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36 M. A. BASOCO

powers of Y are lowered into subscripts ; thus Y(1) would then
be written Yx (t).

If (18) and (19) are substituted in (13), there results the
following umbral identity:

(20) Y (1 _ cos Ts) + 2 A Ç- ~^y') 2 sin Ts * sin Ts

where the asterisk (*) indicates umbral multiplication.
For the cases r 2, 3, rather extensive calculations show

that umbral identities of the same form exist. We may therefore

state the following result which is implied by the non-linear
equation (13).

Theorem 1 : "Let T, X, O be respectively the umbrae of the
sequences { T"2M (t)}, { X2fe_t (t) }, and { (t)}. If Y is one of
these umbrae, then the following umbral identity holds:

(21) y (1 -— cos ys) + 2 f î cos
ys^ 2 sinys * sin ys

3. Recurrences.

It is clear that (20) implies a recurrence relation for the functions

Wj (t), and indeed, Theorem 1 yields the following.
Theorem 2: "Let y3 (t) be Yj (t), Xj (t) or 3>3 (t); then the

following recurrence holds:

^ cït Ï2n_1 ^ + ~2 Ï2n+1 ^ 2 (2k 4- l) Ï2/l+1 ^ T2n-2fe-l (0 '
h=0 x 7

and hence y2n+1 (t) is a polynomial in yx (t) and its derivatives up
to order n."

This result, in turn, implies the following
Theorem 3 : "Let p2kA (n) be either of the arithmetical func

tions ß2fe_i (n) or £2fe_i (n) defined by (8) and (10) respectively;
then p2fe_i (n) satisfies a recurrence relation of the form:

k~{ n_1 / 2 k N

(23) p2fe+l (n) n p2fe-l (n) 2 2 2 U + 1
)p2s+l p2fe-2s-l (n ~~ /)'

s=03=1
V 7
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for all n and k>1. Moreover, the arithmetical function
^2fc-i n)defined by (9) satisfies the recurrence

k—1 f
^2fe+l M ~ 2n ^2fe-l (w) 2 2 (25 -f l) I

s=0 I

k-i
U,_sc2s+1H +

(24)
n-1

+ Us+1 hk-2s-lw + 2 ^2s+l (/) ^2fe—2s-l ~ /')

j 1

where Ufe is defined by (11) and n, k>_ 1."

Incidentally, the comparison of coefficients which yields (24)
also gives:

<25) U„+l 2 2 L2" d) Uft+1 Un_, » > 1

ft=0 x 7

which is equivalent to a result given by Nielsen [7].
Finally, the case r 1, has been discussed by van der Pol

[1] who finds an expression analogous to (22) as follows:

'26' dt ^2n_1 + In + 2
^2n+1 ~~ 2 {2k + l) ^2fe+1 hZn-2h-i W » n —

1
»

fe=0 v 1 7

where,

(— t)nB.
(27> *2n-l(') 4, 0c2n-l >

a2n-i (0 being defined by (2).
We find the analogue of (24) for this case to be :

(28)
2k

k—\

±|a2ft+1 (n) - 2»0sm (n)2 £ (2#2* Vft_s a2s+1 (n) +
s=0 7 I

n-1 ^

+ Vs+1 a2Ä-2s-l (re) + 2 ct2s+1 (/) °2fc-2s-l

n-1

2
3 1

Corresponding to (25), we find

|29> v- £^!tU+iN,vn,
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which is equivalent to a known recurrence for the Bernoulli
numbers [8].

4. The Functions TV! (t), X2kA (t), 02M (t)
as Double Sums.

The results which are stated as (4), (5), (6) follow readily
from (1) and (2) which are known to be equivalent (see [1], [2]).
It is to be observed first that a comparison of (4) and (5) with
(1) taking into account (27) gives the relations:

(30) ^2fe-l W h2k-i (*/2) h2k-i M Vk (a2fe-l (^/2) ~ a2^-l W) '

(31) X2fe-1 W 22kh2k-\ h2k-\ W a2ft-l a2fe-l W)

From (4) and (6) we also have,

(32) ')-%.(')•
By (30), we may write

(33) ®2M (t)- VÄ (a2ft-i W2) - (22ft + 1) a2fe_1 (0 + 22ft
a2fe_t (2«))

Thus, our functions (4), (5), (6) are expressed in terms of a2k_{ (&).
These relations in conjunction with (1) and (2) identify them
with (4)x, (5)x, and (6)x respectively.

It is of interest to note that (31) with k 2 permits, with
the aid of a result of van der Pol [1], the deduction of Jacobi's
famous theorem on the number of representations r8 (n) of the
integer n as the sum of eight squares. Thus,

(34) 240 X3 (t) 16 a3 (21) — oc3 (t) 15 0® (0, q)

where q exp (- t). Hence,
00

6o (0, q) 16 X3 (t)1 + 16 2 «" K, (n)
n=1

and
00

0>,j) 1 + 16 2 (—l)n?nU") •

n—1
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