, + oufH,,).
En vertu du caractére conservatif des premiers membres des
équations d’EINSTEIN et de MAXWELL, on a

VaQ¥% =0 v, "=0 v, P*=0.
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Compte tenu des équations (3. 13), (3. 14), (3. 15), les identités
précédentes se réduisent aux équations

800, Q°, = AT, 9, Q" + B, Q'
9 P’ = C'9; P' + (3, C* — I'%, CB) P°

§0 — . T* &0
04 &0 = Paou

ou les A  BP  C* sont des fonctions continues. Ces équations
sont linéaires et homogénes par rapport aux inconnues QO
P% &% Comme Q0 = P? = &° = 0 sur S, elles n’admettent
pas d’autre solution que la solution identiquement nulle. Il en
résulte que si les équations (3. 10), (3. 11), (3. 12) sont vérifiées
sur S par les données de Cauchy @, elles sont également vérifiées
dans tout le domaine d’espace-temps considéré par la solution
des équations du champ.

Le probleme de I'intégration des équations du champ consiste
finalement dans le choix des données de Cauchy ( rendant
compatibles les équations (3. 10), (3. 11), (3. 12) qui permettent
de calculer u” p, 3, puis dans lintégration du systéme des
équations (3. 13), (3. 14), (3. 15) et (3. 6), (3. 7), (3. 8), (3. 9)
qui permettent d’étudier I'évolution des. champs G (8. H
6, u* p, 3).

a3

II. ETUDE DES CARACTERISTIQUES
DES EQUATIONS DE MAXWELL

4. Les variétés caractéristiques des équations de MAXWELL.

Dans I'analyse du probléme de Cauchy, on met en évidence
quatre sortes de variétés exceptionnelles:

1) les variétés g% = 0 tangentes aux cones élémentaires,

2) les variétés qui généralisent les fronts d’ondes hydro-
dynamiques,

3) les variétés engendrées par les lignes de courant,

4) les variétés g% — (1 —ep) ud w0 = 0 que nous allons
etudier. |
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Sur les équations (3. 15), on voit que si I’hypersurface S
portant les données de Cauchy est telle que sur S

g0 — (1 —ep)u'u®=0

les dérivées d,Hy; du champ électromagnétique peuvent étre
discontinues a la traversée de S. Il peut exister une infinité de
solutions distinctes des équations de MAxXxweLL correspondant
aux memes données de Cauchy. La variété S est une variété
caractéristique pour les équations de MaxwerLr. Une telle
variété sera désignée par V.

Dans un systéme de coordonnées locales arbltralre quelconque
les variétés caractéristiques V3 définies par f (z*) = 0, sont les
variétés satisfaisant a 1’,equat10n

(&.1) (6 — (1 —euwu*uP)o, fo f = 0.

Ces variétés a la traversée desquelles peuvent se produire des
discontinuités des dérivées du champ électromagnétique, cons-
tituent I'extension relativiste des fronts d’ondes électromagné-
tiques classiques. Pour qu’elles aient une signification physique,
il faut supposer que les variétés VI soient orientées dans le
temps ou a la rigueur tangentes au cone élémentaire ds? = 0
de V,. Nous verrons que cette hypothése est bien en accord
avec les exigences de la Physique relativiste. S'il en est ainsi,

At = g%0,f05f = (1— cy) (u*d,f)?

On en déduit

(4. 2) e >1.

V

Ceci posé, la généralisation de I’hypothése d’ Hugoniot permet
d’évaluer ce qui constitue ici la vitesse de propagation des ondes
électromagnétiques considérées. Pour cela, considérons deux
surfaces d’ondes voisines (VI), et (V3), définies par les équations

et prenons 6 pour infiniment petit principal.
La ligne de courant issue du point z de (Vi), coupe (VI),
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en un point défini aux infiniment petits d’ordre supérieur prés
par z + vﬁz, 7 étant donné par la relation

(4.3) qutd,f =6 .

. —-> r »2 by
Soit n le vecteur normé (n*> = — 1) normal en z a la surface
d’onde (V}),. Il a pour composantes covariantes en z

0, f
(4.4) n, = = :
V' — g% 0,10,

La trajectoire orthogonale des VI issue de z coupe (VI), en un
point qui, & des infiniment petits d’ordre supérieur prés, s’écrit
z + my 1, 1, 6tant déterminé par la relation

'qlnkc‘)lf = 0.
On en déduit
65w — Ae :ﬁl/—g‘?‘ﬁéaf%f: — 9 |
Y LW D R Ve TRTN

Introduisons le vecteur ¢ = . — . En vertu de (4. 3)
et (4. 4), on a

> >

7(u.n)

|

— M
et

>

T = (n;—nln).n:n(z.;)—}—mzo.

Le vecteur ¢ est donc tangent a la surface d’onde. Il est orienté
dans le temps car son carré

n = (1) =0 —2nn (u.n) = 22 + 92

est positif. |

Le vecteur wmu apparait ainsi comme la somme de deux
vecteurs, 'un orthogonal & la surface d’onde et orienté dans
Pespace, 'autre tangent a cette surface et orienté dans le temps.
La vitesse de propagation V de I'onde se trouve ainsi définie
comme la limite du rapport des modules de ces deux vecteurs,
soit
Ui

V = lim
60 | 7o
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On a ainsi

s ;
V2 = lim —1—2 |
6—>0 "o

soit, en remplagant », et =, par leurs valeurs
ve — 1.
sy

La vitesse de propagation des ondes électromagnétiques est
donc égale a (cp)* Cette valeur appelle deux remarques.
D’abord, elle généralise la valeur obtenue en électromagnétisme
classique. De plus, dans nos hypothéses ep. > 1, la vitesse de
propagation V est inférieure & une vitesse limite ¢ = 1; cette
valeur coincide avec la valeur de la vitesse de propagation des
ondes électromagnétiques dans le vide (ep = 1). |

5. Etude des bicaractéristiques.

L’étude des variétés caractéristiques des équations de
Maxwerr fait intervenir le champ de tenseur contravariant
symétrique

g = — (1 —cp) uuf

dont la forme quadratique associée représente la forme carac-
téristique des équations de MAXwELL. Soit g, les coefficients de
la forme conjuguée qui a pour expression

_ (1
gaﬁ—gaﬁ—— ’—a uauB.
Nous introduisons la métrique riemannienne dite métrique
associée
ds? = Foqda* da® -

Elle est de signature hyperbolique normale comme la métrique
d’univers comme on peut le vérifier par un calcul direct en

repere propre. Nous désignerons dans la suite par V, la variété
riemannienne définie par la variété différentiable portant
Pespace-temps V, et munie de la métrique associée ds2. Nous
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appellerons cone élémentaire associé C, en un point z le cone
réel de directions tangentes & V,l défini par I’équation ds? = 0.

~ Dans l'espace riemannien V,, les variétés caractéristiques
des équations de MaxweLL définies localement par f (z%) = 0,
sont solutions de I’équation aux dérivées partielles du premier
ordre

(5.1) : Zlf;_g“ﬁaafbefz,o.

Elles sont tangentes en chaque point au cone élémentaire

associé C,. Les coOnes élémentaires C, de V, sont donc cdnes
caractéristiques pour les équations de MaxweLL et celles-ci
admettent pour variétés caractéristiques les variétés tangentes
a ces coOnes.

Une variété caractéristique V3, c¢’est-a-dire une solution de
(5. 1), peut étre engendrée au moyen des bandes caractéristiques
de (5.1). Une telle solution peut é&tre engendrée au moyen

des bandes de V, constituées par 'ensemble d’une courbe L et
d’une famille & un paramétre de 3-plans élémentaires tangents

a ces courbes. Les courbes L, sont appelées les bicaractéristiques
des équations de MAXWELL.
Pour les déterminer, posons

2H (2, y,) = 8%y, y,
et considérons I’équation aux dérivées partielles
(5.2) Af = 2H (2%, 0,f) =

ou G est une constante arbitraire. Relativement aux variables
2%, f, yu les bandes caractéristiques des equations de MAXwWELL
sont données par les solutions du systéme différentiel

13

l &.
&
)
IS8
R
<

:---:——:—]c—:—%——...—__i—du
o H 0H ~ 2. OH = T T3H T
0 Yo 0ys d 2° 0 23

qui satisfont & P’intégrale premiére

2H<x7‘,yu) =G
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pour la valeur C de la constante. Si I'on introduit la variable
auxiliaire u, les fonctions z* (u), y, (1) sont données par le
systeme canonique

dz* o H dy, oH

5. — = — AL SR e
(5-3) du 0¥, du o z*

relatif 4 la fonction hamiltonienne H (2%, y,). Le premier groupe
des équations (5. 3) s’écrit explicitement

) e - dz*

o _ —af o __
(5.4) i = gy, (x _ 717)'
Inversement
(55) yB — gaB'{Ua .

Cela posé, les solutions z* (u) de (5. 3) sont extrémales de la
fonction lagrangienne L définie par

2L = g% ab

puisque, par passage des variables (x% 2?) aux variables cano-
niques (2%, ¥g) qui leur sont liées par (5.4) et (5.5), on a entre H
et L la relation classique

Ces solutions sont les extrémales satisfaisant & l'intégrale
premiere

(5. 6) 2L = C

pour la valeur C de la constante. Or, d’apres I'existence de cette
intégrale premiére, les extrémales ainsi définies sont aussi les
extrémales de

. AL = |/ gypa”a

satisfaisant a (5. 6). Il en résulte que les z* (u) définissent des

géodésiques de V4. Si C = 0, le systéme différentiel aux carac-
téristiques de (5. 1) admet l'intégrale premiére f = const. et




SUR LE PRINCIPE DE FERMAT 57

les variétés Vi peuvent étre engendrées par les bandes de v,
définies par les géodésiques de longueur nulle EO, le 3-plan
élémentaire associé étant le plan tangent au coOne élémentaire
Ex le long de la tangente a L.

Nous avons démontré le théoréme

THEOREME. — Les bicaractéristiques des équations de MAXWELL
sont les géodésiques de longueur nulle de la variété riemannienne

V, munie de la métrigue associée

ds® = gop da* daP -

Dans le langage de la théorie de la propagation par ondes,
les variétés caractéristiques VI jouent le role de surfaces d’ondes

électromagnétiques. Les bicaractéristiques L, sont les rayons
électromagnétiques associés. En introduisant I'indice de réfrac-
tion n = 4/eu du milieu, nous pouvons donc énoncer le résultat
suivant

TuEorEME. — Dans un miliew transparent isotrope d’indice
de réfraction n variable, les rayons électromagnétiques sont des

géodésiques de longueur nulle de l'espace riemannien V, muni
de la métrique

ou g,q est le tenseur métrique fondamental et u, le vecteur vitesse
unitaire d’univers définis en chaque point du milien considéré.

III. ETUDE GEOMETRIQUE
DES RAYONS ELECTROMAGNETIQUES DANS L’ESPAGE

6. Espace-temps stationnaire et mouvement permanent d’un
fluide parfait chargé.

On dit que 'espace-temps V, est stationnaire dans un domaine
D, si la variété riemannienne définie par D, muni de la métri-
que d’univers ds® admet un groupe connexe & un paramétre
d’isométries globales & trajectoires z orientées dans le temps,
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ne laissant invariant aucun point de D,, la famille des lignes z
ou lignes de temps satisfaisant aux hypothéses suivantes:

a) les lignes de temps sont homéomorphes a la droite réelle R;

b) on peut trouver une variété différentiable & trois. dimen-
sions D, satisfaisant aux mémes hypothéses de différentiabilité
que V,, telle qu’il existe un homéomorphisme de méme classe
de la variété D, sur le produit topologique D; X R dans lequel
les z s’appliquent sur les droites facteurs. La variété quotient
D; sera dite simplement espace.

On peut définir dans D, des systémes de coordonnées locales
(x° «'), dits adaptés au caractére stationnaire, de la maniére
suivante. Les (z!) sont un systéme de coordonnées locales
arbitraire de D;. La donnée des (z!) détermine une ligne de
temps. Pour déterminer un point sur cette ligne, on se donne
la variété 2% = const. a laquelle il appartient, ces variétés
étant homéomorphes & D;. Les potentiels g g relatifs aux coor-
données adaptées sont indépendants de la variable 2° et le

—_—
vecteur & générateur infinitésimal du groupe d’isométries admet
pour composantes contravariantes

=1 £ =0

et a pour carré £2 = g,, > 0.

Dans la suite on n’introduit que des systémes de coordonnées
adaptes En effectuant la décomposition en carrés de la forme
quadratique fondamentale

(6.1) ds? = g,q da* da®

a partir de la variable directrice dz° nous obtenons

(6.2) ds* = L (8 d™)? + d5?
£oo
ou )
A i g i 8oi 8oj i
(6.3) ds® = g datdx) = (g; — dz* da?
g00

définit sur D; une métrique riemannienne définie négative.
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Considérons maintenant un fluide parfait chargé conducteur
en mouvement dans un domaine D,. Le mouvement de ce fluide
est dit permanent si Pespace-temps associé V, est stationnaire
dans D, et si le groupe d’isométries laisse invariantes les quantités
(8upr Hogy Gug, 0, g, w%, p, ). On démontre immeédiatement &
partir des résultats sur le probléme de Cauchy que pour que
le mouvement du fluide soit permanent, il faut et il suffit que
Pespace-temps riemannien associé soit stationnaire dans D, et
que son groupe d’isométries laisse invariants les champs H_g, 6
ainsi que les coefficients % ¢l g, u, o.

Si le mouvement du fluide est permanent, les quantités

_ 1
gocB == gaB% (1‘—;2_ u’ocuB

sont constantes le long des ligneéwde temps. Il en résulte que

la variété riemannienne V, définie par la variété différentiable
portant D, et munie de la métrique associée, admet aussi
un groupe connexe a un parameétre d’isométries globales ne

laissant invariant aucun point de \74, induit par celui de
I'espace-temps. I1 est clair que les (2°, i) constituent un systéme

de coordonnées locales adapté pour \74. On peut prendre pour
générateur infinitésimal du groupe d’isométries de {7—4 le vecteur
Z qul a pour composantes contravariantes C* = E* le carré
de ce vecteur a pour valeur dans \74 |

2 1

(C)2 = Lo = gop — (1‘ ‘) ()2 .

n2

Cette quantité pouvant étre positive, négative ou nulle, les

trajectoires d’isométries de V4 peuvent étre orientées dans le
temps, dans 'espace ou étre 1sotropes.

7. Un prebléme du caleul des variations.

Nous nous proposons d’interpréter géométriquement leg
rayons électromagnétiques dans I'espace & trois dimensions. A
cet effet, nous commencons par rappeler briévement un pro-
bléme du calcul des variations.
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Etant donnée une variété différentiable V, ., soit Wy, .,
Iespace fibré des vecteurs tangents aux différents points de
V,.1- SiVon adopte sur V, ., des coordonnées locales (z*) chaque
élément de Wy, , sera constitué par la réunion des coordonnées
(z*) du point = correspondant de V,,, et des n 4 1 composantes
(z*) du vecteur x dans le repére naturel en z associé aux (z%).
Une structure de variété finslérienne sur V, ., est définie par la
donnée d’une fonction 2 (x, x) & valeurs scalaires dans Wy, 4,
telle que pour « fixe, £2(x, Ax) = A2 (x, 2). En coordonnées
locales, une telle fonction est représentée par £ (2% z°) et est
homogéne et du premier degré par rapport aux z*.

Considérons une variété différentiable V,,, munie d’une
structure de variété finslérienne et supposons qu’elle admette
un groupe connexe a un parameétre d’isométries globales de

générateur C ne laissant invariant aucun point de V_, (C # 0).
Supposons de plus que les trajectoires z du groupe sont homéo-
morphes a la droite réelle R, et soit V, la variété quotient de
V... par la relation d’équivalence définie par le groupe. Nous
identifierons V, a P'espace dont les points z sont les trajectoires
d’isométries. Dans un systéme de coordonnées adapté (z°, z%),
(i =1, 2, ..., n), la fonction 2 est localement indépendante de la

variable z°:
g ] ) 0
L =£’(x1,x7,x) .

Nous allons montrer qu’il est possible de douer la variété
quotient V, de structure de variété finslérienne au moyen de
fonctions L (z, z) de facon qu’aux géodésiques de V, ., extrémales
de I'intégrale

(7.1) TJ? (z, z)du <x = %)

correspondent par projection sur V, des extrémales de

1 .
(7.2) (LG, ) du ( _ z_i) .
2 '
Dans la suite, tout indice grec = 0, 1, 2, ..., n; tout indice

latin = 1, 2, ..., n et nous supposons
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0
. ﬁ ¢ = ———— s
600 70, aoc o L&

Donnons-nous une extrémale de (7. 1) par une représentation
parametrique z* (u), u désignant un paramétre arbitraire. Le
systéme différentiel aux extrémales de (7. 1)

{7.3) ‘ | dz o
ou z* satisfait &

(7.4) du d 2% 3%

est caractérisé par le fait d’admettre I'invariant intégral relatif

oL . . N R
{(7.5) o = 2 dx* = éé.L dx™ -+ 66 £2dx0 .

«d z*
En vertu de '’hypothése 3,2 = 0, on a I'intégrale premiére

0. L =h.
(7.6) o h

Gomme ?d;; £2 % 0, on peut résoudre (7.6) par rapport & z°; on
obtient I'équation équivalente

(7.7) 2’ = ¢ (a, 2l, h)

ou ¢ est une fonction homogene et de degré 1 par rapport aux
2! et dépendant effectivement de 4.

Considérons la famille des extrémales (E) correspondant &
une valeur déterminée de la constante . Pour cette famille,
le dernier terme de w a la valeur hdz® et définit un invariant
intégral relatif. Il en résulte que cette famille d’extrémales
admet I'invariant intégral relatif

(7.8) 0. £ da®

Or d’aprés ’lhomogénéité de £, on a

"3 o * 0 ol o
R 0
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Par suite, pour toute solution (7. 6) ou (7. 7), la quantité
z* 9 42 peut s’exprimer par une fonction L des variables 2%, 2, A

(7,9) L2k, 2t, h) = £k, 2, o (o, 24, )] — ho(a®, 2, h)

et 'on a
a‘L prmmmmns a'.l‘o -,}_:0 . —— . —_— » D
G s + 60 qu; hakcp bkl. )

Ainsi, d’aprés (7. 8), les projections des (E;) sur V, sont
définies par un systeme différentiel qui admet I'invariant intégral
relatif

T = Ol;b L dz* .

Autrement dit, elles sont extrémales de I'intégrale
Z1 .

(7.10) fL (2F, 2t h) du
Z0

ou A a la valeur choisie.

On appelle descente la correspondance qui a la fonction
2 (z*, 2, 2°) fait correspondre la fonction L (z*, 2, k). Le pro-
bléme inverse est possible 3.

8. Projection des géodésiques de longueur nulle de la variété
riemannienne V ,.

Nous supposons que la variété V4 satisfasse aux hypothéses
du paragraphe précédent. La fonction f? est définie par la relation

(8.1) L8 = Byt eP

ou le second membre est une forme quadratique non dégénérée
comme on peut le vérifier. Etudions d’abord les extrémales
correspondant aux valeurs de z* pour lesquelles le  second
membre est positif. On sait d’ailleurs qu’il suffit qu’une géodésique
le rende positif en un point pour qu’il en soit de méme tout le
long de la géodésique.

3) Voir A. LicuNEROWICZ, Théories relativistes de la gravitation et de I’électromagné-
tisme, Livre II, chap. premier.

]
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Nous supposons que gy, ne s’annule pas dans le domaine
étudié. Le procédé de descente nous conduit a former Péquation

1 =B ey R
(8.2) 505 £? = B + 8ol = hi

et & éliminer 2° entre cette équation et
(8.3) L = £—h.
En décomposant 172 en carrés a partir de la variable directrice z9,
il vient
1 /1 2 A
L2 — [ .42 o.. pt oyl
8oo (260 ) T8
ou l'on pose
?\ — F. — g'oi goj
% K gOO
et I'on voit que gj; 4% 27 est négative si gy > 0 et positive si
goo << 0. Dans le premier cas on prendra 4 > max Zoo- Comme

1 . , )
593422 = h /2, on tire ’équation
9 0 I q

o g xt 2
(8.4) ﬂ—\\i_m

qui fournit £ en fonction des variables a®, z*, h. De (8. 2), on
tire ensuite |

(8.5) = 2 BT
8oo 800
On en déduit d’apres (8. 3) et en vertu de (8. 4)
s ’i
8.6) L \/<1_ﬁ>—a. gl g gt
8» 800 A * 8o

ou e est le signe de gy,

L est bien une fonction de 2*, 3, 1 homogéne et du premier
g_egré par rapport aux z. Elle définit sur la variété quotient
Vs une structure de variété finslérienne. Inversement, étant

donnée localement dans V; la fonction L (z* a', h) précédente,
on démontre facilement qu’il existe une fonction £2 (%, &, 20
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homogéne et de degré 1 par rapport aux 2%, qui par descente
reconduit & L et que cette fonction est

L= l/gaB z* j:B ’

Les courbes extrémales correspondantes sont donc des géodé-
siques de V,_l.

Ainsi, les géodésiques de la variété riemannienne \—/4 qui
correspondent a l’mtegrale premiére ;7 = h se-projettent sur
la variété quotient V selon les extrémales de l'intégrale

” h? A es s —g(n x'l
8.7 / <—s\/('1——_—) Lxta) - h— )du
8.7) §oo 8ij 8oo

ol A a la méme valeur. Ces extrémales coincident avec celles de

Z3

52 2 ng B '
8.8 f(s \/(1—_—> g xtal — — )du.
(88) h 8oo & 8o

29

Le long de ces extrémales, on a d’aprés ’expression de z°:

8,9 dz® = — dat dad — == -
(8.9) 800 1— _}fi g” 800

goo

Ceci étant, on peut définir les géodésiques de longueur nulle

de {74 comme les courbes limites vers lesquelles tendent les
geodemques orientées dans le temps lorsque £ — O De la relation
B = gy, 2%, il résulte que h — oo lorsque £2— 0 et hoale
signe de gy, z* Or

22 =

-

(gOac P+ g atal =0,

gqq,a

On en déduit que gy,,2* a une valeur non nulle et garde un signe
constant. |

D’aprés (8. 8), les projections des géodésiques de longueur
nulle de V, sur V, sont les extrémales de I'intégrale
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21

] - ——— _-L'Ei
f[lim (i\/(1__h_2)g..x%x?_g_‘l’ >]du.
h—>w \h 8oo/ Y 800

20

En passant a la limite, on en déduit le lemme suivant

LEMME. — Les géodésiques de longueur nulle de V, se projettent
sur V3 selon les extrémales de 1intégrale

21 L
8.10 < ’\/~—_— o - S )du
( ) / = 8oo 8ij §oo0

29

ou ¢ est le signe de g, et €' le signe de g, x*

D’apres (8. 9), le long de ces extrémales on a

N . I
(8.11) dz® = e’ \/~ ?1— g dx' da) — = .
oo W - Soo

On remarquera que dz® = Ldu.

Dans le cas ou g,, s’annule dans le domaine étudié, on obtient
un enoncé analogue ou (8. 10) et (8. 11) sont respectivement

remplacées par
Zy ca e
2 Ew xl x]
— —du
28,
Zo

g e
gt @

et

dxl =— — du .

2g,
9. Le principe de FERMAT.

Nous avons établi que les rayons électromagnétiques sont

géodésiques de longueur nulle de la variété riemannienne V,.
Nous pouvons les interpréter géométriquement dans ’espace
st le milieu considéré est en mouvement permanent. En effet,

le lemme fournit une démonstration immédiate du théoréme
suivant

TuEOREME. — ST le mouvement du miliey consideéré est
permanent et tel que g, # 0, les rayons électromagnétiques dans

L’Enseignement mathém., t. IV, asc. 1. 5
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Uespace sont des lignes réalisant U'extrémum de U'intégrale

. . = x'l.
(9,1) /(es’ \/—— :1— g xtal — g?.l >du
oo Y 8oo

pour des variations a extrémités fixes, on ¢ est le signe de go, €t €’
le signe de gy,x*. Le temps mis par un rayon pour aller du point z,
au point z, est donné par

Z1 Z1
L ' _- 'L
(9.2) dx® = (ss’ — :/1— goatal — ggz ? >du
oo U 8oo
2 Zp

Ce temps est exirémum.
Dans le cas ou gy = 0, on obtient un énoncé analogue en
remplacant (9. 1) et (9. 2) respectivement par

741

s —g'xl xy
(9.3) /'— 77 gy
e QEOixl
20
et ‘

2

J

(9.4) dx" __f_ 8@ @
28,

Par le théoréme précédent se trouve démontrée I’équivalence
du principe géodésique et du principe du moindre temps.

En particulier, si 'univers est statigue au sens de LEvi-
CiviTa, c¢’est-a-dire si les lignes de courant coincident avec les
lignes de temps, I'espace-temps V, est orthogonal. Soit

ds?* = U (d2%)® + g;; dxt da!

la métrique d’univers de V,. Les u; étant nuls, on en déduit la
métrique associée .

ds? — % (dz®)? + g dat da

On peut mettre (9. 2) sous la forme




SUR LE PRINCIPE DE FERMAT , 67

Z]i V41
n
9.5 dz? = f —do
(9.5 / I
2 2

ou I'on a posé do? = — g,; da’ da’. On voit apparaitre I'influence
du champ gravitationnel sur la propagation du champ électro-
magnétique.

S1 U =1, on démontre que Pespace-temps V, est euclidien.
L’énoncé du théoréme devient

21 21

8fdx° = 8fndc=: 0.

%0 Zo

Nous retrouvons I’énoncé exact du principe de FERMAT en

Optique. Le théoréeme que nous avons établi, en constitue
donc I'énoncé généralisé en relativité. I1 donne plus généralement,
la loi de propagation des ondes électromagnétiques dans un
milieu en mouvement, la vitesse du milieu intervenant dans
3 : ‘
Pexpression des g,

10. Interprétation du signe ¢’ de g, x™
L’équation

Ubl,l_\

représente le cOne caractéristique C au point x des équations
de MaxweLL. Les deux nappes de ce cone sont symétriques
par rapport & hyperplan élémentaire =,

8o 42" = 0

Désignons par M (z*) le sommet de ce cone E Prenons un
couple de points voisins de M, ayant pour coordonnees spatiales
(x + da') appartenant respectivement aux deux nappes de

Cx et symétriques par rapport & . Soient
M, (20 + dad, 2t + dat) M; (20 — d’ 0 , at 4 dx’:) .

On peut dire que MM, représente aux infiniment petits d’ordre
supérieur prés le deplacement 1nﬁn1tes1ma1 associé & un rayon
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électromagnétique allant du point d’espace A (z!) au point
d’espace A’ (2' + dz') dans le temps dx®. De méme, MM
peut étre considéré comme représentant le déplacement infini-
tésimal associé a un rayon électromagnétique allant du point
A’ (#* + dz*) au point A (2f) dans le temps d’z°.

Les deux points M, et M, sont symétriques par rapport a
I'hyperplan =, on doit avoir

Zoo dz* = — Zoo d z* .

On en déduit
7. dat
d’ 20 = da® - g 80 7%

8oo

Cette relation montre que, sauf dans le cas statique, le temps mis
par un rayon pour aller du point d’espace A (x) au point d’espace
A’ (x' + da') n’est pas le méme que le temps mis par un autre
rayon pour aller de A’ (2 + dz') & A ().

11. Cas d’un espace-temps de MINKOWSKI et loi relativiste de
la composition des vitesses.

Placons-nous dans le cas d’un espace-temps sans gravitation
de MiNkowskl, rapporté a un systéme de coordonnées gali-
léennes réduites. Nous avons la métrique d’univers

(11.1) ds? = (da%)? — (da)? — (da?)? — (da?)? .
u représente dans ce cas le vecteur vitesse unitaire d’univers
dont les composantes sont déterminées classiquement & partir

. + . . . ’ .
de la vitesse d’espace {3, la vitesse limite ¢ étant prise comme
unité. Un calcul facile donne la métrique associée

(11.2) ds® =

A partir de cette métrique, cherchons a exprimer le théoréme
de FERMAT en prenant I’arc ¢ du rayon électromagnétique comme
paramétre. Nous avons a remplacer dans (9. 2) z* par

dat

7\i=——

do

- o]

e e
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ol do® = — 3 (dz)2 T vient
(11.3) fdxo :f{as' \/viz—?_ig [V2— B2 + (1— V2) (B, %)’

et on peut en déduire

dz® 1 , 1— g i\2
d—-xG:W:ss\/ 382[\72—-5 (1-—V2) (B; 2

S1 V2 — B2 £ 0, cette relation donne
(11.4) 14— — (1 — B W2 — (1— V) (1 — W) = 0.

- —_—
Si on interpréte V comme vitesse absolue et W comme vitesse
relative de propagation de I'onde électromagnétique considérée
dans I’espace euclidien ordinaire, on a manifestement

(11.5) V? = 1 —[B* +2W.B +(1—py W = (W.5)7.
(1+W.g)

On vérifie par un calcul direct a partir de (9.4) que cette relation
reste valable dans le cas ou V2 — 82 = (.

En cherchant & mettre en évidence dans le crochet de (11. 5)
un vecteur colinéaire a E et un autre qui lui est orthogonal,
on obtient

9 . 1 Wg = = V?E%)jl?
11.6) V? = ——— |1+ —; T— B {W— —3
(11.6) (1+W-B)2[< 3 )B+\/ B( P
On en déduit ,
> 1 W.p VVE—>)]
V=——" {1+ — B .
1+Vv,gl( 8 ) \/1 B( 2 B.

C’est la formule relativiste de la composition des vitesses 2.

Faculté des Sciences, Besangon.

4) Cf. A. LicaNEROWICZ, Elémenis de calcul tensoriel, chap. VII, pp. 173-175.
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