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38 M. A. BASOCO

which is equivalent to a known recurrence for the BERNOULLI
numbers [8].

4. TrE Funcrions W, (1), Xguy (2), Dopy (2)
AS DouBLE Suwms.

The results which are stated as (4), (5), (6) follow readily
from (1) and (2) which are known to be equivalent (see [1], [2]).
It 1s to be observed first that a comparison of (4) and (5) with
(1) taking into account (27) gives the relations:

(30)  Wopy (1) = hopy (8/2) — hopy (1) = Vi (cgpq (1/2) — 2954 () »

(81)  Xgpy (8) = 2% hop_y (20) — hgyy (1) = V, (2% g4 (20) — gy, (1))
From (4) and (6) we also have,

(32) Doy 4 (1) = 2% Wy, | (2) — WPy, (1) -

By (30), we may write
(33) Dy y (1) = — V, (0tgy (8/2) — (2%F + 1) gy (1) + 2% gy (22)) .

Thus, our functions (4), (5), (6) are expressed in terms of ay,_, (u).
These relations in conjunction with (1) and (2) identify them
- with (4),, (5);, and (6); respectively.

It is of interest to note that (31) with £ = 2 permits, with
the aid of a result of van pERr Por [1], the deduction of Jacobi’s
famous theorem on the number of representations rg (n) of the
integer n as the sum of eight squares. Thus, ]

(34) 240 X, () = 16 o (20) — ag (1) = 15 6 (0, ¢)

where ¢ = exp (—t). Hence,

05 (0,q) = 16X,(t) =1+ 16 > ¢" L (n) ,
n=1
and

65 (0, g) =1 416 > (—1)"¢" % (n) .
n=1
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This result implies that
(35)  re(n) = 16 (— 1) Ly (n) = 16 (— 1) (o () — o (n)

where o° (n) denotes the sum of the third powers of the odd
divisors of 7, and ¢¢ (n) denotes the sum of the third powers of
the even divisors of n. This is the desired result. [8]

5. MopuLAR TRANSFORMS.

It has been shown in [2] that for k> 1, the function oy, (f)
satisfies the modular transformation

Nk
( zhi) gy (271) -

(36) t* ag, y (2mE) =

For k — 1, the conditional convergence of the double series in
(1) creates difficulties [9], which however, have been resolved
by Hurwirz [3], who gives a result equivalent, in our notation,
to the formula

(37) oy (27) :—%al @nft) +

Al

We find that this result may be proved very easily by using (36)
in conjunction with the relation

(38) o () = og (1) + o (t) et (2)

which is the case n = 2 in (26).

With the aid of equations (30), (31) and (33), the transforms
(36) and (37) yield those for our functions (4);, (5); and (6);.
It is found that under the modular transformation in question,
the first two functions are reciprocal in the sense that,

R (— 1)F
(39) t ‘P‘%‘_1 [Zrt) = 7 Xop-y (27/t) , k=1.

The remaining function (6), transforms in a manner analogous
to aq,, (?), namely

(="
i Qopy 27/t) , kK >1,
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