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290 R. SALEM

7. Le cas de H, irrationnel (suite).
Les ensemrles H(n) de Piatecki-Shapiro.

Le résultat ci-dessus ne résoud pas entièrement le problème
de la classification des ensembles cantoriens E (£) à rapport
constant E, suivant les valeurs de Il laisse en effet intact le

problème de savoir si la condition E, 1/0, 0 G C est non
seulement nécessaire, mais aussi suffisante pour que E (£) soit un
ensemble Ü. Ainsi que nous l'avons vu plus haut, il ne suffit pas
de montrer — ce qui est facile — que le coefficient de Fourier-

Stieltjes cnde(2) ne tend pas vers zéro quand £=-§•, 6 e G

pour en conclure que E (£) est un ensemble U.

La solution du problème a été rendue possible par la découverte,

par Piatecki-Shapiro, d'un nouveau type d'ensemble

d'unicité, les ensembles du type H(n) qui ne se réduisent pas aux
ensembles H ou à leur union. Considérons le cas de 2, qui
est typique.

Nous dirons qu'une suite dé vecteurs Y de coordonnées

entières ph,qkdans l'espace euclidien R2 est normale si quels que

soient les entiers fixes a, b l'expression | aph + bqh | croît
indéfiniment avec k.

Ceci dit, considérons un ensemble E contenu pour fixer les

idées dans (0, 1). Soit a: 6 E et considérons le point P de

coordonnées ph x, qhxréduites modulo 1, c'est-à-dire prises sur le

tore unité dans R2. Si quel que soit £ E, et quel que soit k

le point Pft n'appartient jamais à un certain ensemble G ouvert
du tore, on dit que E est du type H(2). L'analogie avec les

ensembles du type H est évidente, et la généralisation à l'espace

euclidien Rn est immédiate, fournissant des ensembles du

type tPnk
Grâce au théorème de Piatecki-Shapiro, d'après lequel tout

ensemble du type H(n) est un ensemble U, on peut démontrer

que l'ensemble cantorien E (£) à rapport constant \ où l 1/6,

0 £ C est un ensemble U. On démontre, en effet, que si 0 est

de degré n, E (£) est de type H(n) précisément. Le vecteur « normal

» Vft qu'on considère ici a pour coordonnées les entiers

ak+l ' ak+2 ' ak+n
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où as 0S + £s et ss -> 0 et le fait qu'il est normal se démontre

en remarquant que quels que soient les entiers cx cn on a

toujours
Cl + C2 0 + • • • + cn

1 ^ ^

puisque 0 est de degré n. C'est ainsi que s'établit la relation

entre le type de l'ensemble et le degré de l'entier algérbique 0.
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