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DIE GEOMETRIE DES PTOLEMAEUS
VON ALEXANDRIA

VON

Arthur Czwarina, Berlin

(Regu le 20 avril 1957)

Der grosste Astronom des griechischen Altertums, Ptoleméus,
hat in seinem 13 Biicher umfassenden Werke ,Mathematische
‘Syntaxis“ seine astronomischen Beobachtungen und Berechnun-
gen niedergelegt. Zu seinen Berechnungen bedarf er der sphé-
rischen Geometrie. Es ist im Grunde nur ein einziger Lehrsatz,
auf dem diese Geometrie aufgebaut ist ; er findet sich im 13. Kapi-
tel des ersten Buches. Wir wollen 1hn zu
unserer Orientierung zunéchst in moderner A
Form aussprechen:

Ist ABC ein spharisches Dreieck (Fig. 1)
und schneiden zwei sphiirische Ecktransver-
salen CD und BE einander in Z, so ist

sin (CE)  sin (CZ; sin (DB)

sin (EA) _ sin (ZD) sin (BA)

Ptolemius kennt aber nicht die trigonome-
trischen Funktionen, die erst viel spiter von ,
den Arabern in die Wissenschaft eingefiihrt Fig.1
wurden. Wenn in einem Kreise von Radius

e 7 zum Zentriwinkel « der Bogen b und
\ die Sehne AC gehort (Fig. 2), so ist

& ie . 04
C diese Sehne von der Grosse 2r-sin - -

A/ :
E
\ . Der Halbierungspunkt des Bogens AG
2|2
M

sei B, der der Sehne AC sei E. ACG

ist eine Funktion des Bogens AB; wir
Fig.2 wollen sie die Ptolemiische Funktion




DIE GEOMETRIE DES PTOLEMAEUS 293 -

nennen und mit p (fﬁ?)) bezeichnen. Diese Funktion verwendet
Ptolemius zu seinen Rechnungen. Wir wollen nun den Beweis des
obigen Satzes wiedergeben, indem wir uns moglichst genau an
den Gedankengang des Ptoleméus anschliessen. Dieser Gedan-
kengang fiihrt itber mehrere Hilfssdtze
aus der ebenen Geometrie zum Ziel.

I. Saiz (Fig. 3). ~
Wenn zwei Geraden AB und AC durch
die Geraden BZE und CZD geschnitten

werden (wobei D auf AB, E auf AC liegt),
so 1st

CA _CD ZB .
AE = DZ BE Fig.3

Beweis : Wir legen durch E die Parallele zu CD, sie schneide
AB in H. Dann ist nach dem Strahlensatz

CA_ CD CD DZ
AE ~ BH _ DZ EH

Weiter ist nach dem Strahlensatz

pz _ B
EH ~ BE’
also folgt

CA CD ZB
AE ~ DZ BE

2. Satz (Fig. 4).

Wenn zwei Geraden AB und AC durch die Geraden BZE und
CZD geschnitten werden (wobei D auf AB, E auf AC liegt), so ist

CE _ CZ DB
EA ~ DZ BA

Beweis : Wir legen durch A die Parallele zu EB, sie schneide
CD in H. Dann ist nach dem Strahlensatz

CE _CZ CZ ZD
EA ~ ZH ~ 7ZD ZH
L’Enseignement mathém., t. IV, fasc. 4. 20
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Ferner ist nach dem Strahlensatz

zD _ DB
ZH ~ BA’
somit

3. Satz (Fig. 5).

Wenn auf einem Kreise ein Bogen
ABC gegeben ist und die beiden Bogen Fig.4
AB, BC kleiner sind als ein Halbkreis,
wenn ferner der Schnittpunkt des Radius DB mit der Sehne
AC E genannt wird, so verhalt sich die Sehne, die zum Bogen

92.AB gehort, zu der Sehne, die zum Bogen 2.BC gehort, wie
AE zu EC.

Beweis: Die erste der genannten Sehnen ist gleich 2.AZ,
wenn wir von A aus das Lot AZ auf den Radius DB fallen. Die
sweite der genannten Sehnen 1st

B gleich 2.CH, wenn wir von C aus
e das Lot AZ auf den Radius DB fil-
A Z len. Das Verhiltnis der beiden ge-
nannten Sehnen ist also AZ: CH.
D Dieses Verhaltnis ist aber nach dem
Strahlensatz gleich dem Verhdltnis
AE: EC.
Wenn wir uns der Ptoleméischen
Funktion bedienen, so heisst dieser
dritte Satz :
Fig.5

p (AB) : p (BC) = AE : EC

4. Aufgabe (Fig. 6).
Es sei der Bogen AC eines Kreises gegeben. Er soll so in zZwel

Teile 153, BC geteilt werden, dass die zu den Teilbogen gehorigen
Sehnen in einem gegebenen Verhiltnis stehen.

Loésung : Angenommen, B wire der gesuchte Teilpunkt, so
schneidet der Radius DB die Sehne AC in E.
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Fig.6

Dann stehen nach dem
vorigen Satze AE und EC zu
einander im gleichen Verhalt-
nis wie die zu den Teilbogen
gehorigen Sehnen. Man hat
also die Sehne AC nur in dem
gegebenen Verhiltnis zu teilen
und den Teilpunkt E mit dem
Mittelpunkt E zu verbinden.
Diese Verbindungslinie schnei-
det den Kreis im gesuchten
Punkt B.

Anmerkung: Wenn von D
das Lot DZ auf AC gefallt

wird, so ist die Grosse des Winkels EZD aus den gegebenen

Grossen bestimmbar.

5. Satz (Fig. 7).

Auf einem Kreise seien 3 Punkte A, B, C gegeben, so dass
die Biogen AB und BC kleiner als der Halbkreis sind. Der

verlangerte Radius DA

schneide CB in E. Dann
verhalt sich die Sehne, die

zum Bogen 2.AC gehort,

zu der Sehne, die zum

Bogen 2.AB gehort, wie

CE: BE. |
Beweis: Wir fallen

von B und C die Lote BZ

und CH auf die Gerade
EAD. Dann ist die Sehne,

die zum Bogen 2.AC ge-
hort, gleich 2.CH, die

C .

Fig. 7

Sehne, die zum Bogen 9.AB gehort, gleich 2. BZ. Es ist aber

2.CH : 2.BZ = CE : BE (Strahlensatz).




6. Aufgabe (Fig. 8).
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Es 1st also . -
p (AC) : p (AB) = CE : BE .

Es sei der Bogen CB gegeben, ferner das Verhiltnis der Sehne,

die zum Bogen 2.CA gehort, zu der Sehne, die zum Bogen 2.AB
gehort. Der Punkt
A ist zu finden. C

Losung: Ange-
nommen A sei1 der

gesuchte Punkt, D
der Mittelpunkt des

Kreises, so schneide £ A .. D ‘
DA die Sehne CB
in E. DZseidas Lot,
das von D auf BC
gefallt 1st. Dann

stehen nach dem
Satz 5 die genann-
ten Sehnen im Verhiltnis CE zu BE. Daher ist der Punkt E
konstruierbar und somit auch die Griosse des Winkels EDB.

B

Fig.8

7. Hauptsatz (Fig. 1 und Fig. 9).
Ist ABC ein sphirisches Dreieck und schneiden zwel sphé-

rische Ecktransversalen CD
und BE einander in Z, so ist

—~ ¥ S~

p(CE) _ p(CZ) p(DB)

p(BEA)  p(ZD) p(BA)

I

wobei unter dem Zeichen

p ((ﬁl) die Sehne zu verstehen
ist, die zum Bogen 2.CE ge-
hort.

Beweis: Das Zentrum der
Kugel H werde mit den Punk-
ten B, Z und E verbunden. Die
Verliangerung von AD schneide
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die Verlingerung von HB in F. Die Gerade DA schneide HE
in K, die Gerade HZ schneide HE in L. Die Punkte F, K,
L liegen auf einer Geraden, da diese Punkte sowohl in der Ebene
des Dreiecks ACD als auch in der des Kreises BZE liegen. Auf
die ebene Figur der Punkte ADFKLC wenden wir den Satz 1
an und erhalten:

CL _CK DF

LA KD FA

Nach dem Satze 3 ist aber

CL : LA = p (CE) : p (EA
CK : KD = p (CZ) : p (ZD)

DF : FA = p (DB)
Daher ist

und somit ist der Hauptsatz bewiesen.
Zu diesem Hauptsatz ist nun folgendes zu bemerken: Schrei-

ben wir ihn, indem wir die Funktionen p (@), p (I'i/\&) u.s.f.

durch die ihnen proportionalen Grossen sin ((/]-1\33), sin (1*5_7&) u.s.f.
ersetzen und die Nenner wegmultiplizieren, in der Form

sin (CE) - sin (AB) - sin (DZ) — sin (EA) - sin (BD) - sin (ZC) ,

so erkennt man leicht die Analogie zum Satze des Menelaos fiir
die ebene Geometrie (Fig. 3). Dieser heisst bekanntlich: Wird
ein Dreieck durch eine Transversale geschnitten, so sind die
Produkte der alternierenden Seitenabschnitte einander gleich.
Er 1st identisch mit dem oben unter Nr. 2 angefiihrten Satz.
Auch der sphérische Satz wird dem Mathematiker Menelaos
zugeschrieben, der um 100 nach Chr. Geb. lebte. In spéateren
Zeiten wird der sphérische Satz auch als ,regula sex quantita-
tum® bezeichnet.

Nun ist noch die Frage zu beantworten, wie Ptolemius mit
Hilfe des sphérischen Menelaos-Satzes die Aufgaben bewiiltigt,
die die sphérische Trigonometrie stellt. ‘Wir wollen das an Hand
der ersten Anwendung zeigen, die Ptolem#us macht. Es handelt
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sich um folgende Frage: Welche Deklination hat ein gegebener
Punkt der Ekliptik, wenn die Schiefe der Ekliptik — sie heisse
hier « — gegeben ist. In Figur 10 stellt der Bogen AC den
Aequator dar, der Bogen AB die
Ekliptik. Der Bogen AB ist der
Grosse nach gegeben. Nach der
Deklination CB wird gefragt. Be-
freien wir die Aufgabe von ihrer
astronomischen Einkleidung, so
heisst sie : In dem bei C rechtwink-
ligen Dreieck ABC sind die Seite

AB und der Winkel BAC gegeben;

die Seite BC ist zu berechnen.
Ptolem&us verlingert die Sei-
Fig.10 ten AB, AC und CB bis zu dem
Hauptkreise, dessen Pol Aist (QC
und QR sind also Meridiane). Die Schnittpunkte sind S, R und
Q. Wenn nun der Satz des Menelaos auf das Dreieck QBS ange-
wandt wird, so entsteht die Gleichung

sin (BA) - sin (SR) - sin (QC) = sin (AS) - sin (RQ) - sin (CB) .

Es ist aber
BA=¢, SR=a, QC=90°, AS = 90°, RQ =90°, CB = a,

| 'daher

sine.sin o« = sin a .

Somit ist a durch ¢ und « bestimmt. Die zuletzt gewonnene
Formel ist eine der Neperschen Analogien. Auch die anderen
Neperschen Analogien lassen sich aus der Figur 9 gewinnen,
und Ptolemius leitet sie tatsdchlich aus der Figur ab. Legt man
namlich das Dreieck ASR zugrunde, so ergibt sich

sin AB . sin SQ . 3in RC = sin BS . sin QR . sin CA

oder |
sinc.coso.cosb=cosc.sinb

oder
tgb =1tgc  cosa.
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Geht man drittens vom Dreieck ABC aus, so ergibt sich

sin AR . sin CQ . sin BS = sin RC . sin QB . sin SA
oder

cos ¢ = cosb.cosa.
Geht man endlich vom Dreieck QCR aus, so folgt

sin QB . sin CA . sin RS = sin BC . sin AR . sin 8Q
oder '
coSa .Sin b .sin o« = Sin @ . COS «
oder
tga=1tgo.sinb.

Ptolemé&us rechnet also eigentlich nur.mit rechtwinkligen
Dreiecken. Andere Dreiecke werden in rechtwinklige Dreiecke
zerlegt oder auf rechtwinklige Dreiecke zuriickgefiihrt.
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