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34 M. A. BASOCO

(11) - U, = 2% — 1)V, = (— 1)k 2% — 1) f_]’: .

As is well known, the double series occurring in (1), (4), (5),
(6) are absolutely convergent for k> 1; for k = 1, the conver-
gence is conditional. However, as has been shown by Hur-
wiTz [2] in the case of (1), if the summation is first carried out
with respect to m and then with respect to 7, the resulting sum
agrees with (2) with & = 1. For this case (k¥ = 1) similar
conditions hold for (4), (5) and (6). These matters are of relev-
ance In studying certain modular transformations of these
functions to be discussed later.

2. UMBRAL RELATIONS.

The functions defined in what precedes arise in a natural
manner as a consequence of the well-known fact that the Jacobi
theta functions are solutions of the partial differential equation
(12) g—zz_——Qg—f, z=10.(0,7), (r=1,2,3,4),
with s = 270 and — ¢ = 2nit, and, what appears to be less well-
known, that the functions u = Inf, (v, t) satisfy the non-linear
equation:

02y ou ou\2
(13) TS?_QEZ—“<TS> '

Here, the notation for the theta function is that used in TAN-
NERY-MoLKk’s treatise [4]. '

The arithmetical consequence of (13) can best be obtained
through the use of the infinite product representation of 6. (¢, 1).
It is found that the calculations needed are greatly facilitated
and the results obtained very simply expressed in a symbolic
form through an application of the umbral calculus of BLissARD
and Lucas [5]. It is not feasible to give details for all cases
and we merely indicate briefly the nature of the calculations
for the case r = 4. Thus, since,

T ———
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(14) 64 (9, "C') = QO II (1 — qgnfi eQTfi’U) (1 . q2n—1 e—?‘n:iv) :
n=1 :

and taking into account the change in variables from (¢, 7) to
(s, t) it is found that if u (s, ) = In 04 (¢, 7), then

d - no _
(15) ‘a%:zgquansm'w, g=c¢el,
n=1 "+
and
%u - ng" _
(16) 5_92:221____271005715’
n=1 g
moreover,
) > n 0 - m cos
(17) '5%:__1 nqzn_2&{21q2n nnS}
amtl—4 n=11 4

provided Ret + 2Im s> 0 in (15), (16) and (17).
Now, in (15) replace sin ns by its power series development
and interchange the order of summation to obtain

(15), ? =2> (— 1)k (2,(%1), Fopy (1)

Hence if ¥ is the umbra of the sequence {¥,,, (t)} we may
write symbolically:
ou 0%u

(18) — & 25in ¥s — 2 2 ¥ cos s .
0s?

»

Similarly, a more extended calculation shows that

ou
ot

1 — cos ¥s

(19) -

~ ) 490
= P 42 ot

In (18) and (19), in order to pass from symbolic equality to
actual equality, the functions sin ¥'s, cos ¥ s and (1 — cos ¥ 5)/¥"
are to be expanded in powers of s and then the exponents in the
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powers of ¥ are lowered into subscripts; thus ¥® would then
be written ¥, (¢).

If (18) and (19) are substituted in (13), there results the
following umbral identity: '

(20) Y (1 — cos ¥s) + 2

2 1 — cos ¥s
ot ¥

>=25in‘Fs*sin‘P’s,

where the asterisk (*) indicates umbral multiplication.

For the cases r = 2, 3, rather extensive calculations show
that umbral identities of the same form exist. We may there-
fore state the following result which is implied by the non-linear
equation (13).

Theorem 1: “Let ¥, X, ® be respectively the umbrae of the
sequences { ¥y, (1) }, { Xgpy (1) }, and { @y, (1) }. If v is one of
these umbrae, then the following umbral identity holds:

0 (1 — COs Ys’

(21) v (1 —cos vs) + 2 T > > = 2 sin+ys * sin ys .

3. RECURRENCES.

It is clear that (20) implies a recurrence relation for the funec-
tions W (f), and indeed, Theorem 1 yields the following.

Theorem 2: “Let v, (1) be W} (2), X; (f) or @; (t); then the
following recurrence holds: :

n-1 |

d 1 2
(22) o= Yot ) + 5 Yonu () = D) <2k j_ 1) Yoret (&) Yon-gn-1 (8) 5
k=0 ,_

and hence vy,, 4 (¢) 1s a polynomial in v, (¢) and its derivatives up
to order n.”

This result, in turn, implies the following

Theorem 3: “Let pq, 4 (n) be either of the arithmetical func
tions By, (r) or &4 (n) defined by (8) and (10) respectively;
then g, , (n) satisfies a recurrence relation of the form:

e S
(28)  Pgpey (1) — mpguy () = 2 > Z (23 i ,1)92s+1 (7) Pop-gst (n — J),

s=0 j=1

et e e ceom e e -

—



	2. Umbral Relations.

