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DIE GEOMETRIE DES PTOLEMAEUS
VON ALEXANDRIA

VON

Arthur Czwalina, Berlin

(Reçu le 20 avril 1957)

Der grösste Astronom des griechischen Altertums, Ptolemäus,

hat in seinem 13 Bücher umfassenden Werke „Mathematische

Syntaxis" seine astronomischen Beobachtungen und Berechnungen

niedergelegt. Zu seinen Berechnungen bedarf er der

sphärischen Geometrie. Es ist im Grunde nur ein einziger Lehrsatz,

auf dem diese Geometrie aufgebaut ist; er findet sich im 13. Kapitel

des ersten Buches. Wir wollen ihn zu

unserer Orientierung zunächst in moderner

Form aussprechen:
Ist ABC ein sphärisches Dreieck (Fig. 1)

und schneiden zwei sphärische Ecktransversalen

CD und BE einander in Z, so ist

sin (CE)
sin (EA)

sin (GZ)
sin (ZD)

sin (DB)
sin (BA)

Fig. 1

Ptolemäus kennt aber nicht die trigonometrischen

Funktionen, die erst viel später von
den Arabern in die Wissenschaft eingeführt
wurden. Wenn in einem Kreise von Radius

r zum Zentriwinkel a der Bogen b und

die Sehne AC gehört (Fig. 2), so ist

diese Sehne von der Grösse 2r • sin ^ •

Der Halbierungspunkt des Bogens AC

sei B, der der Sehne AC sei E. AC

ist eine Funktion des Bogens AB ; wir
wollen sie die Ptolemäische Funktion
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nennen und mit p (AB) bezeichnen. Diese Funktion verwendet

Ptolemäus zu seinen Rechnungen. Wir wollen nun den Beweis des

obigen Satzes wiedergeben, indem wir uns möglichst genau an

den Gedankengang des Ptolemäus anschliessen. Dieser

Gedankengang führt über mehrere Hilfssätze

aus der ebenen Geometrie zum Ziel.

7. Satz (Fig. 3).

Wenn zwei Geraden AB und AC durch
die Geraden BZE und CZD geschnitten
werden (wobei D auf AB, E auf AC liegt),
so ist

CA _ CD ZB
AE DZ BE

Beweis: Wir legen durch E die Parallele zu CD, sie schneide

AB in H. Dann ist nach dem Strahlensatz

CA _ CD _ CD DZ
ÂË ~~ EH — DZ EH

Weiter ist nach dem Strahlensatz

DZ _ ZB
EH ~ BE '

also folgt
CA _ CD ZB
AE DZ BE

2. Satz (Fig. 4).

Wenn zwei Geraden AB und AC durch die Geraden BZE und
CZ.D geschnitten werden (wobei D auf AB, E auf AC liegt), so ist

CE _ CZ DB
EA ~~ DZ

'
BA

'

Beweis : Wir legen durch A die Parallele zu EB, sie schneide
CD in H. Dann ist nach dem Strahlensatz

CE _ CZ^ _ CZ ZD
EA ~~ ZH ~~ ZD

'
ZH

'

Fig. 3

L'Enseignement mathém., t. IV, fasc. 4. 20
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Ferner ist nach dem Strahlensatz

ZD
ZH

somit
CE
EA

DB
BA '

CZ DB
DZ

' BA

FigA

3. Satz (Fig. 5).

Wenn auf einem Kreise ein Bogen

ABC gegeben ist und die beiden Bögen

AB BC kleiner sind als ein Halbkreis,

wenn ferner der Schnittpunkt des Radius DB mit der Sehne

AC E genannt wird, so verhält sich die Sehne, die zum Bogen

2.AB gehört, zu der Sehne, die zum Bogen 2.BC gehört, wie

AE zu EG.

Beweis- Die erste der genannten Sehnen ist gleich 2.AZ,

wenn wir von A aus das Lot AZ auf den Radius DB fällen. Die

zweite der genannten Sehnen ist

gleich 2.CH, wenn wir von C aus

das Lot AZ auf den Radius DB

fällen. Das Verhältnis der beiden

genannten Sehnen ist also AZ: CH.

Dieses Verhältnis ist aber nach dem

Strahlensatz gleich dem Verhältnis

AE: EC.
Wenn wir uns der Ptolemäischen

Funktion bedienen, so heisst dieser

dritte Satz

Fig.5
p (AB) : p (BC) AE : EC :

4. Aufgabe (Fig. 6).

Es sei der Bogen AC eines Kreises gegeben. Er soll so m zwei

Teile AB, BC geteilt werden, dass die zu den Teilbögen gehörigen

Sehnen in einem gegebenen Verhältnis stehen.

Lösung: Angenommen, B wäre der gesuchte Teilpunkt, so

schneidet der Radius DB die Sehne AC in E.
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Dann stehen nach dem

vorigen Satze AE und EC zu

einander im gleichen Verhältnis

wie die zu den Teilbögen

gehörigen Sehnen. Man hat
also die Sehne AC nur in dem

gegebenen Verhältnis zu teilen
und den Teilpunkt E mit dem

Mittelpunkt E zu verbinden.
Diese Verbindungslinie schneidet

den Kreis im gesuchten
Punkt B.

Anmerkung: Wenn von D

das Lot DZ auf AC gefällt

wird, so ist die Grösse des Winkels EZD aus den gegebenen

Grössen bestimmbar.

Fig. 6

5. Satz (Fig. 7).

Auf einem Kreise seien 3 Punkte A, B, C gegeben, so dass

die Bögen AB und BC kleiner als der Halbkreis sind. Der

verlängerte Radius DA r
schneide CB in E. Dann
verhält sich die Sehne, die

zum Bogen 2.AC gehört,
zu der Sehne, die zum

Bogen 2.AB gehört, wie

CE: BE.

Beweis : Wir fällen

von B und C die Lote BZ
und CH auf die Gerade

EAD. Dann ist die Sehne,

die zum Bogen 2.AC ge- 7

hört, gleich 2.CH, die

Sehne, die zum Bogen 2.AB gehört, gleich 2.BZ. Es ist aber

2.CH : 2.BZ GE : BE (Strahlensatz).
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Es ist also ^ ^p (AG) : p (AB) CE : BE

6. Aufgabe (Fig. 8).

Es sei der Bogen CB gegeben, ferner das Verhältnis der Sehne,

die zum Bogen 2.CA gehört, zu der Sehne, die zum Bogen 2. AB

gehört. Der Punkt
A ist zu finden.

Lösung:
Angenommen A sei der

gesuchte Punkt, D
der Mittelpunkt des

Kreises, so schneide

DA die Sehne CB

in E. DZ sei das Lot,
das von D auf BC

gefällt ist. Dann
stehen nach dem
Satz 5 die genannten

Sehnen im Verhältnis CE zu BE. Daher ist der Punkt E

konstruierbar und somit auch die Grösse des Winkels EDB.

7. Hauptsatz (Fig. 1 und Fig. 9).

Ist ABC ein sphärisches Dreieck und schneiden zwei sphä¬

rische Ecktransversalen CD

und BE einander in Z, so ist

p (CE) p (GZ)
^

p (DB)

p (ËA) p (ZD) p (BA)

wobei unter dem Zeichen

p (CE) die Sehne zu verstehen

ist, die zum Bogen 2.CE
gehört.

Beweis: Das Zentrum der

Kugel H werde mit den Punkten

B, Z und E verbunden. Die

Verlängerung von AD schneide
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die Verlängerung von HB in F. Die Gerade DA schneide HE
in K, die Gerade HZ schneide HE in L. Die Punkte F, K,
L liegen auf einer Geraden, da diese Punkte sowohl in der Ebene
des Dreiecks ACD als auch in der des Kreises BZE liegen. Auf
die ebene Figur der Punkte ADFKLC wenden wir den Satz 1

an und erhalten:
CL _ CK PF
LA ~ KD

'
FA

Nach dem Satze 3 ist aber

GL : LA p (CE) : p (EA)

CK : KD p (GZ) : p (ZD)

DF : FA p (DB) : p (BA)
Daher ist

P(GE) P (GZ) Pjm
p (EA) p (ZD) p (BA)

'

und somit ist der Hauptsatz bewiesen.
Zu diesem Hauptsatz ist nun folgendes zu bemerken: Schreiben

wir ihn, indem wir die Funktionen p (CE), p (EA) u.s.f.
durch die ihnen proportionalen Grössen sin (CE), sin (EA) u.s.f.
ersetzen und die Nenner wegmultiplizieren, in der Form

sin (GE) • sin (AB) • sin (DZ) sin (EA) • sin (BD) sin (ZC)

so erkennt man leicht die Analogie zum Satze des Menelaos für
die ebene Geometrie (Fig. *3). Dieser heisst bekanntlich: Wird
ein Dreieck durch eine Transversale geschnitten, so sind die
Produkte der alternierenden Seitenabschnitte einander gleich.
Er ist identisch mit dem oben unter Nr. 2 angeführten Satz.
Auch der sphärische Satz wird dem Mathematiker Menelaos
zugeschrieben, der um 100 nach Chr. Geb. lebte. In späteren
Zeiten wird der sphärische Satz auch als „regula sex quantita-
tum" bezeichnet.

Nun ist noch die Frage zu beantworten, wie Ptolemäus mit
Hilfe des sphärischen Menelaos-Satzes die Aufgaben bewältigt,
die die sphärische Trigonometrie stellt. Wir wollen das an Hand
der ersten Anwendung zeigen, die Ptolemäus macht. Es handelt
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sich um folgende Frage: Welche Deklination hat ein gegebener
Punkt der Ekliptik, wenn die Schiefe der Ekliptik — sie heisse

hier a — gegeben ist. In Figur 10 stellt der Bogen AC den

Aequator dar, der Bogen AB die

Ekliptik. Der Bogen AB ist der
Grösse nach gegeben. Nach der
Deklination CB wird gefragt.
Befreien wir die Aufgabe von ihrer
astronomischen Einkleidung, so

heisst sie : In dem bei C rechtwinkligen

Dreieck ABC sind die Seite

AB und der Winkel BAC gegeben ;

die Seite BC ist zu berechnen.
Ptolemäus verlängert die Seiten

AB, AC und CB bis zu dem

Hauptkreise, dessen Pol A ist (QC

und QR sind also Meridiane). Die Schnittpunkte sind S, R und

Q. Wenn nun der Satz des Menelaos auf das Dreieck QBS
angewandt wird, so entsteht die Gleichung

sin (BA) • sin (SR) • sin (QG) sin (AS) • sin (RQ) • sin (GB)

Fi9-10

Es ist aber

BA c SR a QC 90° AS 90° RQ 90° CB - a

daher
sin c sin a

Somit ist a durch c und a bestimmt. Die zuletzt gewonnene
Formel ist eine der Neperschen Analogien. Auch die anderen

Neperschen Analogien lassen sich aus der Figur 9 gewinnen,
und Ptolemäus leitet sie tatsächlich aus der Figur ab. Legt man
nämlich das Dreieck ASR zugrunde, so ergibt sich

sin AB sin SQ Sin RG sin BS sin QR sin CA

oder

oder
sin c cos öl cos b cos c sin b

tg b tg c • .cos öl
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Geht man drittens vom Dreieck ABC aus, so ergibt sich

sin AR sin GQ sin BS sin RG sin QB sin SA

oder

cos c cos b cos a

Geht man endlich vom Dreieck QCR aus, so folgt

sin QB sin CA sin RS sin BG sin AR sin SQ

oder

cos a sin b sin a sin a cos a

oder

tg a tg a sin b

Ptolemäus rechnet also eigentlich nur mit rechtwinkligen
Dreiecken. Andere Dreiecke werden in rechtwinklige Dreiecke

zerlegt oder auf rechtwinklige Dreiecke zurückgeführt.
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