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36 M. A. BASOCO

powers of ¥ are lowered into subscripts; thus ¥® would then
be written ¥, (¢).

If (18) and (19) are substituted in (13), there results the
following umbral identity: '

(20) Y (1 — cos ¥s) + 2

2 1 — cos ¥s
ot ¥

>=25in‘Fs*sin‘P’s,

where the asterisk (*) indicates umbral multiplication.

For the cases r = 2, 3, rather extensive calculations show
that umbral identities of the same form exist. We may there-
fore state the following result which is implied by the non-linear
equation (13).

Theorem 1: “Let ¥, X, ® be respectively the umbrae of the
sequences { ¥y, (1) }, { Xgpy (1) }, and { @y, (1) }. If v is one of
these umbrae, then the following umbral identity holds:

0 (1 — COs Ys’

(21) v (1 —cos vs) + 2 T > > = 2 sin+ys * sin ys .

3. RECURRENCES.

It is clear that (20) implies a recurrence relation for the funec-
tions W (f), and indeed, Theorem 1 yields the following.

Theorem 2: “Let v, (1) be W} (2), X; (f) or @; (t); then the
following recurrence holds: :

n-1 |

d 1 2
(22) o= Yot ) + 5 Yonu () = D) <2k j_ 1) Yoret (&) Yon-gn-1 (8) 5
k=0 ,_

and hence vy,, 4 (¢) 1s a polynomial in v, (¢) and its derivatives up
to order n.”

This result, in turn, implies the following

Theorem 3: “Let pq, 4 (n) be either of the arithmetical func
tions By, (r) or &4 (n) defined by (8) and (10) respectively;
then g, , (n) satisfies a recurrence relation of the form:

e S
(28)  Pgpey (1) — mpguy () = 2 > Z (23 i ,1)92s+1 (7) Pop-gst (n — J),

s=0 j=1

et e e ceom e e -
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for all » and k> 1. Moreover, the arithmetical function
Copq (n) defined by (9) satisfies the recurrence

Céhn (n) —2n Copy (n) = 2 Z ( ) { Uy Cogq (n) +
(24)

+ Usiy Sopge (7)) F 2 Sose1 1) Sopgsg (0 —1J) }

where U, 1s defined by (11) and », £ > 1.”
Incidentally, the comparison of coefficients which y1e]ds (24)
also gives:

(25) 22<2k+ > Upy Uy, 21,

which is equivalent to a result given by NierLsen [7].
Finally, the case r = 1, has been discussed by vaAx pEr PoL
[1] who finds an expression analogous to (22) as follows:

d, 2n & 3 2n + 3, oo
(26) = hoyyg (1) + in 13 "ann (1) = };0 (2k 4 1) hopat (&) hop gy (1), 21,
where,
(—1)"B,
(27) hgn_1 (1) = ~ an Xon-1 (t) ,

%y, (f) being defined by (2).
We find the analogue of (24) for this case to be:

h—1
2k + 3 2k
2k 4+ 1 Ognet (R) — Inogyy (n) = 2 (23 + '1) { Vios Osnt () +
(28) 5—0
n~1
+ Vs+1 Cokr—2s-1 (n) + Gos+1 (]) Cor—2s—1 (n — ]) } s,y n=1.
j=1

Corresponding to (25), we find

4n o |
(29) Vit — on Z <2k " ) ot Vo s
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which is equivalent to a known recurrence for the BERNOULLI
numbers [8].

4. TrE Funcrions W, (1), Xguy (2), Dopy (2)
AS DouBLE Suwms.

The results which are stated as (4), (5), (6) follow readily
from (1) and (2) which are known to be equivalent (see [1], [2]).
It 1s to be observed first that a comparison of (4) and (5) with
(1) taking into account (27) gives the relations:

(30)  Wopy (1) = hopy (8/2) — hopy (1) = Vi (cgpq (1/2) — 2954 () »

(81)  Xgpy (8) = 2% hop_y (20) — hgyy (1) = V, (2% g4 (20) — gy, (1))
From (4) and (6) we also have,

(32) Doy 4 (1) = 2% Wy, | (2) — WPy, (1) -

By (30), we may write
(33) Dy y (1) = — V, (0tgy (8/2) — (2%F + 1) gy (1) + 2% gy (22)) .

Thus, our functions (4), (5), (6) are expressed in terms of ay,_, (u).
These relations in conjunction with (1) and (2) identify them
- with (4),, (5);, and (6); respectively.

It is of interest to note that (31) with £ = 2 permits, with
the aid of a result of van pERr Por [1], the deduction of Jacobi’s
famous theorem on the number of representations rg (n) of the
integer n as the sum of eight squares. Thus, ]

(34) 240 X, () = 16 o (20) — ag (1) = 15 6 (0, ¢)

where ¢ = exp (—t). Hence,

05 (0,q) = 16X,(t) =1+ 16 > ¢" L (n) ,
n=1
and

65 (0, g) =1 416 > (—1)"¢" % (n) .
n=1
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