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7. LE cAs DE & IRRATIONNEL (suite).
LEs EnsEMBLES H™ DE PIATECKI-SHAPIRO.

Le résultat ci-dessus ne résoud pas entiérement le probléme
de la classification des ensembles cantoriens E (&) & rapport
constant £ suivant les valeurs de £. Il laisse en effet intact le
probléme de savoir si la condition & = 1/6, 6 € G est non seu-
lement nécessaire, mais aussi suffisante pour que E (&) soit un
ensemble U. Ainsi que nous 'avons vu plus haut, il ne suffit pas
de montrer — ce qui est facile — que le coefficient de Fourier-

Stieltjes ¢, de (2) ne tend pas vers zéro quand & = 10, 6cC

pour en conclure que E () est un ensemble U.

La solution du probléme a été rendue possible par la décou-
verte, par Piatecki-Shapiro, d’un nouveau type d’ensemble
d’unicité, les ensembles du type H™ qui ne se réduisent pas aux
ensembles H ou a leur union. Considérons le cas de n = 2, qui
est typique.

Nous dirons qu'une suite de vecteurs V de coordonnées
entiéres p,, ¢, dans I'espace euclidien R? est normale si quels que
soient les entiers fixes a, b 1'expression | ap, + bqh[ croit indé-
finiment avec k.

Ceci dit, considérons un ensemble E contenu pour fixer les
idées dans (0, 1). Soit z € E et considérons le point P de coor-
données p, z, g,  réduites modulo 1, c’est-a-dire prises sur le
tore unité dans R2 Si quel que soit z € E, et quel que soit k&
le point P, n’appartient jamais & un certain ensemble G ouvert
du tore, on dit que E est du type H®. L’analogie avec les
ensembles du type H est évidente, et la généralisation a 'espace
euclidien R™ est immédiate, fournissant des ensembles du
type H™. |

Grace au théoréme de Piatecki-Shapiro, d’apres lequel tout
ensemble du type H™ est un ensemble U, on peut démontrer
que ’ensemble cantorien E (£) & rapport constant & ou & = 1/9,
0 € C est un ensemble U. On démontre, en effet, que s1 6 est
de degré n, E (£) est de type H™ précisément. Le vecteur « nor-
mal » V, qu'on considére ici a pour coordonnées les entiers
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ou a, = 0° + ¢ et e, — 0 et le fait qu’il est normal se démontre
en remarquant que quels que solent les entiers ¢; ... ¢, on a

toujours ‘
P R N LA |

puisque 6 est de degré n. C’est ainsi que s’établit la relation
entre le type de I'ensemble et le degré de Ientier algérbique 6.
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